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NIJENHUIS AND COMPATIBLE TENSORS ON LIE AND
COURANT ALGEBROIDS

P. ANTUNES AND J.M. NUNES DA COSTA

Abstract: We show that well known structures on Lie algebroids can be viewed
as Nijenhuis tensors or pairs of compatible tensors on Courant algebroids. We study
compatibility and construct hierarchies of these structures.

Introduction
Pairs of tensor fields on manifolds, which are compatible in a certain sense,

were studied by Magri and Morosi [12], in view of their application to in-
tegrable hamiltonian systems. Besides Poisson-Nijenhuis manifolds – mani-
folds equipped with a Poisson bivector and a Nijenhuis (1, 1)-tensor which are
compatible in such a way that it is possible to define a hierarchy of Poisson-
Nijenhuis structures on these manifolds, the work of Magri and Morosi also
covers the study of ΩN and PΩ structures. These are pairs of tensors formed
respectively, by a closed 2-form and a Nijenhuis tensor (ΩN) and a Poisson
bivector and a closed 2-form (PΩ) satisfying suitable compatibility condi-
tions. Another type of structure that can be considered on a manifold is a
Hitchin pair. It is a pair formed by a symplectic form and a (1, 1)-tensor that
was introduced by Crainic [5] in relation with generalized complex geome-
try. All these structures, defined by pairs of tensors, were studied in the Lie
algebroid setting by Kosmann-Schwarzbach and Rubtsov [11] and by one of
the authors [2]. Finally, we mention complementary forms on Lie algebroids,
which were defined by Vaisman [17] and also considered in [11] and [2], and
that can be viewed as Poisson structures on the dual Lie algebroid.
The aim of the present paper is to show that all the structures referred

above, although they have different nature on Lie algebroids, once carried
to Courant algebroids, are all of the same type: they are Nijenhuis tensors.
We obtain, in this way, a unified theory of Nijenhuis structures on Courant
algebroids. In order to include Poisson quasi-Nijenhuis structures with back-
ground in this unified Nijenhuis theory, we consider a stronger version of
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this notion, which we call exact Poisson quasi-Nijenhuis structure with back-
ground. This seems to be the natural definition, at least in this context.
We show that the structures defined by pairs of tensors on a Lie algebroid

can also be characterized using the notion of compatible pair of tensors on a
Courant algebroid, introduced in [3].
An important tool in this work is the Nijenhuis concomitant of two (1, 1)-

tensors on a Courant algebroid. It was originally defined for manifolds in [7]
and then extended to the Courant algebroid framework in [15] and in [3]. We
use the Nijenhuis concomitant to study the compatibility of structures from
the usual point of view, i.e., saying that two structures of the same type are
compatible if their sum is still a structure of the same type. Thus, we can
talk about compatible Poisson-Nijenhuis, ΩN and PΩ structures, as well as
compatible complementary forms and compatible Hitchin pairs.
The extension to Lie algebroids of the Magri-Morosi hierarchies of Poisson-

Nijenhuis structures on manifolds, was done in [10]. As it happens in the
case of manifolds, the hierarchies on Lie algebroids are constructed through
deformations by Nijenhuis tensors. In this paper we construct similar hier-
archies of ΩN and PΩ structures on Lie algebroids, and their deformations,
and also hierarchies of complementary forms. Elements of these hierarchies
provide examples of compatible structures in the sense described above.
Our computations widely use the big bracket – the Poisson bracket induced

by the symplectic structure on the algebra of functions on the cotangent
bundle of a supermanifold. Since the supergeometry is not familiar to many
readers we include, in section 1, a brief review of Lie algebroids and Courant
algebroids in supergeometric terms. The Courant algebroids that we shall
consider in this paper are doubles (A⊕A∗,Θ) of protobialgebroids structures
on (A,A∗) [8], in the simpler cases where Θ is a function that determines
a Lie algebroid structure on A, or on A∗, sometimes in the presence of a
background (a closed 3-form on A).
The paper is divided into three sections. In section 1, after a short review

of Courant and Lie algebroids in the supergeometric framework, we recall
the notion of Nijenhuis tensor on a Courant algebroid and of Nijenhuis con-
comitant of two tensors. In section 2 we characterize Poisson bivectors and
closed 2-forms on a Lie algebroid (A, µ) as Nijenhuis tensors on the Courant
algebroid (A ⊕ A∗, µ). We show how Poisson-Nijenhuis, ΩN and PΩ struc-
tures and also Hitchin pairs on a Lie algebroid (A, µ) can be seen either as
Nijenhuis tensors or compatible pairs of tensors on the Courant algebroid
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(A ⊕ A∗, µ). The case of complementary forms is also treated. Considering
the Courant algebroid with background (A⊕A∗, µ+H), we see exact Pois-
son quasi-Nijenhuis structures with background as Nijenhuis tensors on this
Courant algebroid, recovering a result in [1]. For Poisson quasi-Nijenhuis
structures (without background) a special case where two 3-forms involved
are exact is also considered. The last part of section 2 is devoted to the com-
patibility of structures on a Lie algebroid, defined by pairs of tensors. Section
3 treats the problem of defining hierarchies of structures on Lie algebroids.
We start by showing that when a pair of tensors defines a certain structure
on a Lie algebroid, the same pair of tensors defines the same structure for a
whole hierarchy of deformed Lie algebroids. Then, we construct hierarchies
of structures defined by pairs of tensors and lastly we show that within one
hierarchy, all the elements are pairwise compatible.
We recall that if one relaxes the Jacobi identity in the definition of a Lie

(respectively, Courant) algebroid we obtain what is called a pre-Lie (respec-
tively, pre-Courant) algebroid. The proof of most of our results does not use
the Jacobi identity of the bracket, either if it is a Lie or a Courant algebroid
bracket. Therefore, they also hold in the more general settings of pre-Lie and
pre-Courant algebroids, respectively.

1. Preliminaries
1.1. Courant and Lie algebroids in supergeometric terms. We begin
this section by introducing the supergeometric setting, following the same
approach as in [18, 14, 13]. Given a vector bundle A→M , we denote by A[n]
the graded manifold obtained by shifting the fibre degree by n. The graded
manifold T ∗[2]A[1] is equipped with a canonical symplectic structure which
induces a Poisson bracket on its algebra of functions F := C∞(T ∗[2]A[1]).
This Poisson bracket is sometimes called the big bracket (see [8]).
Let us describe locally this Poisson algebra. Fix local coordinates xi, p

i,
ξa, θ

a, i ∈ {1, . . . , n}, a ∈ {1, . . . , d}, in T ∗[2]A[1], where xi, ξa are local
coordinates on A[1] and pi, θa are their associated moment coordinates. In
these local coordinates, the Poisson bracket is given by

{pi, xi} = {θa, ξa} = 1, i = 1, . . . , n, a = 1, . . . , d,

while all the remaining brackets vanish.
The Poisson algebra of functions F is endowed with a (N0 × N0)-valued

bidegree. We define this bidegree locally but it is well defined globally (see
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[18, 14] for more details). The bidegrees are locally set as follows: the co-
ordinates on the base manifold M , xi, i ∈ {1, . . . , n}, have bidegree (0, 0),
while the coordinates on the fibres, ξa, a ∈ {1, . . . , d}, have bidegree (0, 1)
and their associated moment coordinates, pi and θa, have bidegrees (1, 1) and
(1, 0), respectively. The algebra of functions F inherits this bidegree and we
set

F =
⊕

(k,l)∈N0×N0

Fk,l,

where Fk,l is the C∞(M)-module of functions of bidegree (k, l). The total
degree of a function f ∈ Fk,l is equal to k + l and the subset of functions of
total degree t is noted F t. We can verify that the big bracket has bidegree
(−1,−1), i.e.,

{Fk1,l1,Fk2,l2} ⊂ Fk1+k2−1,l1+l2−1,

and consequently, its total degree is −2. Thus, the big bracket on functions of
lowest degrees, {F0,F0} and {F0,F1}, vanish. For X ,Y ∈ F1 = Γ(A⊕A∗),
{X ,Y} is an element of F0 = C∞(M) and is given by

{X ,Y} = 〈X ,Y〉,

where 〈., .〉 is the canonical fiberwise symmetric bilinear form on A⊕ A∗.

Let us recall that a Courant structure on a vector bundle E →M equipped
with a fibrewise non-degenerate symmetric bilinear form 〈., .〉 is a pair (ρ, [., .]),
where the anchor ρ is a bundle map from E to TM and the Dorfman bracket
[., .] is a R-bilinear (non necessarily skew-symmetric) assignment on Γ(E)
satisfying

ρ(X) · 〈Y, Z〉 = 〈[X, Y ], Z〉+ 〈Y, [X,Z]〉, (1)

ρ(X) · 〈Y, Z〉 = 〈X, [Y, Z] + [Z, Y ]〉, (2)

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]], (3)

for all X, Y, Z ∈ Γ(E). From (1) and (2), we get [8]

[X, fY ] = f [X, Y ] + (ρ(X).f)Y,

for all X, Y ∈ Γ(E) and f ∈ C∞(M).
In this paper we are only interested in exact Courant algebroids. Although

many of the properties and results we recall next hold in the general case,
we shall consider the case where the vector bundle E is the Whitney sum
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of a vector bundle A and its dual, i.e., E = A ⊕ A∗, and 〈., .〉 is the canon-
ical fiberwise symmetric bilinear form. So, from now on, all the Courant
structures will be defined on (A⊕ A∗, 〈., .〉).
From [13] we know that there is a one-to-one correspondence between

Courant structures on (A⊕ A∗, 〈., .〉) and functions Θ ∈ F3 such that {Θ,Θ} =
0. The anchor and Dorfman bracket associated to a given Θ ∈ F3 are defined,
for all X ,Y ∈ Γ(A⊕ A∗) and f ∈ C∞(M), by

ρ(X ) · f = {{X ,Θ}, f} and [X ,Y ] = {{X ,Θ},Y}.

For simplicity, we shall denote a Courant algebroid by the pair (A ⊕ A∗,Θ)
instead of the triple (A⊕ A∗, 〈., .〉,Θ).
A Courant structure Θ ∈ F3 can be decomposed using the bidegrees:

Θ = µ+ γ + φ+ ψ, (4)

with µ ∈ F1,2, γ ∈ F2,1, φ ∈ F0,3 = Γ(∧3A∗) and ψ ∈ F3,0 = Γ(∧3A). We
recall from [18] that, when γ = φ = ψ = 0, Θ is a Courant structure on
A ⊕ A∗ if and only if (A, µ) is a Lie algebroid. The anchor and the bracket
of the Lie algebroid are defined, respectively by

ρ(X) · f = {{X, µ}, f} and [X, Y ]µ = {{X, µ}, Y },

for all X, Y ∈ Γ(A) and f ∈ C∞(M), while the Lie algebroid differential is
given by

dµ = {µ, .}.

A function Θ ∈ F3 given by (4) with φ = ψ = 0 is a Courant structure on
A⊕A∗ if and only if ((A, µ), (A∗, γ)) is a Lie bialgebroid [18].

1.2.Nijenhuis concomitant of two tensors. Let (A⊕A∗,Θ) be a Courant
algebroid and I a vector bundle endomorphism ofA⊕A∗, I : A⊕A∗ → A⊕A∗.
If 〈Iu, v〉+ 〈u, Iv〉 = 0, for all u, v ∈ A⊕A∗, I is said to be skew-symmetric.
Vector bundle endomorphisms of A ⊕ A∗ will be seen as (1, 1)-tensors on
A⊕A∗.
The deformation of the Dorfman bracket [., .] by a (1, 1)-tensor I : A⊕A∗ →

A⊕A∗ is the bracket [., .]I defined, for all X ,Y ∈ Γ(A⊕ A∗), by

[X ,Y ]I = [IX ,Y ] + [X , IY ]− I[X ,Y ].

When I is skew-symmetric, the deformed structure (ρ◦ I, [., .]I) is given, in
supergeometric terms, by ΘI := {I,Θ} ∈ F3. The deformation of ΘI by the
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skew-symmetric (1, 1)-tensor J is denoted by ΘI,J , i.e., ΘI,J = {J, {I,Θ}},
while the deformed Dorfman bracket associated to ΘI,J is denoted by [., .]I,J .
Recall that a vector bundle endomorphism I : A ⊕ A∗ → A ⊕ A∗ is a

Nijenhuis tensor on the Courant algebroid (A⊕A∗,Θ) if its torsion vanishes.
The torsion TΘI is given, for all X ,Y ∈ Γ(A⊕A∗), by

TΘI(X ,Y) = [IX , IY ]− I[X ,Y ]I

or, equivalently, by

TΘI(X ,Y) =
1

2

(
[X ,Y ]I,I − [X ,Y ]I2

)
, (5)

where I2 = I ◦ I. When I2 = λ idA⊕A∗, for some λ ∈ R, (5) is given, in
supergeometric terms, by

TΘI =
1

2
(ΘI,I − λΘ) (6)

(see [6]).
The notion of Nijenhuis concomitant of two tensor fields of type (1, 1) on

a manifold was introduced in [7]. In the case of (1, 1)-tensors I and J on a
Courant algebroid (A⊕ A∗,Θ), the Nijenhuis concomitant of I and J is the
map NΘ(I, J) : Γ(A⊕A∗)×Γ(A⊕A∗) → Γ(A⊕A∗) (in general not a tensor)
defined, for all sections X and Y of A⊕A∗, as follows:

NΘ(I, J)(X ,Y) = [IX , JY ]− I[X , JY ]− J [IX ,Y ] + I ◦ J [X ,Y ]

+[JX , IY ]− J [X , IY ]− I[JX ,Y ] + J ◦ I[X ,Y ], (7)

where [., .] is the Dorfman bracket corresponding to Θ. Equivalently,

NΘ(I, J)(X ,Y) =
1

2

(
[X ,Y ]I,J + [X ,Y ]J,I − [X ,Y ]I◦J − [X ,Y ]J◦I

)
. (8)

Notice that

NΘ(I, I) = 2TΘI (9)

while if I and J anti-commute, i.e., I ◦ J = −J ◦ I, then

NΘ(I, J)(X ,Y) =
1

2
([X ,Y ]I,J + [X ,Y ]J,I). (10)

For any (1, 1)-tensors I and J on (A⊕ A∗,Θ), we have [3]

TΘ(I + J) = TΘI + TΘJ +NΘ(I, J). (11)
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The concomitant CΘ(I, J) of two skew-symmetric (1, 1)-tensors I and J on
a Courant algebroid (A⊕A∗,Θ) is given by [3]:

CΘ(I, J) = ΘI,J +ΘJ,I . (12)

In other words,

CΘ(I, J)(X ,Y) = [X ,Y ]I,J + [X ,Y ]J,I (13)

for all X ,Y ∈ Γ(A⊕A∗). Combining (10) and (13) we find that, in the case
where I and J anti-commute,

NΘ(I, J)(X ,Y) =
1

2
CΘ(I, J)(X ,Y), (14)

for all X ,Y ∈ Γ(A⊕ A∗).

The notion of Nijenhuis concomitant of two (1, 1)-tensors on a Lie algebroid
can also be considered. If (A, µ) is a Lie algebroid and I, J are (1, 1)-tensors
on A, Nµ(I, J) is given by (7) or (8), adapted in the obvious way. Equations
(9), (10) and (14) also hold in the Lie algebroid case.
As in the case of Courant algebroids, for a Lie algebroid (A, µ), we use

the following notation: µI = {I, µ}, if I is either a bivector, a 2-form or a
(1, 1)-tensor on A.

2. Nijenhuis and pairs of compatible tensors on Courant
algebroids

2.1. Tensors on Lie algebroids. Let (A, µ) be a Lie algebroid and consider
a (1, 1)-tensor N , a bivector π and a 2-form ω on A. Associated with N ,
id := idA, π and ω, we consider the skew-symmetric (1, 1)-tensors on A⊕A∗,
JN , Jid, Jω and Jπ given, in matrix form, respectively by

JN =

(
N 0
0 −N∗

)
, Jid =

(
id 0
0 −id∗

)
,

Jω =

(
0 0
ω♭ 0

)
and Jπ =

(
0 π#

0 0

)
.

In all the computations using the big bracket, instead of writing JN , Jid,
Jω and Jπ, we simply write N , id, ω and π. Next, we use the (1, 1)-tensors
on A ⊕ A∗ above to express the properties of N being Nijenhuis, π Poisson
and ω closed on the Lie algebroid (A, µ).
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Proposition 2.1 ([9]). Let N be a (1, 1)-tensor on (A, µ) such that N2 =
λ idA, for some λ ∈ R. Then, N is a Nijenhuis tensor on the Lie alge-
broid (A, µ) if and only if JN is a Nijenhuis tensor on the Courant algebroid
(A⊕ A∗, µ).

Proof : The assumption N2 = λ idA is equivalent to J2
N = λ idA⊕A∗. In this

case, the torsion of JN on (A ⊕ A∗, µ) is given by (6), with Θ = µ, and
coincides with the torsion of N on (A, µ).

Let Iω be the (1, 1)-tensor on A⊕A∗, defined by

Iω = Jω + Jid =

(
id 0
ω♭ −id∗

)
.

Proposition 2.2. The 2-form ω is closed on (A, µ) if and only if Iω is a
Nijenhuis tensor on the Courant algebroid (A⊕ A∗, µ).

Proof : First, observe that I2ω = idA⊕A∗. According to (6), we have

TµIω =
1

2
({ω + id, {ω + id, µ}} − µ)

=
1

2
({ω, {id, µ}}+ {id, {ω, µ}}+ {id, {id, µ}} − µ)

= 2{ω, µ},

where we used, in the last equality, the formula

{id, u} = (q − p)u,

for all u ∈ F (p,q) [11]. Thus, ω is closed if and only if TµIω = 0.

Recall that a bivector field π on A is a Poisson tensor on (A, µ) if µπ,π =
{π, {π, µ}} = 0 or, equivalently, [π, π]µ = 0.

Proposition 2.3 ([3]). The bivector π is a Poisson tensor on (A, µ) if and
only if Jπ is a Nijenhuis tensor on the Courant algebroid (A⊕A∗, µ).

Proof : We have J2
π = 0 and, from (6), we get TµJπ = 1

2
{π, {π, µ}}.

Notice that the (1, 1)-tensors Jπ and Jid anti-commute. Thus, from (14),
we have

2Nµ(Jπ, Jid) = Cµ(π, id) = {π, {id, µ}}+ {id, {π, µ}} = µπ − µπ = 0.
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Denoting by Iπ the (1, 1)-tensor on A⊕A∗ defined by

Iπ = Jπ + Jid =

(
id π#

0 −id∗

)
,

and taking into account the fact that

Nµ(Iπ, Iπ) = Nµ(Jπ, Jπ) + 2Nµ(Jπ, Jid) +Nµ(Jid, Jid) = Nµ(Jπ, Jπ),

Proposition 2.3 admits the following equivalent formulation:

Proposition 2.4. The bivector π is a Poisson tensor on (A, µ) if and only
if Iπ is a Nijenhuis tensor on the Courant algebroid (A⊕A∗, µ).

2.2. Pairs of tensors on Lie algebroids. In [3] we introduced a notion
of compatibility for a pair of anti-commuting (1, 1)-tensors on a Courant
algebroid.

Definition 2.5 ([3]). A pair (I, J) of skew-symmetric (1, 1)-tensors on a
Courant algebroid with Courant structure Θ is said to be a compatible pair,
if I and J anti-commute and CΘ(I, J) = 0.

In this section we show that well known structures defined by pairs of
tensors on a Lie algebroid (A, µ), can be seen either as compatible pairs, or
as Nijenhuis tensors on the Courant algebroid (A⊕A∗, µ).
Let (A, µ) be a Lie algebroid. Recall that a pair (π,N), where π is a

bivector and N is a (1, 1)-tensor on A is a Poisson-Nijenhuis structure (PN
structure, for short) on (A, µ) if

[π, π]µ = 0, TµN = 0, N ◦ π# = π# ◦N∗ and Cµ(π,N) = 0. (15)

A pair (ω,N) formed by a 2-form ω and a (1, 1)-tensor N on A is an
ΩNstructure on (A, µ) if

dµω = 0, TµN = 0, ω♭ ◦N = N∗ ◦ ω♭ and dµ(ωN) = 0, (16)

where ωN(., .) = ω(N., .) or, equivalently, ω♭
N = ω♭ ◦N .

A pair (̟,N) formed by a 2-form ̟ and a (1, 1)-tensorN on A is a Hitchin
pair on (A, µ) if

̟ is symplectic∗, ̟♭ ◦N = N∗ ◦̟♭ and dµ(̟N) = 0. (17)

∗A symplectic form on a Lie algebroid is a closed 2-form which is non-degenerate (at each point).
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A pair (π, ω) formed by a bivector π and a 2-form ω on A is a PΩ structure
on (A, µ) if

[π, π]µ = 0, dµω = 0 and dµ(ωN) = 0, (18)

where N is the (1, 1)-tensor on A defined by N = π# ◦ ω♭.
Let us denote by [., .]+ the anti-commutator of two skew-symmetric tensors

I and J , i.e.,

[I, J ]+ = I ◦ J + J ◦ I.

Proposition 2.6. Let (A, µ) be a Lie algebroid, N a Nijenhuis (1, 1)-tensor
and ω a closed 2-form on (A, µ). Then, the pair (ω,N) is an ΩN structure
on (A, µ) if and only if (Jω, JN) is a compatible pair on (A⊕ A∗, µ).

Proof : We start by noticing that [Jω, JN ]+ =

(
0 0

ω♭N −N∗ω♭ 0

)
, so that

Jω and JN anti-commute if and only if ω♭N = N∗ω♭.
Taking into account the fact that ω is closed, we have

Cµ(Jω, JN) = {ω, {N, µ}}+ {N, {ω, µ}} = {ω, {N, µ}}

= {{ω,N}, µ} = 2{µ, ωN},

where in the last equality we used ωN = 1
2{N, ω}. Thus, the 2-form ωN is

closed if and only if Cµ(Jω, JN) = 0.

In the case where N2 = λ idA, for some λ ∈ R, we have the following
characterization of an ΩN structure.

Theorem 2.7. Let (A, µ) be a Lie algebroid, ω a closed 2-form on (A, µ)
and N a (1, 1)-tensor on A such that N2 = λ idA, for some λ ∈ R. Then, the
pair (ω,N) is an ΩN structure on (A, µ) if and only if Jω+JN is a Nijenhuis
tensor on (A⊕ A∗, µ) and [Jω, JN ]+ = 0.

Proof : We know from Proposition 2.1 that if N2 = λ idA, for some λ ∈ R,
then TµN = 0 ⇔ TµJN = 0. Moreover, TµJω = 0 for any 2-form ω (see [3]).
Now, using (11), we have

Tµ(Jω + JN) = TµJω +Nµ(Jω, JN) + TµJN

= Nµ(Jω, JN) + TµJN

and, by counting the bi-degrees, we have that Tµ(Jω + JN) = 0 is equivalent
to

Nµ(Jω, JN) = 0 and TµJN = 0. (19)
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Because Jω and JN anti-commute, we have that Nµ(Jω, JN) =
1
2
Cµ(Jω, JN).

Thus, (19) means that ωN is closed (see the proof of Proposition 2.6) and N
is Nijenhuis, respectively.

For Hitchin pairs we may establish the following:

Proposition 2.8. Let (A, µ) be a Lie algebroid, N a (1, 1)-tensor on (A, µ)
and ̟ a symplectic form on (A, µ). Then, the pair (̟,N) is a Hitchin pair
on (A, µ) if and only if (J̟, JN) is a compatible pair on (A⊕A∗, µ).

Remark 2.9. There is no analogue of Theorem 2.7 for Hitchin pairs. Never-
theless, in [5], the author proves that if ̟ is a non-degenerate 2-form, with
inverse π, and N is a (1, 1)-tensor on A, the pair (̟,N) is a Hitchin pair on
(A, µ) if and only if Jσ + JN + Jπ is a Nijenhuis tensor on (A ⊕ A∗, µ) and
(Jσ + JN + Jπ)

2 = −idA⊕A∗, where σ = −̟ −̟ ◦N2.

In the case of PN structures, we have:

Proposition 2.10. Let (A, µ) be a Lie algebroid, N a Nijenhuis (1, 1)-tensor
on (A, µ) and π a Poisson bivector on (A, µ). Then, the pair (π,N) is a
Poisson-Nijenhuis structure on (A, µ) if and only if (Jπ, JN) is a compatible
pair on (A⊕ A∗, µ).

Proof : Notice that [Jπ, JN ]+ =

(
0 Nπ# − π#N∗

0 0

)
, so that Jπ and JN

anti-commute if and only if Nπ# = π#N∗. Also, we have Cµ(Jπ, JN) =
Cµ(π,N).

When N2 = λ idA, for some λ ∈ R, we recover a result from [9], which is a
characterization of Poisson-Nijenhuis structures.

Theorem 2.11. Let (A, µ) be a Lie algebroid, π a bivector on A and N a
(1, 1)-tensor on A such that N2 = λ idA, for some λ ∈ R. Then, the pair
(π,N) is a Poisson-Nijenhuis structure on (A, µ) if and only if Jπ + JN is a
Nijenhuis tensor on (A⊕ A∗, µ) and [Jπ, JN ]+ = 0.

Proof : Using (11) we have,

Tµ(Jπ + JN) = TµJπ +Nµ(Jπ, JN) + TµJN

and, by counting the bi-degrees, we get that the condition Tµ(Jπ + JN) = 0
is equivalent to

TµJπ = 0, Nµ(Jπ, JN) = 0 and TµJN = 0.
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From Proposition 2.3, (14) and Proposition 2.1, the above equations mean
that π is a Poisson bivector, Cµ(π,N) = 0 and N is Nijenhuis, respectively.

Remark 2.12. In [3] we showed that, given a bivector π and a (1, 1)-tensor N
on A such that N2 = λ idA, for some λ ∈ R, then (π,N) is a PN structure
on (A, µ) if and only if (Jπ, JN) is a Poisson-Nijenhuis pair on the Courant
algebroid (A⊕A∗, µ).

For PΩ structures, we have the following:

Proposition 2.13. Let (A, µ) be a Lie algebroid, π a Poisson bivector on
(A, µ) and ω a closed 2-form on (A, µ). Consider the (1, 1)-tensor N on
A defined by N = π# ◦ ω♭, and the corresponding (1, 1)-tensor on A ⊕ A∗,

JN =

(
π# ◦ ω♭ 0

0 −ω♭ ◦ π#

)
. Then, the pair (π, ω) is a PΩ structure on

(A, µ) if and only if (Jω, JN) is a compatible pair on (A⊕A∗, µ).

Proof : It is easy to see that Jω and JN anti-commute. The 2-form ω being
closed we have, taking into account the fact that JN = {ω, π},

Cµ(Jω, JN) = Cµ(ω, {ω, π}) = {{ω, {ω, π}}, µ} = −2{ωN , µ}. (20)

So, the 2-form ωN is closed if and only if Cµ(Jω, JN) = 0.

2.3. Exact Poisson quasi-Nijenhuis structures (with background).
Let (A, µ) be a Lie algebroid, H a closed 3-form on (A, µ) and consider the
Courant algebroid with background (A⊕A∗, µ+H).
Poisson quasi-Nijenhuis structures with background on Lie algebroids were

introduced in [1]. We recall that a Poisson quasi-Nijenhuis structure with
background on (A, µ) is a quadruple (π,N, φ,H), where π is a bivector, N is
a (1, 1)-tensor and φ and H are closed 3-forms such that N ◦ π# = π# ◦N∗

and

• π is Poisson,
• Cµ(π,N)(α, β) = 2H(π#(α), π#(β), .), for all α, β ∈ Γ(A∗),
• TµN(X, Y ) = π#(H(NX, Y, .) +H(X,NY, .) + φ(X, Y, .)), for all X,
Y ∈ Γ(A),

• dµN
φ = dµH,

with H(X, Y, Z) =	X,Y,Z H(NX,NY, Z), for all X, Y, Z ∈ Γ(A), where
	X,Y,Z means sum after circular permutation on X, Y and Z.
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In the case where the 3-form φ is exact, we introduce the following defini-
tion.

Definition 2.14. An exact Poisson quasi-Nijenhuis structure with back-
ground on a Lie algebroid (A, µ) is a quadruple (π,N, ω,H), where π is a
bivector, N is a (1, 1)-tensor, ω is a 2-form and H is a closed 3-form such
that N ◦ π# = π# ◦N∗, ω♭ ◦N = N∗ ◦ ω♭ and

• π is Poisson,
• Cµ(π,N)(α, β) = 2H(π#(α), π#(β), .), for all α, β ∈ Γ(A∗),
• TµN(X, Y ) = π#(H(NX, Y, .) + H(X,NY, .) + dµω(X, Y, .)), for all
X, Y ∈ Γ(A),

• iNdµω − dµωN −H is proportional to H. †

Since dµN
= iN◦dµ−dµ◦iN , it is obvious that if (π,N, ω,H) is an exact Pois-

son quasi-Nijenhuis structure with background on (A, µ), then (π,N, dµω,H)
is a Poisson quasi-Nijenhuis structure with background on (A, µ).
In [1] it is proved that if JN + Jπ + Jω is a Nijenhuis tensor on (A ⊕

A∗, µ + H) and satisfies (JN + Jπ + Jω)
2 = λ idA⊕A∗, with λ ∈ {−1, 0, 1},

then the quadruple (π,N, dµω,H) is a Poisson quasi-Nijenhuis structure with
background on (A, µ). ‡ It is easy to see that the same result holds for any
λ ∈ R. It is worth to notice that (JN + Jπ + Jω)

2 = λ idA⊕A∗, λ ∈ R, is
equivalent to the three conditions: N ◦ π# = π# ◦ N∗, ω♭ ◦ N = N∗ ◦ ω♭

and N2+ π# ◦ω♭ = λ idA. Using the notion of exact Poisson quasi-Nijenhuis
structure with background, we deduce the following (see the proof of Theorem
2.5 in [1]):

Theorem 2.15. Let (A, µ) be a Lie algebroid, π a bivector, ω a 2-form, H
a closed 3-form and N a (1, 1)-tensor on A such that N ◦ π# = π# ◦ N∗,
ω♭ ◦N = N∗ ◦ω♭ and N2+π# ◦ω♭ is proportional to idA. Then, JN +Jπ+Jω
is a Nijenhuis tensor on the Courant algebroid (A⊕A∗, µ+H) if and only if
the quadruple (π,N, ω,H) is an exact Poisson quasi-Nijenhuis structure with
background on (A, µ).

Notice that in Theorem 2.15, if N2 + π# ◦ ω♭ = λ idA, for some λ ∈ R,
then the constant of proportionality that should be considered in the last
condition of Definition 2.14 is −λ, i.e., iNdµω − dµωN −H = −λH.

†If η is a 3-form on A, iNη(X,Y,Z) = η(NX,Y,Z) + η(X,NY,Z) + η(X,Y,NZ), for all X, Y ,
Z ∈ Γ(A).

‡The quadruple considered in [1] is (π,N,−dµω,H) and should be (π,N, dµω,H).
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A Poisson quasi-Nijenhuis structure on a Lie algebroid (A, µ) is a Poisson
quasi-Nijenhuis structure with background, with H = 0. This notion was
introduced, on manifolds, in [16] and then extended to Lie algebroids in
[4]. If H = 0 in Definition 2.14, we get the notion of an exact Poisson
quasi-Nijenhuis structure. In this case, besides dµω, the 3-form iNdµω is also
exact.
Next, we consider H = 0 and a special case where the assumption N2 +

π#◦ω♭ = λ idA, λ ∈ R, in Theorem 2.15 is substituted by N2 = λ idA, λ ∈ R.

Theorem 2.16. Let (A, µ) be a Lie algebroid, π a bivector, ω a 2-form and
N a (1, 1)-tensor on A such that N ◦ π# = π# ◦ N∗, ω♭ ◦ N = N∗ ◦ ω♭ and
N2 = λ idA, for some λ ∈ R. If JN + Jπ + Jω is a Nijenhuis tensor on the
Courant algebroid (A ⊕ A∗, µ), then the triple (π,N, ω) is an exact Poisson
quasi-Nijenhuis structure on (A, µ).

Proof : We compute,

Nµ(JN + Jπ + Jω, JN + Jπ + Jω) = Nµ(JN , JN) + 2Nµ(JN , Jπ) + 2Nµ(JN , Jω)

+Nµ(Jπ, Jπ) + 2Nµ(Jπ, Jω) +Nµ(Jω, Jω)

= Nµ(JN , JN) + 2Nµ(Jπ, Jω) + µπ,π + Cµ(π,N) + 2Nµ(JN , Jω)

and, by counting the bi-degrees, we obtain that Nµ(JN + Jπ + Jω, JN + Jπ +
Jω) = 0 if and only if

i) µπ,π = 0,
ii) Cµ(π,N) = 0,
iii) Nµ(JN , JN) = −2Nµ(Jπ, Jω),
iv) Nµ(JN , Jω) = 0.

Applying both members of iii) to any X + 0, Y + 0 ∈ Γ(A⊕ A∗), we get

TµN(X, Y ) + 0 = −Nµ(Jπ, Jω)(X + 0, Y + 0)

which gives, using (7),

TµN(X, Y ) = π#(dµω(X, Y, .)). (21)

Using again (7) we compute, for any X + α, Y + β ∈ Γ(A⊕ A∗),

Nµ(JN , Jω)(X + α, Y + β) = (0, iNdµω(X, Y, .)− dµωN(X, Y, .)).

Thus,
Nµ(JN , Jω) = 0 ⇔ iNdµω = dµωN .
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Now, assume that (π,N, ω) is an exact Poisson quasi-Nijenhuis structure
on a Lie algebroid (A, µ), with N2 = λ idA, for some λ ∈ R. Then, we have
that TµN(X, Y ) = π#(dµω(X, Y, .)), X, Y ∈ Γ(A) and, using the formula [9]

〈TµJN(X+α, Y+β), Z+η〉 = 〈TµN(X, Y ), η〉+〈TµN(Y, Z), α〉+〈TµN(Z,X), β〉,

for all X + α, Y + β, Z + η ∈ Γ(A⊕A∗), we obtain

TµJN(X+α, Y +β) = π#(dµω(X, Y, .))+dµω(Y, π
#(α), .)−dµω(X, π

#(β), .).

On the other hand, from (7), we get

Nµ(Jπ, Jω)(X + α, Y + β)) = −π#(dµω(X, Y, .))− dµω(Y, π
#(α), .)

+dµω(X, π
#(β), .)−LX(ω

♭ ◦ π#(β)) + ω♭ ◦ π#(LXβ) + iY d(ω
♭ ◦ π#(α))

−ω♭ ◦ π#(iY dα).

So, as a kind of converse of Theorem 2.16, we have the following:

Proposition 2.17. Let (π,N, ω) be an exact Poisson quasi-Nijenhuis struc-
ture on a Lie algebroid (A, µ) with N2 = λ idA, for some λ ∈ R. If

ω♭ ◦ π#(LXβ)− LX(ω
♭ ◦ π#(β)) = ω♭ ◦ π#(iY dα)− iY d(ω

♭ ◦ π#(α)), (22)

for all X, Y ∈ Γ(A) and α, β ∈ Γ(A∗), then JN + Jπ + Jω is a Nijenhuis
tensor on the Courant algebroid (A⊕A∗, µ).

Notice that in the case where ω♭◦π# = k idA∗, for some k ∈ R, the condition
(22) is trivially satisfied.

2.4. Complementary forms of Poisson bivectors. Let π be a Poisson
bivector on a Lie algebroid (A, µ). Recall [17] that a 2-form ω is said to be
a complementary form of π on (A, µ) if

[ω, ω]µπ
= 0. (23)

It is well known that, when π is a Poisson bivector on a Lie algebroid (A, µ),
the pair (A∗, µπ) is a Lie algebroid and therefore (A∗ ⊕ A, µπ) is a Courant
algebroid.
The next proposition, which is a dual version of Propostion 2.3, character-

izes complementary forms as Nijenhuis tensors on (A∗ ⊕A, µπ).
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Proposition 2.18. Let ω be a 2-form and π a Poisson bivector on a Lie
algebroid (A, µ). Then, ω is a complementary form of π if and only if Jω is
a Nijenhuis tensor on the Courant algebroid (A∗ ⊕ A, µπ).

2.5. Compatibility of structures defined by pairs of tensors on Lie
algebroids. Usually, two geometric objects of the same type are said to be
compatible if their sum is still an object of the same type. In the same spirit,
we introduce the next definition.

Definition 2.19. Two PN (respectively, ΩN , PΩ) structures on a Lie alge-
broid (A, µ) are said to be compatible if their sum is still a PN (respectively,
ΩN , PΩ) structure on (A, µ). Also, two Hitchin pairs on (A, µ) are said to
be compatible if their sum is still a Hitchin pair on (A, µ).

Next, we show that the compatibility of these structures on a Lie algebroid
(A, µ) can be established using the corresponding associated tensors on the
Courant algebroid (A⊕ A∗, µ).

Proposition 2.20. Let (ω,N) and (ω′, N ′) be two ΩN structures on a Lie
algebroid (A, µ). Then, (ω,N) and (ω′, N ′) are compatible if and only if
Nµ(N,N

′) = 0, Nµ(Jω, JN ′)+Nµ(Jω′, JN) = 0 and [Jω, JN ′]++[Jω′, JN ]+ = 0.

Proof : Since N and N ′ are Nijenhuis, Nµ(N,N
′) = 0 is equivalent to N +N ′

being Nijenhuis (see (11)). Using Proposition 2.6, we need to show that
(Jω+ω′, JN+N ′) is a compatible pair on (A⊕ A∗, µ). We have,

[Jω+ω′, JN+N ′]+ = 0 ⇔ (ω + ω′)♭ ◦ (N +N ′) = (N +N ′)∗ ◦ (ω + ω′)♭

⇔ ω♭ ◦N ′ + (ω′)♭ ◦N = (N ′)∗ ◦ ω♭ +N∗ ◦ (ω′)♭

⇔ [Jω, JN ′]+ + [Jω′, JN ]+ = 0.

From the bilinearity of Nµ and Proposition 2.6, we get

Nµ(Jω+ω′, JN+N ′) = Nµ(Jω, JN ′) +Nµ(Jω′, JN)

and so Nµ(Jω+ω′, JN+N ′) = 0 if and only if Nµ(Jω, JN ′)+Nµ(Jω′, JN) = 0.

As a consequence of the previous proposition, we have:

Corollary 2.21. Let (ω,N) and (ω′, N ′) be two compatible ΩN structures
on (A, µ). Then, (ω,N ′) is an ΩN structure if and only if (ω′, N) is an ΩN
structure. When one of the pairs, (ω,N ′) or (ω′, N), is an ΩN structure,
the four ΩN structures (ω,N), (ω′, N ′), (ω,N ′) and (ω′, N) are pairwise
compatible.
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Proof : The ΩN structures (ω,N) and (ω′, N ′) being compatible,

ω♭ ◦N ′ + (ω′)♭ ◦N = N ′∗ ◦ ω♭ +N∗ ◦ (ω′)♭ (24)

holds. So, if (ω,N ′) (respectively, (ω′, N)) is an ΩN structure, then ω♭◦N ′ =
N ′∗ ◦ ω♭ (respectively, (ω′)♭ ◦ N = N∗ ◦ (ω′)♭) and (24) implies (ω′)♭ ◦ N =
N∗ ◦ (ω′)♭ (respectively, ω♭ ◦N ′ = N ′∗ ◦ ω♭).
From Proposition 2.20, we have Nµ(Jω, JN ′) + Nµ(Jω′, JN) = 0. Apply-

ing Proposition 2.6, the first statement is proved. The second statement is
obvious.

Adapting the proof of Proposition 2.20, we may establish the following for
Hitchin pairs:

Proposition 2.22. Let (̟,N) and (̟′, N ′) be two Hitchin pairs on a Lie
algebroid (A, µ) such that ̟ + ̟′ is non-degenerate. Then, (̟,N) and
(̟′, N ′) are compatible if and only if Nµ(J̟, JN ′) + Nµ(J̟′, JN) = 0 and
[J̟, JN ′]+ + [J̟′, JN ]+ = 0.

Notice that if π# ◦ (̟′)♭ = −(π′)# ◦̟♭, where π and π′ are the inverses of
̟ and ̟′, respectively, then the sum ̟ +̟′ is non-degenerate.

Proposition 2.23. Let (π,N) and (π′, N ′) be two PN structures on a Lie
algebroid (A, µ). Then, (π,N) and (π′, N ′) are compatible if and only if
Nµ(N,N

′) = 0, Nµ(Jπ, Jπ′) = 0, Nµ(Jπ, JN ′)+Nµ(Jπ′, JN) = 0 and [Jπ, JN ′]++
[Jπ′, JN ]+ = 0.

Proof : We have Nµ(Jπ, J
′
π) = 0 ⇔ [π, π′]µ = 0, which means that π + π′

is a Poisson bivector on (A, µ). As we already noticed, Nµ(N,N
′) = 0 is

equivalent to N + N ′ being a Nijenhuis tensor on (A, µ). The condition
[Jπ, JN ′]+ + [Jπ′, JN ]+ = 0 means that JN+N ′ anti-commutes with Jπ+π′, so
thatNµ(Jπ, JN ′)+Nµ(Jπ′, JN) = 0 is equivalent to Cµ(π+π

′, N+N ′) = 0.

As in the case of the ΩN structures, we have the following:

Corollary 2.24. Let (π,N) and (π′, N ′) be two compatible PN structures on
(A, µ). Then, (π,N ′) is a PN structure if and only if (π′, N) is a PN struc-
ture. When one of the pairs, (π,N ′) or (π′, N), is a PN structure, the four
PN structures (π,N), (π′, N ′), (π,N ′) and (π′, N) are pairwise compatible.

Next, we consider the compatibility of PΩ structures.
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Proposition 2.25. Let (π, ω) and (π′, ω′) be two PΩ structures on a Lie
algebroid (A, µ) such that [Jπ, Jω′]++[Jπ′, Jω]+ = 0. Then, (π, ω) and (π′, ω′)
are compatible if and only if Nµ(Jπ, Jπ′) = 0 and Cµ(Jω, JN ′)+Cµ(Jω′, JN) =
0, where N = π# ◦ ω♭ and N ′ = (π′)# ◦ (ω′)♭.

Proof : First, we notice that [Jπ, Jω′]++[Jπ′, Jω]+ = 0 is equivalent to π#◦(ω′)♭

= −(π′)# ◦ ω♭. From this, we get

(π + π′)# ◦ (ω + ω′)♭ = N +N ′

and also

(ω + ω′)♭ ◦ (N +N ′) = (N +N ′)∗ ◦ (ω + ω′)♭,

which is equivalent to [Jω+ω′, JN+N ′]+ = 0. Now, applying Proposition 2.13,
we have

Cµ(Jω+ω′, JN+N ′) = Cµ(Jω, JN ′) + Cµ(Jω′, JN)

and the proof is complete.

Corollary 2.26. Let (π, ω) and (π′, ω′) be two PΩ structures on a Lie al-
gebroid (A, µ) such that [Jπ, Jω′]+ + [Jπ′, Jω]+ = 0. Assume that (π, ω) and
(π′, ω′) are compatible. Then, (π, ω′) is a PΩ structure if and only if (π′, ω)
is a PΩ structure. When one of the pairs, (π, ω′) or (π′, ω), is a PΩ struc-
ture, the four PΩ structures (π, ω), (π′, ω′), (π, ω′) and (π′, ω) are pairwise
compatible.

Proof : Let us set N̂ = π# ◦ (ω′)♭ = −(π′)# ◦ (ω)♭ and, as before, N =
π# ◦ ω♭ and N ′ = (π′)# ◦ (ω′)♭. According to the previous proposition,
Cµ(Jω, JN ′) + Cµ(Jω′, JN) = 0 or, equivalently,

{µ, {N ′, ω}+ {N, ω′}} = 0 (25)

holds. If (π, ω′) is a PΩ structure, then

ω′
N̂
= ω′

π#◦(ω′)♭ = ω′ ◦ π# ◦ (ω′)♭ = −ω ◦ (π′)# ◦ (ω′)♭ = −ωN ′

is closed. From (25), we get that ω′
N is closed and since ω′

N = −ω(π′)#◦ω♭, the
pair (π′, ω) is a PΩ structure. Conversely, if (π′, ω) is a PΩ structure so is
(π, ω′).
For the second part, notice that the four pairs (π, ω), (π′, ω′), (π, ω′) and

(π′, ω) being PΩ structures, the 2-forms

ωN , ω
′
N ′, ω′

N̂
= −ωN ′, ωN̂ = ω′

N are closed. (26)
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Also, because the PΩ structures (π, ω) and (π′, ω′) are compatible, we have
Nµ(Jπ, Jπ′) = 0.
We prove (the other cases are similar):

i) (π, ω) and (π, ω′) are compatible;
ii) (π, ω) and (π′, ω) are compatible;
iii) (π, ω′) and (π′, ω) are compatible.

Case i): We have π#◦(ω+ω′)♭ = N+N̂ and by (26), the 2-form (ω+ω′)N+N̂

is closed.
Case ii): In this case, (π+π′)#◦ω♭ = N− N̂ and by (26), the 2-form ωN−N̂

is closed.
Case iii): We have (π + π′)# ◦ (ω + ω′)♭ = N +N ′ and by (26), the 2-form

(ω + ω′)N+N ′ is closed.

There are several interesting relations between the structures on Lie al-
gebroids considered so far. Some of them will be useful in the sequel [2],
[11]:

Proposition 2.27. Let π and ω be, respectively, a Poisson bivector and a
2-form on a Lie algebroid (A, µ) and consider the (1, 1)-tensor N = π# ◦ ω♭.

(i) If (π, ω) is a PΩ structure on (A, µ), then (π,N) is a PN structure
on (A, µ).

(ii) If (π, ω) is a PΩ structure on (A, µ), then (ω,N) is an ΩN structure
on (A, µ).

(iii) The pair (π, ω) is a PΩ structure on (A, µ) if and only if ω is a closed
complementary form of π on (A, µ).

Under the conditions of Corollary 2.26 we have, from Proposition 2.27, that
the pairs

• (ω, N̂), (ω′, N̂), (ω,N ′) and (ω′, N) are ΩN structures on (A, µ);

• (π, N̂), (π′, N̂), (π,N ′) and (π′, N) are PN structures on (A, µ).

Now, we treat the compatibility of complementary forms on (A, µ). Let
π be a Poisson bivector on a Lie algebroid (A, µ) and consider the Courant
algebroid (A∗ ⊕ A, µπ).

Definition 2.28. Two complementary forms of π, ω and ω′, are said to be
compatible if ω + ω′ is a complementary form of π.
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Proposition 2.29. Two complementary forms of π, ω and ω′, are compatible
if and only if Nµπ

(Jω, Jω′) = 0.

Proof : From Proposition 2.18, the complementary forms ω and ω′ are com-
patible if and only if

Tµπ
Jω+ω′ = Tµπ

(Jω + Jω′) = 0. (27)

Since Tµπ
(Jω + Jω′) = Tµπ

Jω + Tµπ
Jω′ +Nµπ

(Jω, Jω′) and Tµπ
Jω = Tµπ

Jω′ = 0,
(27) is equivalent to Nµπ

(Jω, Jω′) = 0.

3. Hierarchies of structures defined by pairs of tensors
on Lie algebroids

3.1. Structures on deformed Lie algebroids. We start by proving that
if a pair of tensors defines a certain structure on a Lie algebroid, this pair
defines the same structure for a whole hierarchy of deformed Lie algebroids.
It is well known that if N is a Nijenhuis tensor on a Lie algebroid (A, µ)

then (A, µN) is also a Lie algebroid. When the Lie algebroid structure µ
is successively deformed by the same (1, 1)-tensor N , we use the following
notation:

µN [k] = µN, k...,N , for k ≥ 1, and µN [0] = µ. (28)

Lemma 3.1 ([10]). Let N be a Nijenhuis tensor on a Lie algebroid (A, µ).
Then, for all n, k ∈ N0,

(i) the (1, 1)-tensor Nn is Nijenhuis with respect to µNk;
(ii) the Lie algebroid structures µNk and µN [k] on A coincide.

Before proceeding, we make a simple observation: if ω is a 2-form and
T0, T1, · · · , Tk, k ∈ N0, are (1, 1)-tensors on a Lie algebroid, then

(((ω T0
)T1

)···)Tk
= ω T0◦T1◦···◦Tk

. (29)

A direct computation gives the following:

Lemma 3.2. Let ω and N be, respectively, a 2-form and a (1, 1)-tensor on
(A, µ) such that ω♭ ◦N = N∗ ◦ ω♭. Then, (ωNn)♭ ◦Nm = (Nm)∗ ◦ (ωNn)♭, for
all m, n ∈ N0.

As a consequence of the Lemma above, (ωNn)Nm = ωNn+m is a 2-form and

ωNn+m =
1

2
{Nm, ωNn}, (30)

for all m, n ∈ N0.
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Proposition 3.3. Let (ω,N) be an ΩN structure on a Lie algebroid (A, µ).
Then, the 2-form ωNn is closed on the Lie algebroid (A, µN [k]), for all n, k ∈
N0.

Proof : Let (ω,N) be an ΩN structure on (A, µ). First, we prove the state-
ment for k = 0, i.e., the 2-form ωNn is closed with respect to µ, for all n ∈ N0.
This is done by induction on n.
By hypothesis, the 2-forms ω and ωN are closed with respect to µ. Let us

suppose that, for some r ∈ N0, the 2-forms ωN r−1 and ωN r are closed with
respect to µ. Then, using (30) and the Jacobi identity, we have

0 = {µ, ωN r} =
1

2
{µ, {N, ωN r−1}} =

1

2

(
{{µ,N}, ωN r−1}+ {N, {µ, ωN r−1}}

)

= −
1

2
{{N, µ}, ωN r−1}.

Applying {N, .} to the last equation, using (30) and the induction hypothesis,
we get

0 = {N, {{N, µ}, ωN r−1}}

= {{N, {N, µ}}, ωN r−1}+ {{N, µ}, {N, ωN r−1}}

= {{N2, µ}, ωN r−1}+ 2 {N, {µ, ωN r}}+ 2 {{N, ωN r}, µ}

= {N2, {µ, ωN r−1}}+ {{N2, ωN r−1}, µ}+ 4 {ωN r+1, µ}

= 2 {ωN r+1, µ}+ 4 {ωN r+1, µ}

= −6 dµ(ωN r+1),

where we used, in the third equality, {N, {N, µ}} = {N2, µ}. By induction,
we conclude that dµ(ωNn) = 0, for all n ∈ N0.
Now, we prove the general statement, i.e., the 2-form ωNn is closed with

respect to µN [k], for all n, k ∈ N0. This is done by induction on k.
For k = 0, the statement is proved, in the first part of the proof, for all

n ∈ N0. Let us suppose that, for some s ∈ N0 and for all n ∈ N0, the 2-form
ωNn is closed with respect to µN [s]. Applying the Jacobi identity, we have

dµ
N [s+1]

(ωNn) = {{N, µN [s]}, ωNn} = {N, {µN [s], ωNn}}+ {{N, ωNn}, µN [s]}

= 2 {ωNn+1, µN [s]} = 0,

where we used twice the induction hypothesis. Therefore, for all n ∈ N0, the
2-form ωNn is closed with respect to µN [s+1] and this completes the proof of
the general statement.
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Theorem 3.4. Let π, ω and N be, respectively, a bivector, a 2-form and a
(1, 1)-tensor on a vector bundle A, and set T = π# ◦ ω♭.

(i) The pair (π,N) is a PN structure on the Lie algebroid (A, µ) if and
only if it is a PN structure on the Lie algebroid (A, µN [k]), for all
k ∈ N0.

(ii) The pair (ω,N) is an ΩN structure on the Lie algebroid (A, µ) if and
only if it is an ΩN structure on the Lie algebroid (A, µN [k]), for all
k ∈ N0.

(iii) The pair (π, ω) is a PΩ structure on the Lie algebroid (A, µ) if and
only if it is a PΩ structure on the Lie algebroid (A, µT [k]), for all
k ∈ N0.

(iv) The 2-form ω is a closed complementary form of π on the Lie algebroid
(A, µ) if and only if it is a closed complementary form of π on the Lie
algebroid (A, µT [k]), for all k ∈ N0.

Proof : For each of the equivalences above, we only prove one implication
since the other is obvious.

(i) It is a result from [10].
(ii) Consider (ω,N) an ΩN structure on the Lie algebroid (A, µ). The

(1, 1)-tensor N , which is Nijenhuis with respect to µ, is still Nijenhuis
with respect to µN [k] (Lemma 3.1). Moreover, from Proposition 3.3,
both 2-forms ω and ωN are closed with respect to µN [k], ∀k ∈ N0.
Therefore (ω,N) is an ΩN structure on the Lie algebroid (A, µN [k]),
for all k ∈ N0.

(iii) Consider (π, ω) a PΩ structure on the Lie algebroid (A, µ). Then,
from Proposition 2.27(i), (π, T ) is a Poisson Nijenhuis structure on
(A, µ), so that π is Poisson with respect to µT [k] ([10]). Using Propo-
sition 2.27(ii), the pair (ω, T ) is an ΩN structure on (A, µ) and, from
Proposition 3.3, both 2-forms ω and ωT are closed with respect to µT [k].
Therefore (π, ω) is a PΩ structure on the Lie algebroid (A, µT [k]), for
all k ∈ N0.

(iv) Follows directly from Proposition 2.27(iii) and the equivalence (iii)
above.

3.2. Hierarchies of PΩ structures, ΩN structures and complemen-
tary forms. Hierarchies of Poisson-Nijenhuis structures on Lie algebroids
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were studied in [10]. In this section, we show that hierarchies of PΩ struc-
tures, ΩN structures and complementary forms can also be constructed on
Lie algebroids. Although hierarchies of Hitchin pairs can also be defined, we
will not discuss this case because the assumptions are too restrictive.

The next theorem gives a hierarchy of PΩ structures on Lie algebroids.

Theorem 3.5. Let (A, µ) be a Lie algebroid, π a Poisson bivector and ω

a 2-form such that (π, ω) is a PΩ structure on (A, µ). Set N = π# ◦ ω♭.
Then, (Nnπ, ωNm) is a PΩ structure on the Lie algebroid (A, µN [k]), for all
m, n, k ∈ N0.

Proof : Let (π, ω) be a PΩ structure on (A, µ). Then, by Theorem 3.4 (iii),
(π, ω) is a PΩ structure on (A, µN [k]), for all k ∈ N0. From Proposition 2.27
(ii), we know that (ω,N) is an ΩN structure on (A, µN [k]) and, by Proposition
3.3, dµ

N [k]
(ωNm) = 0, for all m, k ∈ N0.

We also have, from Proposition 2.27 (i), that (π,N) is a Poisson-Nijenhuis
structure on (A, µN [k]). Thus, it is well known that Nnπ is a Poisson bivector
on (A, µN [k]), for all n, k ∈ N0 [10]. Moreover,

(Nnπ)# ◦ (ωNm)♭ = Nn ◦ π# ◦ ω♭ ◦Nm = Nn+m+1,

and, from (29), (ωNm)Nn+m+1 = ωN2m+n+1. The Proposition 3.3 ensures that
ωN2m+n+1 is µN [k]-closed. Thus, (Nnπ, ωNm) is a PΩ structure on (A, µN [k]),
for all m, n, k ∈ N0.

In the next theorem we construct a hierarchy of ΩN structures.

Theorem 3.6. Let (A, µ) be a Lie algebroid, ω a 2-form and N a (1, 1)-
tensor such that (ω,N) is an ΩN structure on (A, µ). Then, (ωNn, Nm) is
an ΩN structure on the Lie algebroid (A, µN [k]), for all m, n, k ∈ N0.

Proof : Let (ω,N) be an ΩN structure on (A, µ). From Lemma 3.2, we have
(Nm)∗ ◦ (ωNn)♭ = (ωNn)♭ ◦ Nm, for all m, n ∈ N0. From Theorem 3.4 (ii),
(ω,N) is an ΩN structure on (A, µN [k]), for all k ∈ N0. The (1, 1)-tensor
N being Nijenhuis on (A, µN [k]), Nm is also Nijenhuis on (A, µN [k]), for all
m, k ∈ N0 (see Lemma 3.1). Moreover, by applying Proposition 3.3 and (29),
the proof is complete.

Remark 3.7. We can obtain a hierarchy of ΩN structures on (A, µN [k]) com-
bining Theorem 3.5 and Proposition 2.27. However, the hierarchy con-
structed in this manner is less general than the one given by Theorem 3.6,
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not only because the (1, 1)-tensorN comes from an initial given PΩ structure
on (A, µ), but also because the procedure consists in associating to each PΩ
structure (Nnπ, ωNm), the ΩN structure (ωNm, Nm+n+1). Sincem+n+1 > m,
for all m, n ∈ N0, the hierarchy of ΩN structures obtained in this way does
not contain terms of type (ωNm, N r), with r ≤ m.

The next theorem gives a hierarchy of closed complementary forms and
follows directly from Proposition 2.27 (iii) and Theorem 3.5.

Theorem 3.8. Let (A, µ) be a Lie algebroid, π a Poisson bivector and ω a
closed 2-form on (A, µ) which is a complementary form of π. Set N = π#◦ω♭.
Then, (ωNn)n∈N0

is a hierarchy of closed complementary forms of Nmπ on
the Lie algebroid (A, µN [k]), for all m, k ∈ N0.

The next result follows from Proposition 2.27 and Theorem 3.6.

Proposition 3.9. Let (A, µ) be a Lie algebroid, π, π′ bivectors and ω, ω′

2-forms on A such that π# ◦ (ω′)♭ = −(π′)# ◦ω♭ and the pairs (π, ω), (π, ω′),

(π′, ω) and (π′, ω′) are PΩ structures on (A, µ). Set N = π# ◦ ω♭, N̂ =
π# ◦ (ω′)♭ and N ′ = (π′)# ◦ (ω′)♭. Then, the pairs (ωIn, I

m) and (ω′
In, I

m),

with I ∈ {N,N ′, N̂}, are ΩN structures on (A, µI [k]), for all n,m, k ∈ N0.

3.3. Compatibility and hierarchies. Now, we shall see that there exists
a compatibility relation between the elements of each hierarchy constructed
in the previous section. Let (π,N) be a Poisson-Nijenhuis structure on a Lie
algebroid (A, µ). Then, it is known [10] that, for every k, n ∈ N0, the pair
(Nkπ,Nn) is a Poisson-Nijenhuis structure on (A, µ). In the next proposition,
we show that any two pairs of this type are compatible Poisson-Nijenhuis
structures, in the sense of Definition 2.19.

Proposition 3.10. Let (π,N) be a Poisson-Nijenhuis structure on a Lie
algebroid (A, µ). Then, (Nkπ,Nn) and (N lπ,Nm) are compatible Poisson-
Nijenhuis structures on (A, µN [r]), for all k, l,m, n, r ∈ N0.

Proof : We start proving the result for r = 1. From [10] we know that
the Poisson bivectors Nkπ and N lπ are compatible, which is equivalent
to saying that Nkπ + N lπ is a Poisson bivector. Also, it is obvious that
(Nn +Nm)(Nkπ +N lπ)# = (Nkπ +N lπ)#(Nn +Nm)∗.
In [3] we proved that, if N is a Nijenhuis tensor, then [X, Y ]Nn,Nm =

[X, Y ]Nn◦Nm, for all X, Y ∈ Γ(A). Thus, from (8), we get Nµ(N
n, Nm) = 0

and, using (11), we have that Nn +Nm is a Nijenhuis tensor.



NIJENHUIS AND COMPATIBLE TENSORS ON LIE AND COURANT ALGEBROIDS 25

Finally, since Cµ(N
iπ,N j) = 0, for every i, j ∈ N0, and Cµ(N

kπ+N lπ,Nn+
Nm) is a sum of terms of type Cµ(N

iπ,N j), we obtain Cµ(N
kπ+N lπ,Nn +

Nm) = 0, which concludes the proof for r = 1.
Now, from Theorem 3.4 (i), if (π,N) is a PN structure on (A, µ) then it is

a PN structure on (A, µN [r]). Thus, the above proof can be repeated using
the Lie algebroid structure µN [r] instead of µ.

Starting with an ΩN structure (ω,N) on a Lie algebroid (A, µ), we con-
structed, in Theorem 3.6, a family of ΩN structures on (A, µ). Next, we
prove that any two elements of that family are pairwise compatible.

Proposition 3.11. Let (ω,N) be an ΩN structure on a Lie algebroid (A, µ).
Then, (ωNk, Nn) and (ωN l, Nm) are compatible ΩN structures on (A, µN [r]),
for all k, l,m, n, r ∈ N0.

Proof : As in the proof of Proposition 3.10, we prove the statement for r = 1
and then the result follows from Theorem 3.4 (ii). The 2-form ωNk + ωN l is
obviously closed. The equality (ωNk + ωN l)♭ ◦ (Nn + Nm) = (Nn + Nm)∗ ◦
(ωNk + ωN l)♭ holds (Lemma 3.2) and Nn +Nm is Nijenhuis (see the proof of
Proposition 3.10). It remains to prove that the 2-form (ωNk +ωN l)(Nn+Nm) is
closed. From Proposition 3.3, we know that any 2-form of type ωN i, i ∈ N0,
is closed. Since (ωNk + ωN l)(Nn+Nm) can be decomposed into a sum of terms
of type ωN i, we obtain that (ωNk + ωN l)(Nn+Nm) is closed.

For PΩ structures we may establish a similar result.

Proposition 3.12. Let (π, ω) be a PΩ structure on a Lie algebroid (A, µ).
Set N = π# ◦ ω♭. Then, (Nnπ, ωNm) and (N lπ, ωNk) are compatible PΩ
structures on (A, µN [r]), for all k, l,m, n, r ∈ N0.

Proof : As in the proof of Propositions 3.10 and 3.11, we prove the statement
for r = 1 and then the result follows from Theorem 3.4 (iii). From Proposition
2.27 (i), we know that if (π, ω) is a PΩ structure, then (π,N) is a PN

structure. The Proposition 3.10 yields that Nnπ+N lπ is a Poisson bivector.
The 2-form ωNm + ωNk is obviously closed. Combining Proposition 2.27

(ii) and Proposition 3.3, we have that each 2-form of type ωN i, i ∈ N0, is
closed. Since (ωNm +ωNk)(Nnπ+N lπ)#(ωNm+ω

Nk) can be decomposed into a sum

of terms of type ωN i, we obtain that (ωNm+ωNk)(Nnπ+N lπ)#(ωNm+ω
Nk) is closed

and the proof is complete.
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The next proposition shows that the elements of the hierarchy established
in Theorem 3.8 are pairwise compatible.

Proposition 3.13. Let (A, µ) be a Lie algebroid, π a Poisson bivector and ω
be a closed complementary form of π. Set N = π# ◦ω♭. Then, ωNn and ωNm

are compatible closed complementary forms of Nkπ, for all n,m, k ∈ N0.

Proof : According to Proposition 2.29, we have to prove that
Nµ(Nkπ)

(JωNn , JωNm) = 0 or, equivalently, {ωNn, {ωNm, {Nkπ, µ}}} = 0.

From Proposition 2.27 (ii), the pair (ω,N) is an ΩN structure. Applying
Proposition 3.3 and the Jacobi identity, we get

{ωNn, {ωNm, {Nkπ, µ}}} = {ωNn, {{ωNm, Nkπ}, µ}}

= {ωNn, {Nk+m+1, µ}} = 0,

which completes the proof.
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