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LAPLACE TRANSFORM - FINITE ELEMENT METHOD

FOR NON FICKIAN FLOWS

S. BARBEIRO, J. A. FERREIRA AND S. GH. BARDEJI

Abstract: In this paper we consider numerical methods for integro-differential
problems based on time discretization via Laplace transformation. We focus our
attention in models arising in the context of non Fickian solute transport phenom-
ena in porous media. The mathematical models which describe the evolution of
the solute concentrations are characterized by Volterra equations. We present and
analyze an hybrid method which combines the Laplace transformation with respect
to the time variable with the finite element discretization in the spatial variables.
Numerical results illustrate the performance of the method.

1. Introduction

In this paper we consider the following Volterra equation

∂c

∂t
(t) +Ac(t) +

∫ t

0

k(t− s)Bc(s) ds = f(t) , t > 0, (1)

with

Ac(t) = −∇.
(

A22∇c(t)
)

+∇.(A2c(t)) +A1c(t),

Bc(t) = −∇.
(

B22∇c(t)
)

+∇.(B2c(t)) + B1c(t),

where k denotes the kernel, and A22, B22, A2, B2, A1 and B1 represent func-
tions dependent on (x, y), being A22 = [aij] and B22 = [bij] 2 by 2 symmetric
matrix functions, A2 = [ai] and B2 = [bi] vectorial functions and A1 and B1

scalar functions.
Solute transports in porous media are commonly characterized by the

convection-diffusion equation

∂c

∂t
+∇.(vc) = ∇.(D∇c) + f in Ω× (0, T ], (2)

where c denotes the solute concentration, D denotes the dispersion tensor
(which can be c dependent) and v represents the fluid velocity. Ω is the
spatial domain with boundary ∂Ω. Equation (2) is established using the so
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called Fick’s law for the mass flux due to molecular diffusion, Jd, and the
convective flux, Jc, given by, respectively,

Jd = −D∇c, (3)

and

Jc = vc . (4)

Then the mass flux J = Jd + Jc is given by

J = vc−D∇c , (5)

which combined with the mass conservation equation

∂c

∂t
+∇ · J = f , (6)

leads to the convection-diffusion equation (2).
When the memory effect of the fluid flow has an important role in the

solute transport, equation (2) should be modified in order to incorporate
such effect. One possible approach to accomplish this is to assume that the
mass flux Jd is given by

Jd(t) = −
1

τ

∫ t

0

e−
t−s

τ D∇c(s) ds+ Jd(0), (7)

where τ is a relaxation parameter. Combining now J = Jc+Jd with Jd given
by (7) with the mass conservation equation (6) we arrive to

∂c

∂t
+∇ · (vc) =

1

τ

∫ t

0

e−
t−s

τ ∇ · (D∇c(s))ds+ f −∇Jd(0) inΩ× (0, T ], (8)

that replaces (2) for non Fickian flows.
Equation (8) is a particular case of an equation of type (1), which is the

model that we are going to study in this article. This type of equations have
been proposed in the literature to describe non Fickian diffusion processes
as for instance in [11], [22], [23], [26], [28]. The development of efficient
and accuracy numerical methods to solve the initial boundary value prob-
lem (IBVP) defined by (1) has attracted the attention of several researchers
during the last two decades. A significative number of contributions can be
found in the literature. Without be exhaustive we mention [24], [25], [38],
[40] for the study of finite element semi-discrete approximations, [31] for the
study of semi-discrete lumped mass approximations, [16], [17] and [34] for
the study of finite volume semi-discrete approximations, [2], [4], [5], [6], [8],
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[18], [20] and [21] for finite difference methods presenting the same qualitative
behavior of the integro-differential problem.
Integro-differential equations (1) can be rewritten as equivalent linear dif-

ferential systems: a partial differential equation involving only a time deriv-
ative and an integro-differential equation presenting only partial derivatives
with respect to the space variables. This approach was used, for instance,
in [18] and recently in [35] where mixed finite element methods were used
for the disretization. Systems of differential equations that are equivalent to
nonlinear versions of equation (1) were considered in [7] and [32].
In what follows we will consider that Ω ⊂ R

2 is bounded polygonal domain.
We will introduce an hybrid method for the IBVP defined by (1), with the
Dirichlet boundary condition

c(t) = ψ(t) on ∂Ω× R
+, (9)

and with the initial condition

c(0) = c0 in Ω. (10)

The method is based on the use of Laplace transform to the IBVP (1), (9),
(10) which converts the IBVP in an elliptic boundary value problem that
depends on the Laplace parameter. The elliptic problem is solved by using
finite element methods for the spatial variables, for a choice of a finite set of
quadrature points in the Laplace domain. This set of elliptic equations can
be solved in parallel. Finally the numerical approximation for the solution
on the physical time space domain is obtained by using numerical inverse
Laplace transforms. This type of approach was considered as for instance in
[3], [15], [19], [33], [36], [37]. The convergence analysis of methods designed
using this procedure were presented e.g. in [9], [27] and [39] (see also the
references cited in these two last papers). The present paper presents error
bounds with respectH1-norm which are based on the Paley–Wiener Theorem
and the generalization of the classical arguments of the finite element analysis
to complex Sobolev spaces ([9]). This type of approach allow us to consider
more general differential and integro-differential operators compared with
those studied in [27].
The paper is organized as follows. In Section 2 we introduce the variational

formulation of the IBVP (1), (9), (10) and its finite element formulation. The
weak variational problem in the Laplace space is introduced in Section 3 and
the existence and uniqueness of the solution of this problem are also studied in
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this section. In Section 4 we describe the finite element approximation of the
variational problem introduced in the previous section and an error estimate
for such approximation is established. Using the Paley–Wiener Theorem we
return to the initial variables and we estimate the error for Laplace inverse
of the finite element solution in the Laplace space. Finally some numerical
experiments illustrating the convergence results are also included.

2.Weak solution and its Ritz-Galerkin approximation

Let L2(Ω), H1(Ω) be the usual Sobolev spaces endowed, respectively, with
the usual inner products (., .), (., .)H1(Ω) and norms ‖.‖L2(Ω), ‖.‖H1(Ω). The
space of functions v ∈ H1(Ω) such that v = 0 on ∂Ω, is denoted by H1

0(Ω).
By L2(R+, H1(Ω)) we denote the space of functions v : R+ → H1(Ω) such
that

∫

R+

‖v(s)‖2H1(Ω) ds <∞ (11)

and by H1(R+, L2(Ω)) we denote the space of functions v : R+ → H1(Ω)
such that

∫

R+

(

‖v(s)‖2L2(Ω) + ‖
dv

dt
(s)‖2L2(Ω)

)

ds <∞. (12)

In (12), the time derivative is in the weak sense.
The weak solution for the IBVP (1), (9), (10) is obtained solving the follow-

ing problem: find c ∈ L2(R+, H1(Ω))
⋂

H1(R+, L2(Ω)) such that c(t) = ψ(t)
on ∂Ω and, for any T > 0,






























(
∂c

∂t
(t), v) + ((A22∇c(t),∇v))− ((c(t)A2,∇v)) + (A1c(t), v)

+

∫ t

0

K(t− s)
(

((B22∇c(s),∇v))− ((B2c(s),∇v))

+(B1c(s), v)
)

ds = (f(t), v) a.e. in (0, T ), ∀v ∈ H1
0(Ω),

c(0) = c0.

(13)

We remark that we use the notation

((u, v)) =

2
∑

i=1

(ui, vi)

for u = (u1, u2), v = (v1, v2), ui, vi ∈ L2(Ω), i = 1, 2.
To compute the the semi-discrete Ritz-Galerkin approximation cH for the

weak solution c defined by (13), we introduce in Ω an admissible triangulation
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TH and the corresponding finite dimension space

VH,m = {u ∈ C0(Ω) : u(x) = Pm(x), x ∈ ∆,∆ ∈ TH},

where Pm(x) denotes a polynomial in space variables with degree ≤ m.

Then, given c0,H ∈ VH,m, cH is obtained solving the following problem: find
cH ∈ L2(R+, H1

0(Ω))
⋂

H1(R+, L2(Ω)) such that cH(t) = ψ(t) on ∂Ω and, for
any T > 0,






























(
∂cH

∂t
(t), vH) + ((A22∇cH(t),∇vH))− ((cH(t)A2,∇vH)) + (A1cH(t), vH)

+

∫ t

0

K(t− s)
(

((B22∇cH(s),∇vH))− ((cH(s)B2,∇vH))

+(B1cH(s), vH)
)

ds = (f(t), vH) a.e. in (0, T ), ∀vH ∈ VH,m,

cH(0) = c0,H .

(14)
In what follows we present an approach that allows us to compute an

approximation for the weak solution of the IBVP (1), (9), (10) avoiding the
computation of the solution of the integro-differential problem (14). We will
also derive error estimates for the numerical solution.

3.Weak solution in Laplace space

In what follows we replace the IBVP (1), (9), (10) by the corresponding
problem obtained applying the Laplace transform L.
Applying Laplace transform to (1) we obtain

(

Id +
1

p
A+

k̃

p
B

)

c̃ =
1

p

(

c0 + f̃
)

in Ω, (15)

whereId is the identity operator, k̃, f̃ denote the Laplace transforms of k
and f , respectively, and c̃ is the Laplace transform of c. Equation (15) is
complemented with the boundary condition

c̃ = ψ̃ on ∂Ω, (16)

where ψ̃ represents the Laplace transform of ψ.
In order to define the weak solution for the boundary value problem (15),

(16) we introduce now the set of functional spaces need to this definition.
We denoted by Re z the real part of z ∈ C. Let H1(Ω,C+

σ ) and L2(Ω,C+
σ )

be the Sobolev spaces of functions that depend on the complex number p ∈
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C
+
σ = {p ∈ C : Re p ≥ σ > 0} where they are analytic. In L2(Ω,C+

σ ) we
consider the inner product

(ũ, ṽ) =

∫

Ω

ũṽ dx, ũ, ṽ ∈ L2(Ω,C+
σ ), (17)

and the corresponding norm

‖ũ‖L2(Ω,C+
σ ) = (ũ, ũ)1/2, ũ ∈ L2(Ω,C+

σ ).

The inner product (17) allows us to introduce in L2(Ω,C+
σ )× L2(Ω,C+

σ ) the
following inner product

(((ũ1, ũ2), (ṽ1, ṽ2))) =
2
∑

i=1

(ũi, ṽi), (ũ1, ũ2), (ṽ1, ṽ2) ∈ L2(Ω,C+
σ )× L2(Ω,C+

σ ).

The space H1(Ω,C+
σ ) is endowed with the inner product

(ũ, ṽ)H1(Ω,C+
σ ) = (ũ, ṽ) + ((∇ũ,∇ṽ)) , ũ, ṽ ∈ H1(Ω,C+

σ ), (18)

which induces the following norm

‖ũ‖H1(Ω,C+
σ ) = (ũ, ũ)

1/2

H1(Ω,C+
σ )
, ũ ∈ H1(Ω,C+

σ ). (19)

By |.|H1(Ω,C+
σ ) we denote the following semi-norm in H1(Ω,C+

σ )

|ũ|H1(Ω,C+
σ ) = ((∇ũ,∇ũ))1/2, ũ ∈ H1(Ω,C+

σ ).

The subspace of H1(Ω,C+
σ ) composed by the functions vanishing on ∂Ω is

represented by H1
0(Ω,C

+
σ ).

Let ap(., .) : H
1(Ω,C+

σ )×H1(Ω,C+
σ ) → C be the sesquilinear form

ap(ũ, ṽ) = (ũ, ṽ) +
1

p

(

a(ũ, ṽ) + k̃b(ũ, ṽ)
)

(20)

where

a(ũ, ṽ) = ((A22∇ũ,∇ṽ))− ((A2ũ,∇ṽ)) + (A1ũ, ṽ) (21)

and

b(ũ, ṽ) = ((B22∇ũ,∇ṽ))− ((B2ũ,∇ṽ)) + (B1ũ, ṽ) (22)

for ũ, ṽ ∈ H1(Ω,C+
σ ). By ℓ : H

1(Ω,C+
σ ) → C we denote the following func-

tional

ℓ(ṽ) =
1

p
(c0 + f̃ , ṽ). (23)
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We associate with the sesquilinear form ap(., .) the following operator L :
H1

0(Ω,C
+
σ ) → H1

0(Ω,C
+
σ )

′,

Lũ(ṽ) = ap(ũ, ṽ),

where H1
0(Ω,C

+
σ )

′ denotes the dual space of H1
0(Ω,C

+
σ ).

The existence and uniqueness of the solution of the variational problem:
find c̃ ∈ H1(Ω,C+

σ ) such that c̃ = ψ̃ on ∂Ω and

ap(c̃, ṽ) = ℓ(ṽ), ∀ṽ ∈ H1
0(Ω,C

+
σ ), (24)

is established in the next result. To simplify the proof we consider homoge-
neous boundary conditions.

Theorem 1. Let f ∈ L2(R+, L2(Ω)), c0 ∈ L2(Ω) and aij, bi,j, ai, bi, A1, B1 ∈
L∞(Ω), i, j = 1, 2. If there exists σ ∈ R+ and e : C+

σ → R+ such that, for
p ∈ C

+
σ , holds the following

Re ap(ũ, ũ) ≥ e(p)‖ũ‖2H1(Ω,C+
σ )
, ∀ũ ∈ H1

0(Ω,C
+
σ ), (25)

then the variational problem (24) with ψ = 0 has only one solution c̃ ∈
H1

0(Ω,C
+
σ ).

Proof: In the proof of this result we use the Lax-Milgram Theorem. We
start by noticing that if f ∈ L2(R+, L2(Ω)), c0 ∈ L2(Ω) then the linear func-
tional ℓ : H1(Ω,C+

σ ) → C defined by (23) belongs to H1
0(Ω,C

+
σ )

′. In what fol-
lows we prove that the sesquilinear form ap(., .) : H

1
0(Ω,C

+
σ )×H

1
0(Ω,C

+
σ ) → C

defined by (20) is elliptic, that is, there exist positive constants ac,p and ae,p
such that

|ap(ũ, ṽ)| ≤ ac,p‖ũ‖H1(Ω,C+
σ )‖ṽ‖H1(Ω,C+

σ ), ∀ũ, ṽ ∈ H1
0(Ω,C

+
σ ), (26)

and
|ap(ũ, ũ)| ≥ ae,p‖ũ‖

2
H1(Ω,C+

σ )
, ∀ũ ∈ H1

0(Ω,C
+
σ ). (27)

To establish (26) we need only to use the fact that the coefficients functions
are assumed to be in L∞(Ω). The condition (27) is a trivial consequence of
the assumption (25).

In the next results we specify necessary conditions that guarantee that the
assumption (25) holds true. We start associating with a(., .) defined by (21)
the following sesquilinear forms

aI(ũ, ṽ) = ((A22∇ũ,∇ṽ)), ũ, ṽ ∈ H1(Ω,C+
σ ), (28)
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aII(ũ, ṽ) = −((A2ũ,∇ṽ)) + (A1ũ, ṽ), ũ, ṽ ∈ H1(Ω,C+
σ ). (29)

Analogously, we associate with the sesquilinear b(., .) defined by (22) the
sesquilinear forms bI(., .) and bII(., .)

bI(ũ, ṽ) = ((B22∇ũ,∇ṽ)), ũ, ṽ ∈ H1(Ω,C+
σ ), (30)

bII(ũ, ṽ) = −((B2ũ,∇ṽ)) + (B1ũ, ṽ), ũ, ṽ ∈ H1(Ω,C+
σ ). (31)

We remark that, for ũ ∈ H1(Ω,C+
σ ),

aI(ũ, ũ) ∈ R, bI(ũ, ũ) ∈ R.

Lemma 1. Let ae and Cb be positive constants such that

aI(ũ, ũ) ≥ ae|ũ|
2
H1(Ω,C+

σ )
, ũ ∈ H1(Ω,C+

σ ), (32)

|bI(ũ, ũ)| ≤ Cb|ũ|
2
H1(Ω,C+

σ )
, ũ ∈ H1(Ω,C+

σ ), (33)

If Re p ≥ σ > 0 and |pk̃| ≤ C̃, then there exists a positive constant e(p)
such that (25) holds.

Proof: From (32) and (33) we find

Re ap(ũ, ũ) ≥ ‖ũ‖2
L2(Ω,C+

σ )
+

1

|p|2
(

aeRe p− CbC̃
)

|ũ|2
H1(Ω,C+

σ )
.

To have (25) it is sufficient to choose σ such that

σ >
CbC̃

ae
. (34)

As an example we notice that, for the kernel k(t) =
1

τ
e−

t

τ , τ > 0, which

was introduced in equation (8), we have pk̃ =
p

1 + τp
and then |pk̃| ≤ 1

τ for

Re p ≥ 0.
For more general sesquilinear forms ap(., .) we have the following sufficient

conditions:

Lemma 2. Let us suppose that aI(., .) defined by (28) satisfies (32). If

|b(ũ, ũ)| ≤ Cb‖ũ‖
2
H1(Ω,C+

σ )
, ũ ∈ H1(Ω,C+

σ ), (35)

and
|k̃| = O(|p|−1) (36)

then there exists σ > 0 such that for p ∈ C
+
σ , ap(., .) defined by (20) satisfies

(25).
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Proof: Using convenient algebraic manipulations, we can show that

|
1

p
aII(ũ, ũ)| ≤

1

|p|2
1

4ǫ2
‖A2‖

2
∞|ũ|2H1(Ω,C+

σ )
+
(

2ǫ2+
1

|p|
‖A1‖∞

)

‖ũ‖2L2(Ω,C+
σ )
, (37)

∀ũ ∈ H1(Ω,C+
σ ), for all ǫ 6= 0. From (28) and (35) we get the estimate

Re ap(ũ, ũ) ≥ e1(p)|ũ|
2
H1(Ω,C+

σ )
+ e0(p)‖ũ‖

2
L2(Ω,C+

σ )
, ∀ũ ∈ H1

0(Ω,C
+
σ ), (38)

with e1(p) and e0(p) defined respectively by

e1(p) =
1

|p|2

(

aeRe p−
1

4ǫ2
‖A2‖

2
∞ − Cb|k̃||p|

)

(39)

and

e0(p) = 1− 2ǫ2 −
1

|p|
‖A1‖∞ − Cb

|k̃|

|p|
. (40)

Now we use (36) and we conclude that there exists ǫ 6= 0 and σ ∈ R+ such
that e1(p) and e0(p) satisfy

ei(p) > 0, ∀p ∈ C
+
σ , i = 0, 1. (41)

Lemma 3. Let us suppose that aI(., .) defined by (28) satisfies (32). If the
sesquilinear form bI(., .) satisfies

bI(ũ, ũ) ≥ be|ũ|
2
H1(Ω,C+

σ )
, ũ ∈ H1(Ω,C+

σ ), (42)

Re
k̃

p
> 0, (43)

and

|k̃| = O(1), (44)

then there exists σ > 0 such that for p ∈ C
+
σ , ap(., .) defined by (20) satisfies

(25).

Proof: Let us suppose now that the sesquilinear form bI(., .) satisfies (42).
For bII(., .) we can prove that

|
1

p
k̃bII(ũ, ũ)| ≤

|k̃|2

|p|2
1

4η2
‖B2‖

2
∞|ũ|2H1(Ω,C+

σ )
+
(

2η2 +
|k̃|

|p|
‖B1‖∞

)

‖ũ‖2L2(Ω,C+
σ )
,

(45)
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∀ũ ∈ H1(Ω,C+
σ ), for η 6= 0. As (43) holds, from (42) and (45), we conclude

that

Re ap(ũ, ũ) ≥ e1(p)|ũ|
2
H1(Ω,C+

σ )
+ e0(p)‖ũ‖

2
L2(Ω,C+

σ )
, ∀ũ ∈ H1

0(Ω,C
+
σ ), (46)

with e1(p) and e0(p) defined respectively by

e1(p) =
1

|p|2

(

aeRe p+ beRe (k̃p)−
1

4ǫ2
‖A2‖

2
∞ −

1

4η2
|k̃|2‖B2‖

2
∞

)

(47)

and

e0(p) = 1− 2ǫ2 − 2η2 −
1

|p|
‖A1‖∞ −

|k̃|

|p|
‖B1‖∞, (48)

for all ǫ, η 6= 0. Using now condition (44) we guarantee that there exist
ǫ, η 6= 0 and σ ∈ R

+ such that e1(p) and e0(p) satisfy (41).

It is clear that if ai = bi = 0, i = 1, 2, A1 = B1 = 0 and A22, B22 are
diagonal matrices such that

aii ≥ αe > 0 in Ω,

and

bii ≥ βe > 0 in Ω,

then (32), (42) and (35), respectively, hold with ae = αe, be = βe and Cb =
‖B22‖∞.

If we consider the kernel k(t) =
1

τ
e−

t

τ , τ > 0, introduced in (8), then

k̃ =
1

1 + τp
satisfies (36).

4. Discretization in the Laplace space

4.1. The finite element solution.

In order to simplify the presentation, in what follows we consider homo-
geneous Dirichlet boundary conditions, that is, ψ = 0. By C0(Ω,C+

σ ) we
represent the space of functions ũ : Ω×C+

σ → C depending on x, p, continu-
ous in Ω and analytic in C+

σ .

By Pm(x, p) we denote a polynomial in space variables of degree ≤ m with
coefficients depending on p analytic in C

+
σ .We consider a sequence of triangu-

lations TH , with diameterH = max
∆∈TH

diam(∆), obtained by regular refinement
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(see [30]). By Λ we denote the sequence of diameters of the sequence of tri-
angulations. Let VH,m(C

+
σ ), H ∈ Λ, be the corresponding sequence of finite

element spaces:

VH,m(C
+
σ ) = {ũ ∈ C0(Ω,C+

σ ) : ũ = 0 on ∂Ω,

ũ(x, p) = Pm(x, p), x ∈ ∆,∆ ∈ TH , p ∈ C
+
σ }. (49)

We denote by VH,m(C
+
σ )

′ the dual space of VH,m(C
+
σ ).

We remark that VH,m(C
+
σ ) ⊂ H1

0(Ω,C
+
σ ). Let {φ, i = 1, . . . , nH} be a finite

element basis of VH,m(C
+
σ ), where φi depends only on x. The Ritz-Galerkin

approximation for the solution of (24) is a function c̃H ∈ VH,m(C
+
σ ) such that

ap(c̃H , ṽH) = ℓH(ṽH), ∀ṽH ∈ VH,m(C
+
σ ), (50)

where ap(., .) is defined by (20) and ℓH : VH,m(C
+
σ ) → C,

ℓH(ṽH) = ℓ(ṽH), ṽH ∈ VH,m(C
+
σ ),

with ℓ defined by (23).
The existence and uniqueness of the previous finite element solution is

consequence of the ellipticity of the bilinear form ap(., .).

Theorem 2. If f ∈ L2(R+, L2(Ω)), c0 ∈ L2(Ω) and under the assumption of
Theorem 1, there exists a positive σ such that, for each p ∈ C+

σ , the problem
(50) has a unique solution c̃H ∈ VH,m(C

+
σ ).

The finite element solution c̃H ∈ VH,m(C
+
σ ), c̃H =

nH
∑

i=1

aiφi, where ai depends

on p, is obtained solving the linear system

[ap(φi, φj)][ai] = [ℓ(φj)]. (51)

We remark that the variational equation (50) is equivalent to the following
problem: find c̃H ∈ VH,m(C

+
σ ) such that

LH c̃H = ℓH in VH,m(C
+
σ ), (52)

with LH : VH,m(C
+
σ ) → VH,m(C

+
σ )

′, defined by

LH ũH(ṽH) = ap(ũH , ṽH), ũH , ṽH ∈ VH,m(C
+
σ ).

Theorem 2 establishes a sufficient condition for the existence of a unique
solution of the equation (52), c̃H = L−1

H ℓH .
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4.2. Error estimates for the finite element solution.

Let ΠH : H1
0(Ω,C

+
σ ) → VH,m(C

+
σ ) be the finite element projection oper-

ator. Under the assumption of Theorem 1, there exists a unique solution
c̃ ∈ H1

0(Ω,C
+
σ ) of (24) and a unique solution c̃H ∈ VH,m(C

+
σ ) of (50). As

H1
0(Ω,C

+
σ ) and VH,m(C

+
σ ) are Hilbert spaces we consider ΠH : H1

0(Ω,C
+
σ )

′ →
VH,m(C

+
σ )

′. Let SH : H1
0(Ω,C

+
σ ) → VH,m be defined by

SH = L−1
H ΠHL.

This operator satisfies

SH = Id in VH,m. (53)

In the next theorem we establish the error estimate for c̃H .

Theorem 3. Let us suppose that the finite element spaces VH,m(C
+
σ ), for

H ∈ Λ, are constructed using a sequence of triangulations TH , with diameter
H ∈ Λ, obtained by regular refinement. Under the assumption of Theorem
1, there exists a unique solution c̃ ∈ H1

0(Ω,C
+
σ ) of (24), a unique solution

c̃H ∈ VH,m(C
+
σ ) of (50) and a positive constant C, independent of c̃, H and

p, such that, for H ∈ Λ small enough, we have

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤ CHm‖c̃‖Hm+1(Ω,C+

σ ) (54)

provided that c̃ ∈ Hm+1(Ω,C+
σ ).

Proof: Following the proof of Theorems 3 of [9] we start by proving that

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤ C‖c̃− ṽH‖H1(Ω,C+

σ ), ∀ṽH ∈ VH,m(C
+
σ ). (55)

As by using (53) we have

ṽH = SH ṽH ,

then

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤ ‖c̃− ṽH‖H1(Ω,C+

σ ) + ‖c̃H − ṽH‖H1(Ω,C+
σ )

= ‖c̃− ṽH‖H1(Ω,C+
σ ) + ‖SH(c̃− ṽH)‖H1(Ω,C+

σ )

and we conclude that

‖c̃− c̃H‖H1(Ω,C+
σ ) ≤

(

1 + ‖SH‖)‖c̃− ṽH‖H1(Ω,C+
σ ),

for ṽH ∈ VH,m(C
+
σ ), where ‖SH‖, for H ∈ Λ with H small enough, has a

bound independent of p ∈ C
+
σ .



LAPLACE TRANSFORM - FINITE ELEMENT METHOD FOR NON FICKIAN FLOWS 13

Moreover Theorem 4 of [9] allows us to conclude that there exists a positive
constant C independent on c̃, H and p such that, forH small enough, we have

‖c̃− ΠH c̃‖H1(Ω,C+
σ ) ≤ CHm‖c̃‖Hm+1(Ω,C+

σ ). (56)

From (55) and (56) we finally obtain (54).

5. Returning to the initial variables

To return to the initial variables we need to apply the Laplace inverse to
both members of an inequality of type (56) with convenient norms.
An essential tool to recover the initial variables is the Paley-Wiener Theo-

rem. To present such lemma we introduce the space L2(R+, H1(Ω), σ) as the
space of functions v : R+ → H1(Ω) such that

‖v‖L2(R+,H1(Ω),σ) =
(

∫

R+

e−2σt‖v(t)‖2H1(Ω) dt
)1/2

(57)

is finite. In L2(R+, H1(Ω), σ) we consider the inner product

(u, v)L2(R+,H1(Ω),σ) =

∫

R+

(u(t), v(t))H1(Ω)e
−2σt dt , u, v ∈ L2(R+, H1(Ω), σ)

(58)
which induces the norm defined by (57). We also consider the Hardy space
H2(C+

σ , H
m+1(Ω)) of holomorphic functions f̃ : C+

σ → Hm+1(Ω) such that

‖f̃‖H2(C+
σ ,Hm+1(Ω)) =

(

sup
p1>σ

∫

R

‖f̃(p1 + ip2)‖
2
Hm+1(Ω) dp2

)1/2

<∞.

Lemma 4. [Paley-Wiener Theorem] The Laplace transform
L : L2(R+, Hm+1(Ω), σ) → H2(C+

σ , H
m+1(Ω)) is an isometric isomorphism.

Inequality (54) allows us to write

‖c̃− c̃H‖H2(C+
σ ,H1(Ω)) ≤ CHm‖c̃‖H2(C+

σ ,Hm+1(Ω)). (59)

Applying Paley-Wiener Theorem we get the main result of this paper:

Theorem 4. Let us suppose that the finite element spaces VH,m(C
+
σ ), for

H ∈ Λ, are constructed using a sequence of triangulations TH , with diameter
H ∈ Λ, obtained by regular refinement. Under the assumption of Theorem
1 there exist a unique solution c̃ ∈ H1

0(Ω,C
+
σ ) of (24), a unique solution
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c̃H ∈ VH,m(C
+
σ ) of (50) and a positive constant C, independent of c̃, H and

p, such that, for H ∈ Λ small enough, c = L−1c̃, cH = L−1c̃H satisfy

‖c− cH‖L2(R+,H1(Ω),σ) ≤ CHm‖c‖L2(R+,Hm+1(Ω),σ), (60)

provided that c̃ ∈ L2(R+, Hm+1(Ω), σ).

6. Numerical simulation

In this section we give one example of application of the method based on
the Laplace transform described in Section 4 combined with the algorithm
developed in [1] for the inverse Laplace transform.
We consider the integro-differential equation (1) with Ω = (0, 1) × (0, 1),

A = B = −∆, where ∆ denotes the Laplace operator and K(s) =
1

τ
e−

s

τ . The

function f , the initial and boundary conditions are such that the IBVP has
the following solution

u(x, t) = cos(t)x1x2(1− x1)(1− x2), (x1, x2) ∈ Ω, t ∈ R
+
0 .

In Ω we introduce a triangulation TH induced by a uniform rectangular
grid defined considering, in [0, 1]× [0, 1], (N + 1) × (N + 1) equally spaced
points. For each time t, the Laplace inverse of the finite element solution is
computed using the algorithm developed in [1] with the following parameters,
according the notation used in the mentioned paper: α = 0, T = 0.8t, Er =

10−8, γ = − ln(ER)
1.6T , M = 50 and Tol =

T

e2γTN2
.

The objective of this section is to illustrate the convergence behavior of the
method studied in this work. We consider m = 1, 2, that is, we use linear
and quadratic finite elements. Assuming that ‖c(t)− cH(t)‖H1(Ω) ≃ CHq, we
show that q ≃ m. The convergence rate Rate(t) is computed using

Rate(t) =
ln
(

‖c(t)−cH1
(t)‖

H1

‖c(t)−cH2
(t)‖

H1

)

ln
(

H1

H2

) ,

where H1 and H2 are the diameters of two consecutive triangulations.
We remark that we observe the bound

‖c(t)− cH(t)‖H1(Ω) ≤ CHm, (61)
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N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)
10 0.0241023 1.00 0.0130785 0.99 0.0203103 0.99
20 0.0120958 1.00 0.00656704 1.00 0.0101984 1.00
30 0.00806943 1.00 0.00438147 1.00 0.00680427 1.00
40 0.00605353 1.00 0.00328701 1.00 0.00510461 1.00
50 0.00484337 1.00 0.00262995 1.00 0.00408422 1.00
60 0.00403639 1.00 0.00219179 1.00 0.00340375 1.00
70 0.00345989 1.00 0.00187876 1.00 0.00291763 1.00
80 0.00302749 - 0.00164398 - 0.00255301 -

Table 1. Errors and rates obtained for linear elements at t =
0.1, 1, 10, computed with the norm ‖.‖H1.

N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)
10 0.00134738 1.99 0.000731614 1.99 0.00113616 1.99
20 0.000338144 1.99 0.000183679 1.98 0.00028516 1.99
30 0.000150626 1.97 8.21509e-05 1.89 0.000127113 1.97
40 8.54939e-005 1.87 4.76761e-05 1.63 7.21529e-05 1.84
50 5.63455e-005 1.61 3.31572e-05 1.01 4.78133e-05 1.49
60 4.20235e-005 - 2.75704e-05 - 3.64293e-05 -

Table 2. Errors and rates obtained for quadratic elements at
t = 0.1, 1, 10, computed with the norm ‖.‖H1.

which is a stronger estimate when compared with the result in Theorem 4,
∫

R+

e−2σt‖c(t)− cH(t)‖
2
H1(Ω)ds ≤ CH2m‖c‖2L2(R+,Hm+1(Ω),σ).

In Table 1 we present the numerical error Error(t) and Rate(t) for t = 0.1,
t = 1 and t = 10 computed using linear elements. The numerical results
show that the convergence rate is in fact 1 when linear elements are used.
The numerical errors Error(t) and Rate(t) for t = 0.1, t = 1 and t = 10,

for quadratic elements, are presented in Table 2. The numerical results show
that the convergence rate is 2 when quadratic elements are used. When N
increases we observe a deterioration of the convergence rates. This behavior
was expected since, for large values ofN , the error of the spatial discretization
is very small and the error ‖c(t)−cH2

(t)‖H1 is dominated by the error induced
by numerical Laplace inversion.
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N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)
10 0.000923419 1.99 0.000516432 1.99 0.000788718 1.99
20 0.000232886 2.00 0.000130441 2.00 0.000199163 2.00
30 0.000103637 2.00 5.80592e-05 2.00 8.86341e-05 2.00
40 5.83169e-005 2.00 3.26734e-05 2.00 4.98842e-05 2.00
50 3.7338e-005 2.00 2.09267e-05 2.00 3.19352e-05 2.00
60 2.59387e-005 2.00 1.45307e-05 2.00 2.21752e-05 2.00
70 1.90528e-005 2.00 1.06773e-05 2.00 1.62915e-05 2.00
80 1.45901e-005 - 8.17607e-06 - 1.24722e-05 -

Table 3. Errors and rates obtained for linear elements at t =
0.1, 1, 10, computed with the norm ‖.‖L2.

N Error(0.1) Rate(0.1) Error(1) Rate(1) Error(10) Rate(10)
10 1.43765e-005 3.00 7.81467e-06 3.01 1.21519e-05 3.01
20 1.78621e-006 2.99 9.69927e-07 2.97 1.50822e-06 2.99
30 5.30795e-007 2.91 2.91427e-07 2.71 4.48644e-07 2.92
40 2.29777e-007 2.64 1.33718e-07 2.07 1.93656e-07 2.55
50 1.27406e-007 2.17 8.41604e-08 1.36 1.09575e-07 1.94
60 8.57563e-008 - 6.57133e-08 - 7.68772e-08 -

Table 4. Errors and rates obtained for quadratic elements at
t = 0.1, 1, 10, computed with the norm ‖.‖L2.

Finally we present some results obtained considering the L2 norm in the
measurement of the error. In Table 3 we present the results obtained with
linear elements that show a second order convergence rate. The errors and
rates obtained with quadratic elements are presented in Table 4. These
results show a third order convergence rate. However, when N increases
we observe, as before, a deterioration of this rate because the error ‖c(t) −
cH(t)‖L2 is dominated by the error of the numerical Laplace inversion.
Also, we can only expect that the numerical Laplace inverse is computed

with a high degree of accuracy for moderate values of t. In fact, for the
example considered in the experiments, when we consider large values of t
(e.g. t = 100) we don’t observe a good agreement between the exact and
numerical solution due to the limitations of the algorithm for the numerical
Laplace inversion.
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7. Conclusions

In this paper we consider a hybrid numerical method for the IBVP (1),
(9), (10). The method is composed by three steps: in the first step, applying
Laplace transforms, the given initial boundary value problem is replaced by
an elliptic boundary value problem that depends on the Laplace parameter; in
the second step the solution of this boundary value problem is approximated
using the finite element method, for a choice of a finite set of quadrature
points in the Laplace domain; finally, in the third stage, the numerical solu-
tion on the physical time space domain is obtained using numerical inverse
Laplace transforms. The main result of this paper, Theorem 4, shows the
theoretical error estimates for c − cH . Although the norm used in the esti-
mate (60) doens’t give information for the error at a specific value of t, since
it involves an integration over the time and a negative exponential in the
variable t, the numerical results illustrate, for moderate values of t, that the
method proposed has similar convergence behavior when compared to the
results known for the standard finite element method for elliptic or parabolic
problems.
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