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ANALYTICAL ASPECTS OF THE BROWNIAN MOTOR
EFFECT IN RANDOMLY FLASHING RATCHETS
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Abstract: The muscle contraction, operation of ATP synthase, maintaining the
shape of a cell are believed to be secured by motor proteins, which can be modelled
using the Brownian ratchet mechanism. We consider the randomly flashing ratchet
model of a Brownian motor, where the particles can be in two states, only one of
which is sensitive the applied spatially periodic potential (the mathematical setting
is a pair of weakly coupled reaction-diffusion and Fokker-Planck equations). We
prove that this mechanism indeed generates unidirectional transport by showing
that the amount of mass in the wells of the potential decreases/increases from left
to right. The direction of transport is unambiguously determined by the location
of each minimum of the potential with respect to the so-called diffusive mean of
its adjacent maxima. The transport can be generated not only by an asymmetric
potential, but also by a symmetric potential and asymmetric transition rates, and
as a consequence of the general result we derive explicit conditions when the latter
happens.
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solution, diffusive mean, transport.
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1. Introduction
Brownian motors are nano-scale or molecular machines which can produce

directed motion when the average force and average temperature gradient
are zero [3, 21]. At first glance, the existence of such devices seems to be a
paradox, and discretization of the idea really did lead to Parrondo’s paradox
in game theory [2, 6]. Typically, the mechanism involved (ratchet) is based
on an interplay between the Brownian motion (diffusion), an asymmetric
(ratchet-like) potential, and nonequilibrium of the system due to chemical or
thermal fluctuations.

The ratchet principle is ubiquitous and appears everywhere from political
system to famine cycles, from production strategy to cultural studies. Motor
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proteins, which provide muscle contraction (myosin, kinesin, dynein), ATP
synthase, as well as membrane-bound motor proteins maintaining the shape
of a cell, can be modelled using the Brownian ratchet mechanism [1, 9, 19, 20].
A ribosome can also be considered as a Brownian ratchet device [22].

The motor proteins can attach to and detach from a substrate of vectorial
symmetry [1, 20] under the action of a chemical energy source. This leads to
the following boundary value problem [1, 14, 15]:

pt − σpxx − κ(ψxp)x = νP − ηp, x ∈ (0, 1), t ≥ 0,
Pt − ςPxx = −νP + ηp, x ∈ (0, 1), t ≥ 0,
σpx + κψxp = 0, x = 0, 1, t ≥ 0,
Px = 0, x = 0, 1, t ≥ 0,
p ≥ 0, P ≥ 0,
1∫

0

p(t, x) + P (t, x) dx = 1, t ≥ 0.

(1)

Here p(t, x) and P (t, x) are the unknown densities of the particles in “at-
tached” and “detached” states, resp., at a time t and a spatial point x; σ
and ς are the diffusion coefficients of “attached” and “detached” particles,
resp.; ψ(x) is the potential; κ is a coefficient inversely proportional to tem-
perature; ν(x) > 0 and η(x) > 0 are the rates of transition from one state
to another (i.e. ν indicates the probability of seizing a motor protein by
a “detached” particle (located at a spatial point x), and η expresses the
probability of losing its motor protein for an “attached” particle). A typical
“ratchet-like” potential ψ with k teeth, k > 1, is 1/k-periodic in x and has a
unique local (and, hence, global) minimum within each period.

Let us compare this model with a somehow simpler one called the flashing
ratchet [3]. Here there is only one state, ρ is the unknown density of particles,
σ is the diffusion coefficient, and ψ is the potential, which is switched on and
off cyclically:

ρt = σρxx + h(t)(ψxρ)x, x ∈ (0, 1),
σρx + h(t)ψxρ = 0, x = 0, 1,
ρ ≥ 0,
1∫

0

ρ(x, t)dx = 1,

h(t) = 1, nT < t ≤ nT + Ttr, n = 0, 1, . . . ,
h(t) = 0, nT + Ttr < t ≤ nT + T, n = 0, 1, . . . .

(2)
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Here each particle is potential-sensitive and the potential-insensitive for a
priori known moments of time, whereas in the first model this is determined
by random attachments and detachments of the motor protein. Therefore
model (1) is sometimes referred to as the randomly flashing ratchet.

Another model related to (1) is the collaborative ratchet [5, 9, 19, 20] where
the particles in two states are sensitive to two different potentials ψ and Ψ
which help each other to achieve the motor effect:



pt − σpxx − κ(ψxp)x = νP − ηp, x ∈ (0, 1), t ≥ 0,
Pt − ςPxx − κ(ΨxP )x = −νP + ηp, x ∈ (0, 1), t ≥ 0,
σpx + κψxp = 0, x = 0, 1, t ≥ 0,
ςPx + κΨxP = 0, x = 0, 1, t ≥ 0,
p ≥ 0, P ≥ 0,
1∫

0

p(t, x) + P (t, x) dx = 1, t ≥ 0.

(3)

This model is relevant not only in connection with biology, but also in trans-
port of cold rubidium atoms [12].

The mathematical studies of Brownian ratchet models start with the ques-
tion whether they indeed generate unidirectional transport (which is observed
in experiments and simulations), and what assumptions are needed for that.
For example, model (1) is too general to produce transport with any choice
of parameters: setting

η/ν = exp (κψ/σ),

we observe that the total amount of mass in the “wells” of the potential, i.e.
in the segments [ ik ,

i+1
k ], i = 0, . . . , k − 1, eventually with the course of time

tends to 1/k. This shows that the ratchets should be “tuned” to work well.
Comparing eventual distribution of mass between the “wells” of the po-

tential ψ, it is possible to mathematically endorse the motor effect [10]. A
left-to-right chain of inequalities in this distribution would mean unidirec-
tional transport.

The occurrence of transport in model (3) for small σ = ς and certain
interplay between the potentials was shown in [4]. Some of the results of
that paper — in particular, existence of unique solutions to (3) and to the
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stationary problem

−σpxx − κ(ψxp)x = νP − ηp, x ∈ (0, 1),
−ςPxx − κ(ΨxP )x = −νP + ηp, x ∈ (0, 1),
σpx + κψxp = 0, x = 0, 1,
ςPx + κΨxP = 0, x = 0, 1,
p ≥ 0, P ≥ 0,
1∫

0

p(x) + P (x) dx = 1,

(4)

and eventual convergence of solutions to (3) to the solutions of (4) — are
valid for Ψ ≡ const as well. The transport result was generalized to the
multi-state systems with several interacting non-flat potentials in [7, 17].

The analytical proof of the motor effect for the flashing ratchet (2) was
given in [23], based on a framework developed in [10]. The unidirectional
transport occurs when the potential is asymmetric, and its direction is de-
termined by the location of the minima of the potential with respect to
the centres of the corresponding wells. A homogenization approach to the
flashing ratchet (2) was proposed in [18]. This approach was applied to the
randomly flashing ratchet (1) in [16] (see also [13]). There were presented
examples of transport in the case of a sawtooth potential (which is asym-
metric) and constant transition rates (which are obviously symmetric), and
with a symmetric potential and asymmetric transition rates. We are not
aware of any works with rigorous mathematical evidences of transport for
the non-homogenized problem (1).

In this paper, we show that the motor effect in model (1) is due to a subtle
interplay between the asymmetries of the potential ψ and the transition
rate ν. More precisely, an asymmetry of the transition function ν yields a
deviation of the so-called diffusive means of the edge points of the wells of
the potential — these edge points are the maxima of ψ — from the centres
of the wells. The direction of transport is determined by the location of the
minima of the potential with respect to that biased centres (the diffusive
means of the adjacent maxima). The ratchet is tuned when the influence of
the potential on the particles which carry the motor protein dominates their
diffusion (which is a natural assumption since these complex particles are
larger and thus diffuse slower).

The paper is organized as follows. In the next section, we set the problem
more rigorously, define the notion of the diffusive mean, observe its main
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properties and evaluate it, and finally formulate the main result (Theorem
2.1). In the third section, we introduce a semidiscretized device, the squeezing
ratchet, and prove that it generates unidirectional transport. The proof of
the main result is provided in the forth section, where we show that the
squeezing ratchet and the original randomly flashing ratchet have similar
behaviour. The last section contains a discussion of the results.

2. Preliminaries
We consider the stationary boundary value problem for the randomly flash-

ing ratchet equation with Neumann boundary conditions

−σpxx − κ(ψxp)x = νP − ηp, x ∈ (0, 1),
−ςPxx = −νP + ηp, x ∈ (0, 1),
σpx + κψxp = 0, x = 0, 1,
Px = 0, x = 0, 1,
p ≥ 0, P ≥ 0,
1∫

0

p(x) + P (x) dx = 1,

(5)

which describes the eventual distribution of particles subjected to the action
of the ratchet.

The potential ψ(x) and the transition rates ν(x) > 0 and η(x) > 0 are
assumed to be smooth scalar functions on [0, 1] of period 1/k, with k > 1
being a fixed integer. The potential ψ should have maxima at points xi and
minima at points ai, and be monotonic (without zero slopes) between these
points, where

xi =
i− 1

k
, i = 1, . . . , k + 1, (6)

ai = a+ xi, i = 1, . . . , k. (7)

The positive parameter a should be less than 1/k.
The symbol δx denotes the Dirac delta centered at x ∈ R. The symbol

C will stand for a generic positive constant that can take different values

in different lines. We use the bra-ket notation 〈µ, f〉 =
B∫
A

f dµ, where µ ∈

C∗[A,B], and f is a continuous function on [A,B].
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Definition 2.1. Unless otherwise specified, we say that u ∈ L1(A,B) is a
solution to the problem{

(k1u)xx(x) + (k2u)x(x) + k3(x)u(x) = Θ(u)(x), x ∈ (A,B),
(k1u)x(A) = (k1u)x(B) = 0,

where functions k1, k2, k3 ∈ C[A,B], k2(A) = k2(B) = 0, and a linear opera-
tor Θ : L1(A,B)→ C∗[A,B] are prescribed, if

B∫
A

k1(x)u(x)ϕxx(x)− k2(x)u(x)ϕx(x) + k3(x)u(x)ϕ(x) dx

= 〈Θ(u), ϕ〉 (8)

for any ϕ ∈ C2[A,B], ϕx(A) = ϕx(B) = 0.

Note that (8) already includes the Neumann boundary condition.

Definition 2.2. Let A and B be real numbers, and φ(x) > 0 be a continuous
scalar function on [A,B]. The number s ∈ (A,B) is called the φ-diffusive
mean of A and B provided the system φU − Uxx = δs, x ∈ (A,B),

U(A) = U(B),
Ux(A) = Ux(B) = 0

(9)

has a solution U .

Proposition 2.1. The φ-diffusive mean always exists and is unique.

We give the proof at the end of this section.

Example 2.1. Let

φ̃(x) = φ(A+B − x).

Then the φ-diffusive mean of A and B is equal to their sum minus their
φ̃-diffusive mean. In particular, if φ is a constant function or merely

φ(x) = φ̃(x), A ≤ x ≤ A+B

2
, (10)

then the diffusive mean coincides with the arithmetic mean A+B
2 .

Another example is given by
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Proposition 2.2. Let

φ(x) ≤ φ̃(x), A ≤ x ≤ A+B

2
, (11)

and the inequality is strict at least at one point. Then the φ-diffusive mean
of A and B is strictly larger than the arithmetic mean A+B

2 .

The proof is located at the end of the section. A symmetry argument shows
that if

φ(x) ≥ φ̃(x), A ≤ x ≤ A+B

2
, (12)

and the inequality is strict at least at one point, then the diffusive mean is
strictly less than A+B

2 .
For any integrable scalar function Φ on (0, 1), we denote

Φ̂i =

xi+1∫
xi

Φ(x) dx, i = 1, . . . , k. (13)

The main result of the paper is

Theorem 2.1. Let S be the ν
ς -diffusive mean of 0 and 1/k. If a < S, then,

for sufficiently small σ and sufficiently large κ,

p̂1 > p̂2 > · · · > p̂k, (14)

P̂1 > P̂2 > · · · > P̂k. (15)

Theorem 2.1 means, in particular, that, if the diffusion of potential-sensitive
particles is slow, and the influence of the potential is strong (or the temper-
ature is low), and if a < S, then, given any initial distribution of density, the
mass of particles of each kind in the wells will eventually decrease from left
to right, i.e. the motor effect is present.

Remark 2.1. We will even prove that

P (x) > P (x+ 1/k), 0 ≤ x ≤ 1− 1/k, (16)

which is stronger than (15).

Example 2.2. Let the potential ψ be symmetric, i.e. ψ(x) = ψ(1 − x),
which can only happen when a = 1

2k . The one-state flashing ratchet cannot
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generate transport in this case. However, the randomly flashing ratchet can.
Assume that

ν(x) ≤ ν(−x+ 1/k), 0 ≤ x ≤ 1

2k
, (17)

with strict inequality at least at one point. Then a = 1
2k < S by Proposition

2.2, and the transport occurs.

Remark 2.2. If a > S, then Theorem 2.1 implies p̂1 < p̂2 < · · · < p̂k,
P̂1 < P̂2 < · · · < P̂k — to see this it suffices to make the change of variables
x → 1 − x, to apply the reasoning of Example 2.1 with φ = ν

ς , A = 0 and

B = 1/k, and to take into account that φ̃(x) = φ(1
k − x) = φ(1 − x) due to

periodicity.

Example 2.3. Let ν be symmetric, i.e. ν(x) = ν(1−x). Then periodicity of
ν and Example 2.1 imply that S = 1

2k . The motor effect is provided by the

condition a 6= 1
2k , i.e. the potential should be asymmetric, and the direction

of transport is determined by the location of a with respect to 1
2k , as for the

one-state flashing ratchet [23].

We can renormalize (5) to get



−σpxx − κ(ψxp)x = νP − ηp, x ∈ (0, 1),
−ςPxx = −νP + ηp, x ∈ (0, 1),
σpx + κψxp = 0, x = 0, 1,
Px = 0, x = 0, 1,
p ≥ 0, P ≥ 0,
1∫

0

η(x)p(x) + ν(x)P (x) dx = 2.

(18)

Integration of (18) implies

1∫
0

η(x)p(x)− ν(x)P (x) dx = 0. (19)
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Since 0 and 1 are maxima of ψ, we have ψx(0) = ψx(1) = 0. Thus, (18) is
equivalent to 

−σpxx − κ(ψxp)x = νP − ηp, x ∈ (0, 1),
−ςPxx = −νP + ηp, x ∈ (0, 1),
px = 0, x = 0, 1,
Px = 0, x = 0, 1,
p ≥ 0, P ≥ 0,
1∫

0

η(x)p(x) dx = 1,

1∫
0

ν(x)P (x) dx = 1.

(20)

Since problem (5) is linear, it is enough to prove Theorem 2.1 for the
renormalized problem (20).

Proof : (Proposition 2.1) LetG(x, y) be Green’s function of the Sturm-Liouville
operator

L = − d2

dx2
+ φ

on (A,B) with homogeneous Neumann boundary condition. Then U(x) =
G(x, s) is a solution to (9) if an only if G(A, s) = G(B, s).

By the distributional maximum principle [11, Theorem B], G(x, y) > 0.
Observe that

Gx(x,A) =

x∫
B

φ(z)G(A, z) dz, (21)

Gx(x,B) =

x∫
A

φ(z)G(B, z) dz. (22)

Hence, the function G(x,A) is decreasing in x, and G(x,B) is increasing.
Thus, the function

g(x) = G(A, x)−G(B, x)

is also (strictly) decreasing. At the ends of the segment, we have g(A) =
G(A,A) − G(B,A) > 0 and g(B) = G(A,B) − G(B,B) < 0. Since g
is a continuous function, there is unique s ∈ (A,B) such that G(A, s) =
G(B, s).
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Proof : (Proposition 2.2) Let

g1(x) = G(
A+B

2
, x)−G(

A+B

2
, A+B − x).

We claim that

g1(A) > 0. (23)

Since G is Green’s function,

(g1)x(A) = 0, (24)

and

(g1)xx(x)

= φ(x)G(
A+B

2
, x)− φ(A+B − x)G(

A+B

2
, A+B − x)

= φ(x)g1(x) + [φ(x)− φ̃(x)]G(
A+B

2
, A+B − x)

≤ φ(x)g1(x), A ≤ x <
A+B

2
, (25)

and the inequality is strict at least at one point. In particular, g1 cannot be
identically zero.

Assume that g1(A) ≤ 0. By the maximum principle, g1 cannot have non-
positive minima within (A, A+B

2 ). But

g1(
A+B

2
) = 0, (26)

so A must be a minimum point. Let g2(x) = g1(x) − g1(A). Then g2 is
non-negative, and

(g2)xx(x) ≤ φ(x)g2(x), A ≤ x <
A+B

2
. (27)

Thus,

(g2)x(x) ≤
x∫

A

φ(t)g2(t) dt, A ≤ x ≤ A+B

2
. (28)
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By the mean value theorem,

g2(x) = g2(x)− g2(A) = (x− A)(g2)x(c)

≤ (x− A)

c∫
A

φ(t)g2(t) dt ≤
1

2
(B − A)

x∫
A

φ(t)g2(t) dt (29)

for some c, A < c < x ≤ A+B
2 . The Gronwall lemma implies g2 ≡ 0, so, by

(26), g1 ≡ 0, and we get a contradiction.
Hence,

g(
A+B

2
) = g1(A) > 0.

Then (cf. the proof of Proposition 2.1) there is s ∈ (A+B
2 , B) such that

g(s) = 0, and this number s is the φ-diffusive mean.

3. Squeezing ratchet
Let G(x, y) be Green’s function of the Sturm-Liouville operator

L = −ς d
2

dx2
+ ν

on (0, 1) with homogeneous Neumann boundary condition. Let qi(x) =
G(x, ai), i.e. {

νqi − ςqixx = δai, x ∈ (0, 1),
qix(0) = qix(1) = 0,

(30)

and let

q =
k∑
i=1

qi. (31)

As we already observed in the proof of Proposition 2.1,

qi(x) > 0, x ∈ [0, 1]. (32)

Our core tool for catching the motor effect is the following theorem.
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Theorem 3.1. There exists a unique function Q ∈ C[0, 1] solving the fol-
lowing problem: 

νQ− ςQxx =
k∑
i=1

(̂νQ)iδai, x ∈ (0, 1),

Qx(0) = Qx(1) = 0,
1∫

0

ν(x)Q(x) dx = 1.

(33)

Moreover, if

q(x) ≥ q(x+ 1/k) + γ, 0 ≤ x ≤ 1− 1/k, (34)

with some γ > 0, then

Q(x) ≥ Q(x+ 1/k) +Mγ, 0 ≤ x ≤ 1− 1/k, (35)

where M = mini=1,...,k (̂νqi)k.

Proof : Consider the set of functions

B =

y(x) ∈ L1(0, 1)

∣∣∣∣∣∣
1∫

0

ν(x)y(x) dx = 1, (̂νy)k ≥M,

y(x) ≥ y(x+ 1/k) +Mγ, for a.a. 0 ≤ x ≤ 1− 1/k.


Inverse induction shows that for any i = 1, . . . , k and y ∈ B one has

(̂νy)i ≥M. (36)

Let us define a mapping A on B. For each y ∈ B, we let A(y) = Y , where
Y is the solution of the problem νY − ςYxx =

k∑
i=1

(̂νy)iδai, x ∈ (0, 1),

Yx(0) = Yx(1) = 0.
(37)

To put it differently,

Y =
k∑
i=1

(̂νy)iqi. (38)
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Then, the set B is invariant for the map A. In fact, let y ∈ B. Then (37)
implies

1∫
0

ν(x)Y (x) dx =
k∑
i=1

(̂νy)i =

1∫
0

ν(x)y(x) dx = 1.

Further,

(̂νY )k =
k∑
i=1

(̂νy)i(̂νqi)k ≥M
k∑
i=1

(̂νy)i = M.

Finally, fix x∗ ∈ [0, 1 − 1/k]. Then there is a number n such that x∗ ∈
[xn, xn+1). Set

N∗ =

{
(̂νy)n, x∗ ≤ an,

(̂νy)n+1, x∗ > an.
(39)

We claim that

((̂νy)i −N∗)[qi(x∗)− qi(x∗ + 1/k)] ≥ 0, i = 1, . . . , k. (40)

Indeed, integration of (30) gives

ςqix(x) =

x∫
0

ν(z)qi(z) dz, x < ai, (41)

ςqix(x) =

x∫
1

ν(z)qi(z) dz, x > ai. (42)

Thus, the function qi is increasing on the segment [0, ai] and decreasing on
[ai, 1]. Assume first x∗ ≤ an. Then, if i < n, we have qi(x∗) > qi(x∗ + 1/k).

Since y ∈ B, we also have (̂νy)i > (̂νy)n = N∗, and (40) holds true. If i > n,

we have qi(x∗) < qi(x∗+ 1/k) and (̂νy)i < N∗, and (40) again holds. If i = n,
(40) is trivial. Now, let x∗ > an. In this case, if i < n+1, qi(x∗) > qi(x∗+1/k)

and (̂νy)i > (̂νy)n+1 = N∗; if i > n+ 1, qi(x∗) < qi(x∗+ 1/k) and (̂νy)i < N∗;
and if i = n+ 1, (40) is again trivial.

Formulas (38), (40), (34) and (36) yield

Y (x∗)− Y (x∗ + 1/k) =
k∑
i=1

(̂νy)i[qi(x∗)− qi(x∗ + 1/k)]
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≥
k∑
i=1

N∗[qi(x∗)− qi(x∗ + 1/k)] = N∗[q(x∗)− q(x∗ + 1/k)] ≥Mγ,

so the invariance of B is confirmed.
Observe that A is a compact linear operator in L1(0, 1). Indeed, let B be

the unit ball of the space L1(0, 1). Due to (38), its image A(B) is a bounded
subset of the linear span of {q1, . . . , qk}, thus being a relatively compact
subset of a finite-dimensional subspace of L1(0, 1).

Let us show that (33) may have at most one solution, so A can have at
most one fixed point in B. If not, let Q̃ be the difference of two distinct
solutions. Then

1∫
0

ν(z)Q̃(z) dz = 0. (43)

Moreover,

Q̃ =
k∑
i=1

(̂νQ̃)iqi, (44)

whence

(̂νQ̃)j =
k∑
i=1

(̂νQ̃)i(̂νqi)j, j = 1, . . . , k. (45)

From (30) we deduce
1∫

0

ν(z)qi(z) dz = 1. (46)

Therefore, the matrix [Pij] =
[
(̂νqi)j

]
is ergodic, i.e. it has positive entries,

and the sum of the elements in every row is equal to one. By the Perron-
Frobenius theorem, it has an eigenvector [ξi] corresponding to the simple

eigenvalue 1, so that ξj =
k∑
i=1

ξiPij, and all the components ξi are positive.

On the other hand, by (45), [Ξi] =

[
(̂νQ̃)i

]
is another eigenvector of [Pij]

corresponding to the same eigenvalue. The sum of its components is zero
due to (43), so it cannot be collinear with [ξi] unless it is a zero vector. Since

1 is a simple eigenvalue, all (̂νQ̃)i are zeros, so Q̃ ≡ 0 by virtue of (44).
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The set B is closed, convex and bounded in L1(0, 1). By Schauder’s fixed
point principle, A has a fixed point Q in B, which is automatically a solution
to (33). It remains to notice that Q is continuous as a linear combination of
qi, so (35) holds for all 0 ≤ x ≤ 1− 1/k.

Remark 3.1. Theorem 3.1 may be considered as a continuous version of a
purely algebraic fact, [23, Lemma 3.2].

Lemma 3.1. If a < S, then there is γ > 0 such that (34) holds true.

Proof : Let us notice that
q = u+ v, (47)

where u and v are the (unique) solutions to the following problems νu− ςuxx =
k∑
i=1

δSi, x ∈ (0, 1),

ux(0) = ux(1) = 0,
(48)

 νv − ςvxx =
k∑
i=1

(δai − δSi), x ∈ (0, 1),

vx(0) = vx(1) = 0,
(49)

and
Si = S + xi, i = 1, . . . , k. (50)

Since S is the ν/ς-diffusive mean of 0 and 1/k, there exists a solution U1 to
the problem  νU1 − ςU1xx = δS1

, x ∈ (0, 1/k),
U1x(0) = U1x(1/k) = 0,
U1(0) = U1(1/k).

(51)

The solution u to (48) can be constructed in the following way:

u(x) = U1(x− xi), xi ≤ x ≤ xi + 1/k, i = 1, . . . , k. (52)

Thus, u is 1/k-periodic, i.e.

u(x)− u(x+ 1/k) = 0, 0 ≤ x ≤ xk. (53)

Set
d(x) = v(x)− v(x+ 1/k), 0 ≤ x ≤ xk. (54)

Then it suffices to show that

γ = min
0≤x≤xk

d(x) > 0. (55)
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Note that

νd− ςdxx = 0, x ∈ (0, xk). (56)

By the maximum principle, if the minimum of d is non-positive, it is attained
at 0 or xk. To ascertain that this cannot happen, we are going to prove that

dx(0) < 0, dx(xk) > 0. (57)

Set

V (x) =

x∫
0

ν(z)v(z) dz, (58)

and let θ be the solution of the Cauchy problem θx =
k∑
i=1

(δai − δSi), x ∈ (0, 1),

θ(0) = 0.
(59)

Note that θ is non-negative and 1/k-periodic.
Integration of (49) gives

V − ςvx = θ. (60)

Therefore

dx =
V (x)− V (x+ 1/k)

ς
. (61)

From (60) we deduce

V (0) = V (1) = 0, (62)

and

V − ς
(
Vx
ν

)
x

= θ ≥ 0. (63)

Using the distributional maximum principle [11, Theorem B], we conclude
that

V (x) > 0, 0 < x < 1, (64)

so

dx(0) = −V (1/k)

ς
< 0, dx(xk) =

V (1− 1/k)

ς
> 0. (65)
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The results of this section can be interpreted as follows. Consider a semidis-
cretized device which we refer to as the “squeezing ratchet”, and which acts
as follows. The particles can be in two states, ground and excited, and ν(x)
and η(x) are probabilities of transition from the first to the second state and
back, resp. The particles in the ground state diffuse with diffusion coefficient
ς. If a particle positioned at the segment (xi, xi+1) suddenly changes its state
from the ground to the excited one, then it instantly jumps to the point
ai (located to the left from the ν

ς -diffusive mean of the points xi and xi+1).
Then, given any initial allocation of particles, the renormalized eventual dis-
tribution Q of ground particles satisfies (35), i.e. their mass is transported
to the left. Moreover, the excited particles are eventually concentrated at

the points ai, and one can observe that the asymptotic amounts χi ∼ (̂νQ)i
of excited particles at the points ai decrease from left to right. A reflection
argument shows that if ai are located to the right from the ν

ς -diffusive means
of the corresponding endpoints xi and xi+1, then both ground and excited
mass is transported to the right.

4. Asymptotics of the time-discretized Fokker-Planck
equation and behaviour of the randomly flashing ratchet

Denote by d the Wasserstein metric of order two on the space of probability
measures on [0, 1], see e.g. [8]. The convergence in Wasserstein metric is
equivalent to the weak-* convergence of probability measures:

d(µn, µ)→ 0⇔ 〈µn − µ, f〉 → 0, f ∈ C[0, 1]. (66)

Set b(x) = ψx(x)/η(x). Note that b(x) is zero at the extrema ai and xi of
the potential ψ, is negative for xi < x < ai, and is positive for ai < x < xi+1,
i = 1, . . . , k.

Lemma 4.1. If ω ∈ C∗[0, 1] satisfies

〈ω, ϕ+ κbϕx〉 = 0 (67)

for any ϕ ∈ C2[0, 1], ϕx(0) = ϕx(1) = 0, then ω = 0.

Proof : It suffices to prove that the set

O =
{
ϕ+ κbϕx

∣∣∣ϕ ∈ C2[0, 1], ϕx(0) = ϕx(1) = 0
}

is dense in C[0, 1].
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Let h ∈ C2[0, 1] be an arbitrary function which is locally constant near the
zeros of b. These functions constitute a dense subset O1 of C[0, 1]. Let

ϕ(x) = h(x) +

ai∫
x

exp

 y∫
x

1

κb(t)
dt

hy(y) dy,

xi ≤ x ≤ xi+1, i = 1, . . . , k. (68)

Clearly, ϕ is equal to a constant c−i (resp. c+
i ) in a left (resp. right) neigh-

bourhood of the point xi. But

h = ϕ+ κbϕx, (69)

so c−i = c+
i = h(xi). Thus, ϕ is C2-smooth and ϕx(0) = ϕx(1) = 0. By virtue

of (69), O1 is contained in O.

Consider the system {
r − κ(br)x = R, x ∈ (0, 1)
r ≥ 0,

(70)

where

R ∈ L1(0, 1), R ≥ 0,

1∫
0

R(x) dx = 1,

is prescribed. Clearly,
1∫

0

r(x) dx = 1, so r can be considered as a probability

measure.

Lemma 4.2. We have

lim
κ→+∞

sup

R∈L1(0,1), R≥0,
1∫
0

R(x) dx=1

d(r,
k∑
i=1

R̂iδai) = 0. (71)

Proof : The solution r to (70) can be written explicitly:

r(x) = − 1

κb(x)

x∫
xi

exp

 x∫
s

1

κb(t)
dt

R(s) ds, xi < x < ai, (72)

r(x) =
1

κb(x)

xi+1∫
x

exp

 x∫
s

1

κb(t)
dt

R(s) ds, ai < x < xi+1. (73)
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Note that it is unique in L1(0, 1). Indeed, if r1 is another solution, then
ω = r − r1 satisfies the conditions of Lemma 4.1.

We need to show that r →
k∑
i=1

R̂iδai weakly-∗, uniformly with respect to

R. It suffices to prove that, for each i, r → R̂iδai weakly-∗ on the interval
(xi, xi+1), uniformly in R. We restrict ourselves to the case i = 1, and the
others are analogous.

We calculate, integrating by parts,

r̂1 =

1/k∫
0

r(x) dx

= −
a∫

0

1

κb(x)

x∫
0

exp

 x∫
s

1

κb(t)
dt

R(s) ds dx

+

1/k∫
a

1

κb(x)

1/k∫
x

exp

 x∫
s

1

κb(t)
dt

R(s) ds dx

= −

a∫
0

exp

(
x∫

1
κb(t) dt

)
κb(x)

x∫
0

exp

∫
s

1

κb(t)
dt

R(s) ds dx

+

a∫
1/k

exp

(
x∫

1
κb(t) dt

)
κb(x)

x∫
1/k

exp

∫
s

1

κb(t)
dt

R(s) ds dx

=

 x∫
0

exp

 x∫
s

1

κb(t)
dt

R(s) ds

0

a

+

a∫
0

R(x) dx

+

 x∫
1/k

exp

 x∫
s

1

κb(t)
dt

R(s) ds


a

1/k

+

1/k∫
a

R(x) dx
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= R̂1 −
1/k∫
0

exp

 a∫
s

1

κb(t)
dt

R(s) ds = R̂1. (74)

Let us show that for every x∗ ∈ (0, a)

lim
κ→+∞

x∗∫
0

r(x) dx = 0, (75)

uniformly in R. Indeed, let sκ < x∗ be such that

sκ∫
x∗

1

b(t)
dt =

√
κ. (76)

Observe that sκ → 0 as κ→ +∞. We have

x∗∫
0

r(x) dx

= −
x∗∫

0

1

κb(x)

x∫
0

exp

 x∫
s

1

κb(t)
dt

R(s) ds dx

= −

x∗∫
0

exp

(
x∫

1
κb(t) dt

)
κb(x)

x∫
0

exp

∫
s

1

κb(t)
dt

R(s) ds dx

=

 x∫
0

exp

 x∫
s

1

κb(t)
dt

R(s) ds

0

x∗

+

x∗∫
0

R(x) dx
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=

x∗∫
0

1− exp

 x∗∫
s

1

κb(t)
dt

R(s) ds

≤
sκ∫

0

1− exp

 x∗∫
s

1

κb(t)
dt

R(s) ds+

x∗∫
sκ

1− exp

 x∗∫
sκ

1

κb(t)
dt

R(s) ds

≤
sκ∫

0

R(s) ds+ [1− exp(κ−1/2)]

x∗∫
sκ

R(s) ds→ 0 (77)

as κ→ +∞.
Due to (75), for any f0 ∈ C[0, 1/k],

lim
κ→+∞

x∗∫
0

r(x)f0(x) dx = 0, (78)

uniformly in R.
Similarly, for all x∗ ∈ (a, 1/k) and f0 ∈ C[0, 1/k],

lim
κ→+∞

1/k∫
x∗

r(x)f0(x)v = 0, (79)

uniformly in R.
Fix ε > 0 and f ∈ C[0, 1/k]. Let x∗ and x∗ be so close to a that |f(x) −

f(a)| ≤ ε/2 provided x∗ ≤ x ≤ x∗. Then∣∣∣∣∣∣
x∗∫
x∗

r(x)[f(x)− f(a)] dx

∣∣∣∣∣∣ ≤ ε/2. (80)

Due to (78) and (79) with f0 = f − f(a),∣∣∣∣∣∣∣
1/k∫
0

r(x)[f(x)− f(a)] dx−
x∗∫
x∗

r(x)[f(x)− f(a)] dx

∣∣∣∣∣∣∣ ≤ ε/2 (81)
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for sufficiently large κ. Thus,

〈r − R̂1δa1, f〉 = 〈r − r̂1δa, f〉 =

1/k∫
0

r(x)[f(x)− f(a)] dx ≤ ε. (82)

Now, consider the time-discretized Fokker-Planck problem: wσ,κ − σ(wσ,κ/η)xx − κ(bwσ,κ)x = Rσ,κ, x ∈ (0, 1),
(wσ,κ/η)x(0) = (wσ,κ/η)x(1) = 0,
w ≥ 0,

(83)

where

Rσ,κ ∈ L1(0, 1), Rσ,κ ≥ 0,

1∫
0

Rσ,κ(x) dx = 1,

depends on σ and κ.

Lemma 4.3. For each κ there exists εκ > 0 so that

lim
κ→+∞, σ≤εκ

d(wσ,κ,
k∑
i=1

(̂Rσ,κ)iδai) = 0. (84)

Proof : Let rσ,κ be the solution of the system{
rσ,κ − κ(brσ,κ)x = Rσ,κ, x ∈ (0, 1)
rσ,κ ≥ 0.

(85)

Then, by Lemma 4.2,

lim
κ→+∞

d(rσ,κ,
k∑
i=1

(̂Rσ,κ)iδai) = 0, (86)

uniformly in σ. Thus, it suffices to prove that for every κ there is εκ > 0 such
that

lim
κ→+∞, σ≤εκ

d(wσ,κ, rσ,κ) = 0.

This would follow from the claim that for every κ there is εκ > 0 so that for
σ ≤ εκ we have d(wσ,κ, rσ,κ) < 1/κ. If it is not true, then for some κ there
exists a sequence σn → 0 such that

d(wσn,κ, rσn,κ) ≥ 1/κ.
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Since wσn,κ and rσn,κ are solutions of the problems (83) and (85), we have

−σn〈wσn,κ, ϕxx/η〉+ 〈wσn,κ, ϕ+ κbϕx〉 = 〈Rσn,κ, ϕ〉, (87)

〈rσn,κ, ϕ+ κbϕx〉 = 〈Rσn,κ, ϕ〉, (88)

for any ϕ ∈ C2[0, 1], ϕx(0) = ϕx(1) = 0. Since the sequences wσn,κ and rσn,κ
lie in the space of probability measures, which is weakly-* compact, without
loss of generality there exist their weak-* limits wκ and rκ. Clearly,

d(wκ, rκ) ≥ 1/κ. (89)

On the other hand, taking the difference of (87) and (88), and passing to the
limit, we find 〈wκ − rκ, ϕ + κbϕx〉 = 0, so wκ = rκ by Lemma 4.1, and we
arrive at a contradiction.

Lemma 4.4. For each κ there exists εκ > 0 so that the corresponding solu-
tions of (20) have the following properties:

lim
κ→+∞, σ≤εκ

sup
0≤x≤1

|P (x)−Q(x)| = 0, (90)

lim
κ→+∞, σ≤εκ

p̂i =
(̂νQ)i
η(a)

. (91)

Proof : The pair (wσ,κ, Rσ,κ) = (ηp, νP ) satisfies (83), so, by Lemma 4.3, for
every κ there exists εκ > 0 such that

lim
κ→+∞, σ≤εκ

d(ηp,
k∑
i=1

(̂νP )iδai) = 0. (92)

Multiplying the second equation in (20) by P and integrating, we find

1∫
0

ν(x)P 2(x)− ςPxx(x)P (x) dx =

1∫
0

η(x)p(x)P (x) dx, (93)

whence

inf
0≤x≤1

ν(x)

1∫
0

P 2(x) dx+ ς

1∫
0

P 2
x (x) dx ≤ sup

0≤x≤1
P (x). (94)

Hence,

‖P‖2
W 1

2 (0,1) ≤ C‖P‖C[0,1] ≤ C‖P‖W 1
2 (0,1) ≤ C. (95)
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Assume that (90) is not true, i.e. there exist δ > 0 and sequences κn →∞ and
σn ≤ εκn such that for the corresponding solutions (pn, Pn) = (pσn,κn, Pσn,κn)
to (20) we have ‖Pn −Q‖C[0,1] > δ. Since the embedding W 1

2 (0, 1) ⊂ C[0, 1]
is compact, without loss of generality we may assume that Pn converges to
some limit P0 in C[0, 1]. Obviously,

‖P0 −Q‖C[0,1] ≥ δ. (96)

Passing to the limit in the second, forth and the last equations in (20) —
the combination of the first two is understood in the weak sense (8) — and
remembering (92), we find

νP0 − ς(P0)xx =
k∑
i=1

(̂νP0)iδai,

(P0)x(0) = (P0)x(1) = 0,
1∫

0

ν(x)P0(x) dx = 1.

By Theorem 3.1, P0 coincides with Q, which contradicts (96).
From (92) we deduce

lim
κ→+∞, σ≤εκ

d

(
p,

k∑
i=1

(̂νP )iδai
η(ai)

)
= 0. (97)

Due to (90) and 1/k-periodicity of η, (97) implies that

p→
k∑
i=1

(̂νQ)iδai
η(a)

. (98)

weakly-* as κ→ +∞, σ ≤ εκ. Taking test functions which are equal to 1 in
one of the wells and are zero at the minima of the potential located outside
of that well, we derive (91) from (98).

Proof : (Theorem 2.1) Inequality (35) yields

(̂νQ)i
η(a)

≥
(̂νQ)i+1

η(a)
+ C, i = 1, . . . , k − 1. (99)

Therefore, (14) and (16) are direct consequences of Theorem 3.1 and Lemmas
3.1 and 4.4.
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5. Discussion
The randomly flashing ratchet model for motor proteins is investigated.

The Brownian particles which carry a motor protein are considered to be
sensitive to a chemically-induced periodic potential. The motor-free ones
diffuse normally. The switch between the two states happens when a particle
loses or seizes a motor protein, and the probabilities of these events are
prescribed. Mathematically, the model is a pair of weakly coupled reaction-
diffusion and Fokker-Planck equations with Neumann boundary conditions.
It is shown that unidirectional transport of mass occurs when the diffusion
of the potential-sensitive particles is strongly dominated by the influence
of the potential. The direction of transport is unambiguously determined
by a certain interrelation between the asymmetries of the potential and of
the probability of transition from the potential-insensitive to the potential-
sensitive state: in particular, at least one of them should be asymmetric to
secure the transport effect.
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