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JIŘÍ ADÁMEK, PAUL LEVY, STEFAN MILIUS, LAWRENCE S. MOSS AND LURDES
SOUSA

To George Janelidze on the occasion of his sixtieth birthday

Abstract: The final coalgebra for the finite power-set functor was described by
Worrell who also proved that the final chain converges in ω + ω steps. We describe
the step ω as the set of saturated trees, a concept equivalent to the modally saturated
trees introduced by K. Fine in the 1970s in his study of modal logic. And for the
bounded power-set functors Pλ, where λ is an infinite regular cardinal, we prove
that the construction needs precisely λ+ω steps. We also generalize Worrell’s result
to M -labeled trees for a commutative monoid M , yielding a final coalgebra for the
corresponding functor Mf studied by H.-P. Gumm and T. Schröder. We describe
the final chain of the power-set functor by introducing the concept of i-saturated
tree for all ordinals i, and then prove that for i of cofinality ω, the i-th step in the
final chain consists of all i-saturated, strongly extensional trees.

1. Introduction

Coalgebras for power-set functors, e.g. the full one P or the finite power-
set functor Pf , are of major importance in modal logic (Kripke structures),
set theory (non-wellfounded sets) and process algebra. Final coalgebras serve,
in general, as Rutten’s fundamental study [27] demonstrated, as a basis for
analyses of numerous systems. Although we know that P does not have a
final coalgebra, it is of interest to describe the steps P i1 of its final chain.
For that we introduce the concept of an i-saturated tree (for every ordinal
i) and prove that the case i = ω is nothing else than the classical concept of
modally saturated tree due to K. Fine [15]. We then describe the final chain
P i1 of P as the set of all i-saturated, strongly extensional trees. For the
finite power-set functor Pf two beautiful descriptions of the final coalgebra
exist: as the set of all hereditarily finite sets in the non-wellfounded set
theory due to P. Aczel [2] and as the set of all strongly extensional, finitely
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2 J. ADÁMEK, P. LEVY, S. MILIUS, L. S. MOSS AND L. SOUSA

branching trees∗ due to J. Worrell [30]. He used metric spaces and described
the limit Pω

f 1 of the final chain of Pf as the set of all strongly extensional,
compactly branching trees. From that he derived the above description of the
final coalgebra. We give below new descriptions that do not need topology,
one combinatorial and one using modal logic. We prove that the limit Pω

f 1
consists of all saturated, strongly extensional trees, a concept we introduce
and prove to be equivalent to modally saturated trees. Another description
of Pω

f 1 we present is as the set of all maximal consistent theories of the
modal logic K. A related description of the final coalgebra of Pf is as the set
of all hereditarily finite maximal consistent theories in K. Other descriptions
were previously given by S. Abramsky [1], A. Kurz and D. Pattinson [20] and
by J. Rutten [26, Theorem 7.4].
We also present a generalization in two directions: one uses finite multisets

with multiplicities drawn from a given commutative monoid M , as intro-
duced by H.-P. Gumm and T. Schröder [17]. Form the functor Mf of all
such finite multisets; its coalgebras are labeled transition systems with ac-
tions labeled by M \ {0}. We prove a direct generalization for all monoids
for which Mf preserves weak pullbacks: the final coalgebra for Mf consists
of all finitely branching, strongly extensional M -labeled trees. For general
monoids this result is not true, but we prove that the final coalgebra for Mf

is the coalgebra of finitely branching M -labeled trees modulo an equivalence
generalizing M. Barr’s equivalence for Pf , see [10].
The other direction of generalization concerns moving from Pf to Pλ, the

functor of all subsets of power less than λ. (Here and below, λ is an infinite
cardinal.) This functor Pλ has the final coalgebra consisting of all strongly
extensional λ-branching trees, as proved by D. Schwencke [28]. We present
a new and much simpler proof. We also prove that the final chain converges
precisely at λ+ ω if λ is a regular cardinal, else it converges at the cardinal
successor of λ.
Returning to the power-set functor P we present a partial description of

the final chain P i1. We describe P i1 as the set of all strongly extensional

∗Throughout the paper trees are directed graphs with a distinguished node called the root from
which every other node can be reached by a unique directed path, and they are always considered
up to isomorphism. Strong extensionality for trees is recalled in Section 2.2 below.
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i-saturated trees, provided i has cofinality ω. We do not have a description
of P i1 for general ordinals i.

Our related paper. This is a substantially extended version of the paper
[7] presented at the conference Computer Science Logic (CSL 2011). Besides
containing all full proofs, the main new results in the present version are
Theorems 3.17 on the final chain of the power-set functor, and Theorem 4.4
describing the final coalgebra of Pλ. The claim made in [7] that i-saturated
trees form the i-th step of the final chain even for uncountable ordinals is
withdrawn: we have found a mistake in the proof of Theorem 5.11 of that
paper, and we no longer believe the theorem is true. In addition, we have
removed mistaken claims about the final chain of the countable power-set
functor Pc.

2. Background on graphs and trees, and on the final

chain of P

This section presents background on graphs and trees. Although the real
work of the paper begins in the next section with our results on the final
coalgebra of the finite power set functor Pf , some of our work in this section
is new.

2.1. Graphs. By a graph in this paper, we mean a coalgebra of the power
set functor P on Set. So a graph is a structure G = (A, e), where e : A →
P(A). One recovers graphs in the ordinary sense (a set with an arbitrary
relation on it), by taking the set of children of a node x to be e(x). We work
with graphs as coalgebras because the notion of morphism that is relevant in
this paper is that of coalgebra morphism rather than morphism of relational
structures. In plainer terms, coalgebra homomorphisms f : A → B are the
maps f which preserve edges, and for every edge from f(a) to b in B there
exists an edge from a to some a′ in A with b = f(a′).

Definition 2.1. Let G and H be graphs. A bisimulation between G and H
is a relation R between the vertices of G and those of H such that if x R y,
then every child of x is related by R to some child of y; and vice-versa.

Remark 2.2. A bisimulation between a graph e : G → P(G) and itself is
called a bisimulation on G. A graphG is called strongly extensional if distinct
nodes are not bisimilar, i.e., for any bisimulationR ⊆ G×G we have R ⊆ ∆G,
where ∆G is the diagonal relation on G. It follows from Aczel [2] that every
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G has a largest bisimulation R, and R is an equivalence relation. The set
G/R of equivalence classes hosts a graph structure f : G/R → P(G/R) by
setting

f([x]) = {[y] : for some x′ ∈ [x] there is some y′ ∈ [y] such that y′ ∈ e(x′)}.

G/R is called the strongly extensional quotient of G.

Example 2.3. Consider the graph G shown below:

a

��
>>

>>

����
��

b c

��

d

The relation {(b, d)} is a bisimulation. The largest bisimulation is ∆ ∪
{(b, d), (d, b)}.

2.2. Trees. In this paper, a tree is a graph with a distinguished vertex called
the root, and with the additional property that for each point x in the graph,
there is a unique (finite) path from the root to x. So our trees are unordered.
Given a tree t, the subtree of t rooted at the node x is denoted by tx.
A morphism of trees is a coalgebra morphism which preserves the roots.

Morphisms of trees preserve all distances to the root. Also, the requirement
that every point is reachable from the root implies that every morphism of
trees is surjective.

Definition 2.4 (J. Worrell [30]). For trees t and s a tree bisimulation is a
graph bisimulation R ⊆ t×s such that the roots are related, and two related
child nodes are either both roots or both children with related parents.
Please note that a tree bisimulation is not the same thing as a graph

bisimulation on trees, due to the requirement that two related child nodes
have related parents.

Henceforth, we always identify isomorphic trees.

Example 2.5. The following trees are tree-bisimilar, where t1 has, by breadth-
first search, n children of the n-th node:

t1 :

•
•

• •
• • • • • • •

...
...

ooooo
OOOOO

��� ??? zz
z�� ,, DD

D t2 :

•
•
•
•
...
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The following relation is a tree bisimulation: relate all nodes of a given level
on the left with the node of the same level on the right.
We might also note that for all nodes x of the tree on the right, tx = t.

Definition 2.6 (J. Worrell [30]). A tree t is called strongly extensional if
distinct children of any node are not tree bisimilar. Equivalently, every tree
bisimulation R ⊆ t× t satisfies R ⊆ ∆t.

Example 2.7. The tree in Example 2.3 is strongly extensional. (However, as
a graph, G is not strongly extensional.) The infinite path t2 in Example 2.5 is
a strongly extensional tree. This is the only strongly extensional tree without
leaves because for every tree t without leaves the relation

x R y iff x and y have the same depth

is a tree bisimulation.

Remark 2.8. The terminology “strongly extensional” stems from calling a
tree extensional if two different children of any node yield different subtrees.
Observe that this is, indeed, a weaker condition than strong extensionality
(since the relation “yield the same subtree” is a tree bisimulation). For trees
of finite depth, the two notions are clearly equivalent.

Remark 2.9. It is easy to see that tree bisimulations are total and closed
under composition, unions and opposite relations. Consequently:
(a) For every tree t there is a largest tree bisimulation R ⊆ t × t. It

is an equivalence relation. The corresponding quotient graph t/R (see Re-
mark 2.2), is called the strongly extensional quotient of t. It is the least tree
quotient of t.
(b) Given two trees t and u, there is a tree bisimulation from t to u iff t and

u have the same strongly extensional quotient. Consequently if two strongly
extensional trees are tree bisimilar they are equal (up to isomorphism).

2.3. Tree expansions of pointed graphs. A pointed graph is a graph
with a designated vertex. Let Grap be the category of pointed graphs and
coalgebra morphisms which preserve the designated vertex. Let Tree be the
full subcategory of trees.

Notation 2.10. Let P be the “paths functor”

P : Grap → Tree
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taking a pointed graph G to the tree P(G) of all finite (non-empty) sequences
u which begin with the distinguished vertex and follow the edge relation in
G. The children of a vertex u in P(G) are the one-edge extensions of it. The
functoriality is easy to check; however we never use this fact. P(G) is said to
be the tree expansion of the pointed graph G.

Let G be a pointed graph, let g be the distinguished vertex, and let t =
P(G). Let last : t→ G take a finite non-empty sequence to its last element.
Thus, last is a function. Indeed, t and G are coalgebras of the power set
functor, and last is a coalgebra morphism. However, we also consider last (or
rather its graph) as a relation between G and t.

Proposition 2.11. The following hold for every pointed graph G:

(1) As a relation, last is a graph bisimulation.
(2) If ≡ is a tree bisimulation on P(G), then

{(last(u), last(v)) : u ≡ v}

is a graph bisimulation on G.
(3) If G is strongly extensional, then t = P(G) is a strongly extensional

tree.
(4) The strongly extensional quotient of P(G) as a graph is (isomorphic

to) the strongly extensional quotient of G.

Proof : Write t for P(G), and let g be the distinguished vertex of G. The first
two parts are straightforward. For the third, let ≡ be a tree bisimulation on
t. We show by induction on n that if u and v are sequences of length n and
u ≡ v, then u = v. For n = 1, u and v must be the one-point sequence g.
Assuming our result for n, let u and v be sequences of length n + 1. Since
≡ is a tree bisimulation, the first n terms in u and v are identical. And by
part (2) above, the last terms are also the same. The last part of this result
is also easy.

Corollary 2.12. A tree t is strongly extensional iff there is a strongly exten-
sional pointed graph G with t = P(G).

2.4. Background on final coalgebras and final chains. Let H : Set→
Set be any endofunctor. Recall that an H-coalgebra is a set A together with
a morphism a : A → HA. A coalgebra homomorphism into b : B → HB
is a morphism f : A → B with b·f = Hf ·a. A coalgebra A is final if for
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every coalgebra B, there is a unique coalgebra morphism f : B → A. The
final coalgebra, if it exists, is denoted by νH. By Lambek’s Lemma [22] the

coalgebra structure of a final coalgebra is an isomorphism νH
∼=
−→ H(νH).

This implies that the power-set functor P has no final coalgebra.
Dualizing the initial chain of [4], M. Barr [10] defined the final chain for a

Set-endofunctor H. Let Ord be the class of all ordinals with the usual linear
order considered as a category. The final chain is the chainW : Ordop → Set

determined (uniquely up-to natural isomorphism) by its objectsWi, i ∈ Ord,
and connecting morphisms wi,j : Wi → Wj (i ≥ j) as follows: W0 = 1,
Wi+1 = HWi, and Wi = limj<iWj for limit ordinals i and wi+1,j+1 = Hwi,j,
whereas (wi,j)j<i is a limit cone for limit ordinals i. If this chain converges
at some ordinal i, i.e., the connecting map HWi → Wi is an isomorphism,
then its inverse yields the final coalgebra for H. The finite steps of the final
chain of H are called the final ωop-chain of H.
We are primarily interested in this for H = P and H = Pλ, where λ is

an infinite cardinal number.

Notation 2.13. For every graph e : G→PG and every ordinal number α,
we have a canonical morphism κGα : G→Pα1. κG0 is the unique map G→ 1.
Given κGα : G→Pα1, we set

κGα+1 = G
e

// P(G)
PκG

α
//
Pα+11

For a limit ordinal λ, one checks that (κGα )α<λ is a cone, and so there is a
unique κGλ : G→Pλ1 such that for all α < λ, wλ,α · κGλ = κGα .
It is easy to check by induction that if f : G→ H is a coalgebra morphism,

then for all α, κHα · f = κGα .

Notation 2.14. For every tree t denote by ∂nt the strongly extensional tree
obtained by cutting t at level n (i.e. deleting all nodes of depth > n) and
forming the strongly extensional quotient. For all trees t and u, we write
t ∼n u to mean that ∂nt = ∂nu (remember that we identify isomorphic
trees).

Remark 2.15. The final chain of P begins with the following ωop-chain:

Pn1 = all strongly extensional trees of depth ≤ n
with connecting maps ∂n : Pn+11→Pn1.

Indeed, the unique element of 1 can be taken to be the root-only tree.
Given a set M ⊆ Pn1, we identify it with the tree tupling of its elements
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and obtain a tree in Pn+11. The first connecting map from P1 to 1 is
obviously ∂0, and given that the n-th connecting map is ∂n : Pn+11→Pn1,
it follows that the next connecting map, P∂n, is (with the above tree tupling
identification) precisely ∂n+1.

Remark 2.16. Besides the power-set functor P we also treat the finite
power-set functor Pf . Its final chain starts with the same ωop-chain which
we mentioned in Remark 2.15 just above. We describe the final chains and
the final coalgebras below. Let us recall Barr’s description for Pf .

Notation 2.17. The set B of all finitely branching extensional trees is a
coalgebra for Pf : the coalgebra map is the inverse of tree tupling. This
coalgebra is weakly final, and a final coalgebra can be described as its strongly
extensional quotient, as we recall in Theorem 2.18 next (see Notation 3.1 for
the definition of Barr equivalence.)

Theorem 2.18 (M. Barr [10]). The final coalgebra for Pf can be described
as the quotient B/∼ω of the coalgebra of all finitely branching, extensional
trees modulo the relation ∼ω of Barr equivalence.

3. Saturated trees and the final chain of the power-set

functor

In this section we discuss the final chain of the power-set functor P . We
introduce the concept of an i-saturated tree for all ordinals i and prove that
P i1 is the set of all i-saturated, strongly extensional trees for all ordinals of
cofinality ω.

Notation 3.1. Recall that the subtree of t rooted at the node x is denoted
by tx. We define equivalences ∼i on the class of all trees for every ordinal i
by transfinite induction:

s ∼0 t holds for all pairs s, t;

s ∼i+1 t holds iff for every child x of the root
of s there is a child y of the root of t
with sx ∼i ty, and vice versa

and for limit ordinals i, s ∼i t means s ∼j t for all j < i.
Following [6], we call trees t and u Barr equivalent if t ∼ω u.
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Example 3.2. The trees in the picture below are Barr equivalent trees.

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r�
��

@
@@

�
�
��

�
��

A
AA

Q
Q

QQ

. . . . . .

...

∼ω

These trees are not related by ∼ω+1.
As shown by Malitz [24], there exist, for every ordinal i, trees s and t with

s ∼i t but s ≁i+1 t. For a different proof, see [6].

The astute reader may have noticed that we already defined ∼n for natural
numbers n in Notation 2.14. The next result tells us that this earlier usage
is consistent with our present, more general definition.

Proposition 3.3. For all finite n, and all trees t and u, t ∼n u iff, in the
sense of Notation 2.14, ∂nt = ∂nu.

Proof : By induction on n. The case for n = 0 is clear: ∂0t is a one-point tree
for all t, and ∼0 relates all pairs of trees. Assume our result for n. Suppose
that t ∼n+1 u, so that every tree tx is related by ∼n to some tree uy; and
vice-versa. By induction hypothesis, we see that every tree ∂ntx is equal to
some tree ∂nuy; and vice-versa. Now ∂n+1t is the tree-tupling of the trees
∂ntx (without repetition); and the same holds for ∂n+1u. So these trees ∂n+1t
and ∂n+1u are isomorphic (equal). The converse is similar.

Proposition 3.4. Let t and u be trees, considered as coalgebras for P, and
consider the canonical morphisms κtα : t → Pα1 and κuα : u → Pα1 (see
Notation 2.13). Then t ∼α u iff κtα(root(t)) = κuα(root(u)).

Proof : By induction on α. The cases α = 0 and α a limit ordinal are easy.
Assuming our result for α, we prove it for α + 1. Then t ∼α+1 u means,
by induction hypothesis, that for every child x of the root of t there is a
child y of the root of u with κtxα (x) = κ

uy
α (y), and vice-versa. The last

equality shows that κtα(x) = κuα(y): use the fact that the inclusion tx → t is
a coalgebra morphism. The above holds iff κtα+1(root(t)) = κuα+1(root(u)), as
required.
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Definition 3.5. We define the concept of i-saturated tree for every ordinal i
by transfinite induction: A tree t is i-saturated iff

(a) i = 0: t consists of the root only†,
(b) i = j + 1: tx is j-saturated for every child x of the root, and
(c) i a limit ordinal: given a tree s and a node x of t having children xj with

s ∼j txj
(j < i), then x has a child y with s ∼i ty.

Examples 3.6. (a) For i finite, a tree is i-saturated iff it has height at most i.
(b) An example of an (ω + 1)-saturated tree which is not ω-saturated is the

left-hand tree in Example 3.2.
(c) In contrast to the preceding example, a concatenation of finitely many

ω-saturated trees is ω-saturated.

Remark 3.7. If t and u are bisimilar trees, then they are equivalent under
all of the above equivalences ∼i. This is easy to see by transfinite induction.
Also, if t is i-saturated, then every tree bisimilar to t is i-saturated. In par-

ticular, the strongly extensional quotient of a tree t is i-saturated whenever
t is.

Lemma 3.8. For all i, if s and t are i-saturated strongly extensional trees,
and if s ∼i t, then s = t.

Proof : By induction on i. The steps for i = 0 and for successor ordinals are
easy. When i is a limit ordinal, we show that the relation R ⊆ s× t, defined
recursively as follows, is a tree bisimulation: x R y iff x and y are the roots
or have R-related parents and sx ∼i ty.
For this, suppose that sx ∼i ty, and let x∗ be a child of x in s. For all j < i,

x ∼j+1 y, so there is some child y∗j of y such that x∗ ∼j y
∗
j . This for all j

together with the fact that t is i-saturated implies that there is a fixed child
y∗ of y such that for all j, x∗ ∼j y

∗. Since i is a limit ordinal, x∗ ∼i y
∗. The

converse assertion is proved the same way, and we thus have proved that R
indeed is a tree bisimulation. Consequently, s = t (see Remark 2.9).

Theorem 3.9. For every tree t and every ordinal α, there is a unique α-
saturated, strongly extensional tree t∗α with t∗α ∼α t.

The proof is a bit technical and may be found in the Appendix.

†An alternative would be to say that a 0-saturated tree is one with no leaves. Theorem 3.17
below would still hold, but Example 3.6(a) would be lost.
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Definition 3.10. The α-saturation of a tree t is the unique α-saturated tree
u such that t ∼α u with u strongly extensional. Its existence was stated in
Theorem 3.9 just above.

Remark 3.11. Even though a tree t is i-saturated, it might not be strongly
extensional and so might not be its own i-saturation.

We shall use α-saturations of trees later, in our description of the final chain
of P in Theorem 3.17. That result makes use of a certain graph structure
on the sets Pλ1.

Notation 3.12. For each limit ordinal λ, the relation ; on Pλ1 is given as
follows:

x; y iff for all α < λ, wλ,α(y) ∈ wλ,α+1(x).

We use Gλ to denote the graph (Pλ1,;). As in Notation 2.13, we let
κGλ
α : Pλ1→Pα1 be the canonical map. For any x ∈Pλ1, we let

x̂ = P(Gλ, x).

This is the tree expansion of Pλ1 starting from x, using the relation ;.
Note that root(x̂) is (x).

Example 3.13. Let t0, t1, t2, and t3 be as shown below:

r
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��
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r

r

�
��

@
@@

r

rr

More generally, let tn have a root and n children, say 1, . . ., n, with the jth
child the root of a chain of length j. Then tn is an extensional tree of depth
n. Moreover, wn,m(tn) = tm, for all m ≤ n. Thus n 7→ tn is an element of
Pω1. We call this element t.
For all n, let cn be a chain of length n. Also, let un ∈ Pω1 be m 7→

cmin(n,m). (Note that for m ≥ n, wω,mun = cn.) Let u∞ be m 7→ cm. Then

u0, u1, . . . , u∞ all belong to Pω1. Moreover, t̂, the tree expansion of the
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graph Gω = (Pω1,;) determined by t above looks like

(t)

ttiiiiiiiiiiiiiiiiiiiiiiiii

||yy
yy

yy
yy

y

$$IIIIIIIIII
· · ·

++VVVVVVVVVVVVVVVVVVVVVVVVVVVV

(t, u∞)

��

(t, u0) (t, u1)

��

(t, u2)

��

· · ·

(t, u∞, u∞)

��

(t, u1, u0) (t, u2, u1)

��

(t, u∞, u∞, u∞)

��

(t, u2, u1, u0)

...

(We omit the details on how this tree expansion was calculated. Although
they are interesting, they lead us to a different branch of our main tree.)
Notice that this is the second tree shown in Example 3.2. This tree is ω-
saturated. The point is that t itself is the image of the first tree in Exam-
ple 3.2 in Pω1. In our notation, this is κGω

ω (root(t)). So t̂, the tree expansion
of the image of t inside Pω1, is the “ω-saturation” of t. Our results below
show that this is the case for all trees.

Observation 3.14. For all x ∈ Pλ1 and all vertices u of x̂, x̂u = ̂last(u).
Also, for all x ∈Pλ1 and all ordinals α, κx̂α(root(x̂)) = κGλ

α (x) for all ordinals
α < λ.

Proof : The function last may be regarded as a coalgebra morphism last : x̂→
Pλ1. Note also that last takes the one point sequence (x) to x itself. Also
canonical morphisms are preserved by coalgebra morphisms.

Before presenting our main results, we remind the reader that an ordinal
λ has cofinality ω when there is a strictly increasing function f : ω → λ such
that λ = supn f(n).

Lemma 3.15. For every ordinal λ of cofinality ω, and every α < λ, the
connecting map wλ,α : Pλ1→Pα1 satisfies:

wλ,α+1(x) = {wλ,α(y) : x; y}.
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Proof : The inclusion ⊇ follows from the definition of ;: we have wλ,α(y) ∈
wλ,α+1(x).
To prove the inclusion ⊆, choose r0 ∈ wλ,α+1(x). We must find x ; y

with r0 = wλ,α(y). For that, first express λ as a supremum of an increasing
sequence αn of ordinals with α0 = α. We are going to present, by induction,
elements rn ∈ wλ,αn+1(x) which are compatible; i.e., the connecting map from
Pαn+11 to Pαn1 takes rn+1 to rn.
Given rn ∈ wλ,αn+1(x), use the commutative triangle with i = αn+1 and

j = αn:

Pλ1
wλ,j+1

vvmmmmmmmmmmmmm wλ,i+1

((QQQQQQQQQQQQQ

Pj+11 = P(Pj1) P(P i1) = P i+11
wi+1,j+1=Pwij

oo

Since rn ∈ wλ,j+1(x), there exists rn+1 ∈ wλ,i+1(x) with wi,j(rn+1) = rn, as
requested.
The unique element y of Pλ1 = limn<ω Pαn1 with rn = wλ,αn

(y) satisfies
r0 = wλ,α(y). And from λ =

∨
n αn and wλ,αn

(y) ∈ wλ,αn+1(x), we conclude
x; y.

Proposition 3.16. Let λ be a limit ordinal of cofinality ω.

(1) The canonical maps of Gλ are given by κGλ
α = wλ,α.

(2) For all x ∈Pλ1, x̂ is strongly extensional and λ-saturated.
(3) Every λ-saturated, strongly extensional tree t is of the form x̂ for a

unique x ∈Pλ1.

Proof : Part 1 is proved by induction on α. The case for 0 and limit ordinals is
easy. Assume that κGλ

α = wλ,α, and fix x. Then κGλ

α+1(x) = {κ
Gλ
α (y) : x; y}.

We then apply Lemma 3.15 and the induction hypothesis.
For part 2, we use Corollary 2.12 and prove that the graph (Pλ1,;) is

strongly extensional. Let R be a bisimulation on this graph. For all α, R is a
subrelation of the kernel relation of κGλ

α . When λ = α, κGλ
α = wλ,λ = id, and

so its kernel relation is the diagonal. Hence R is a subset of the diagonal.
We next prove that x̂ is λ-saturated. Fix a node x ∈ Pλ1, and also fix a

node u in the tree x̂. We show that

If t is a tree with the property that for all α < λ there is some
child zα of u in x̂ such that x̂zα ∼α t, then there is some fixed
child z of u in x̂ such that x̂z ∼α t for all α < λ.
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Before doing this, it is useful to make a few observations in order to simplify
the notation a bit. The nodes in x̂ are sequences starting from x. Let u =
last(u). The children of u in x̂ are sequences of the form u, y, where u ; y.
Moreover, for such a sequence u, y, we have x̂u,y = ŷ (see Observation 3.14).
With this in mind, we can reformulate what we need to show:

If t is a tree with the property that for all α < λ there is some
yα ∈ Pλ1 such that u ; yα and ŷα ∼α t, then there is some
fixed y ∈Pλ1 such that u; y and ŷ ∼α t for all α < λ.

Here is the proof: Consider t as a P-coalgebra, and let y = κtλ(root(t)). We
claim that for all α < λ, wλ,α(y) ∈ wλ,α+1(u). Fix α, and also yα ∈Pλ1 such
that u; yα and ŷα ∼α t. We calculate:

wλ,α(y) = wλ,ακ
t
λ(root(t)) by definition of y

= κtα(root(t)) since κt is a cone
= κŷαα (root(ŷα)) since ŷα ∼α t: see Proposition 3.4
= κGλ

α (yα) by Observation 3.14
= wλ,α(yα) by part 1

(3.1)

And since u; yα, we indeed see that wλ,α(y) ∈ wλ,α+1(u). This claim for all
α < λ implies that u ; y. To finish part 2 of this lemma, we show that for
all α < λ, ŷ ∼α t. For this,

κŷαα (root(ŷα)) = κGλ
α (yα) by Observation 3.14

= wλ,α(yα) by part 1
= wλ,α(y) by (3.1)
= κGλ

α (y) by part 1
= κŷα(root(ŷ)) by Observation 3.14

and so by Proposition 3.4, ŷ ∼α ŷα. Since ŷα ∼α t, we are done.
For the last part, let t be strongly extensional and λ-saturated. Let x =

κtλ(root(t)). To show that x̂ = t, it is sufficient to see that t ∼λ x̂, and so t = x̂

by Lemma 3.8. But κtλ(root(t)) = x = wλ,λ(x) = κGλ

λ (x) = κx̂λ(root(x̂)), with
the last equality using Observation 3.14. Then, again by Proposition 3.4,
t ∼λ x̂. For the uniqueness of x, suppose that y ∈ Pλ1 has ŷ = t. Then,
again by Observation 3.14,

y = wλ,λ(y) = κGλ

λ (y) = κŷλ(root(ŷ)) = κtλ(root(t)) = x

This completes the proof.

The following is our main result in this section.
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Theorem 3.17. Let α be an ordinal which is either 0 or of cofinality ω.
The map x 7→ x̂ is injective on Pα1. Identifying each x ∈ Pα1 with the
corresponding tree x̂, we have the following facts:

(1) Pα1 = all α-saturated strongly extensional trees.
(2) For all natural numbers n, Pα+n1 = all (α+ n)-saturated strongly extensional tr
(3) If G is any graph, then the canonical cone κGα assigns to every vertex

g the α-saturation of the tree expansion of g in G.
(4) If β > α is also of cofinality ω, then the connecting map wβ,α is given

by α-saturation of trees.

Proof : Suppose x̂ = ŷ. By Proposition 3.16, part (2), these trees are λ-
saturated and strongly extensional, and by part (3) of the same proposition
each is uniquely of the form ẑ for some z ∈Pλ1. Thus x = y.
We consider the parts of this result in turn. The first part is just a re-

statement of Proposition 3.16, parts (2) and (3). The second part follows
from the first by induction on n ∈ ω. The induction step follows from the
definition of (α+ n+ 1)-saturated and from the fact that the tree tupling of
a set of (distinct) trees is a strongly extensional tree iff each tree in the set
is itself strongly extensional.
For the next part, fix a graph G and a vertex g. Write t the tree expansion

of g in G. Let x = κtα(root(t)). We show that x̂ ∼α t, and then we are
done since x̂ is a strongly extensional α-saturated tree. Regarding t as a
P-coalgebra, we see that

κGα (g) = κtα(root(t)) since last : t→ G is a coalgebra morphsim
= x
= κGα

α (x) by Proposition 3.16, part (1), κGα
α = wα,α = id

= κx̂α(root(x̂)) by Observation 3.14

Thus t ∼α x̂. Identifying x with x̂, this means that the α-saturation of t is
x.
The last part follows from part (3) and Proposition 3.16, part (1). For the

graph Gβ = (Pβ1,;), wβ,α = κ
Gβ
α .

Corollary 3.18. The connecting maps wβ,α : Pβ1 → Pα1 are epimor-
phisms whenever α ≤ β are limit ordinals of cofinality ω.

Indeed, every α-saturated tree t ∈ Pα1 is β-saturated. Thus, this is an
element of Pβ1 sent by wβ,α to itself.



16 J. ADÁMEK, P. LEVY, S. MILIUS, L. S. MOSS AND L. SOUSA

Other limit ordinals, such as ω1, present a greater difficulty: see related
work in the last section.
Turning from P to the finite power-set functor Pf , we prove a result

of J. Worrell. In the following we shall say that a tree is “saturated” if
it is ω-saturated. We also remind the reader of the description of Pn1 in
Remark 2.15. Inspired by J. Worrell’s proof in [30] that the final chain of
Pf converges in ω + ω steps, we have a description of the sets Pα

f 1 in this
chain:

Corollary 3.19. The final chain of Pf converges in ω + ω steps. We may
describe the sets Pα

f 1 for α ≤ ω + ω as follows:

Pω
f 1 = all saturated, strongly extensional trees,

P
ω+n
f 1 = all saturated, strongly extensional trees finitely branching up to level n− 1

P
ω+ω
f 1 = all finitely branching, strongly extensional trees.

Proof : First, note that Pn
f 1 = Pn1 for all finite n, and so Pω

f 1 = Pω1.
Thus, the description of Pω

f 1 follows from Theorem 3.17. For n = 1 we

have P
ω+1
f = Pf(P

ω
f 1) and we identify, again, every finite set M ⊆Pω

f 1 of
saturated, strongly extensional trees with its tree-tupling. This is, by Exam-
ple 3.6(c), a saturated, strongly extensional tree which is finitely branching
at the root—and conversely, every such tree is a tree tupling of a finite sub-
set of Pω

f 1. Analogously for n = 2: we have P
ω+2
f = Pf(P

ω+1
f 1) and the

resulting trees are precisely those trees in Pω
f 1 that are finitely branching

at levels 0 and 1, etc. The connecting maps are the inclusion maps. The
limit P

ω+ω
f 1 = limn<ω P

ω+n
f 1 is the intersection of these subsets of Pω

f 1
which consists of all finitely branching, strongly extensional trees: they are
saturated, see Example 3.6.

4. On the final chain of Pλ

Let λ be an uncountable cardinal number. We do not have a concrete
description of the final chain of Pλ except for λ = ω; this is our work on
Pf above. But we know from D. Schwencke [28] that the final coalgebra for
Pλ is carried by the set of all λ-branching, strongly extensional trees (where
λ-branching means that every vertex has less than λ children). The proof
in [28] used the theory of coequations developed there. Here we give a simple
direct proof:
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Theorem 4.1. For every infinite cardinal λ, the final coalgebra for Pλ can
be described as the set Tλ of all strongly extensional λ-branching trees. The
coalgebra structure Tλ →PλTλ is the inverse of tree-tupling.

Proof : Firstly, Tλ is a set because each λ-branching tree has at most λ vertices
and thus is isomorphic to a tree whose set of vertices is a subset of λ. As a
Pλ-coalgebra (i. e. a λ-branching graph), it is strongly extensional because
two strongly extensional trees are bisimilar iff they are isomorphic, and we
identify isomorphic trees. For any strongly extensional Pλ-coalgebra G, we
have a Pλ-coalgebra morphism from G to Tλ given by

g 7→ P(G, g),

where P is the paths functor from Notation 2.10. Therefore, for a Pλ-
coalgebra H, we have a Pλ-coalgebra morphism

H // H/∼ // Tλ,

where ∼ is the largest bisimulation on H. This morphism into Tλ is unique
by strong extensionality.

Remark 4.2. (a) For regular cardinals λ it follows from Worrell’s paper [30]
that the ω steps in the final chain after λ are all monomorphisms:

Pλ
λ1 P

λ+1
λ

oooo P
λ+2
λ

oooo · · ·oooo

Consequently, the final chain for Pλ stops after at most λ+ ω steps.
We are going to prove in the next theorem that this is the best possible

result.
(b) Given an infinite cardinal λ, denote by λ+ the cardinal successor. This

is always a regular cardinal (a consequence of the axiom of choice, see
e.g. [18]). Somewhat surprisingly, when λ is singular, the final chain of Pλ

does not converge before λ+ steps. The key technical tool is Lemma 4.3
below.

Lemma 4.3. For all cardinals λ, the functor Pλ preserves κop-limits for all
regular κ > λ.

Proof : Consider a κop-chain Ai, and denote by ai,j : Ai → Aj the connecting
maps for j ≤ i < κ. Let Xi ∈PλAi be a compatible family. This means that
for i ≥ j, ai,j[Xi] = Xj. So ai,j restricts to a surjection of Xi onto Xj. Our
goal will be to find an ordinal k < κ such that whenever k ≤ j, aj,k restricts
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to a bijection of Xk with Xj. It then clearly follows that Pλ preserves the
given limit because every compatible family is eventually constant.
Define an increasing sequence (g(p))p<κ of ordinals < κ by recursion:

• g(0) = 0;
• g(p + 1) is the least i in the range g(p) 6 i < κ such that ai,g(p) is
not injective on Xi—if there is no such i then g(p) has the desired
property so we stop;
• for limit ordinals p, g(p) = supq<p g(q), which is < κ by regularity.

For r < κ such that g(r) is defined, we shall show

r 6 cardXg(r) × cardXg(r) < λ× λ. (4.1)

The special case r = λ×λ (which is < κ) implies that g(λ×λ) is undefined.
Therefore there is some p < λ × λ such that g(p) is defined and g(p + 1) is
not, i.e. g(p) has the desired property.
To prove (4.1), recall that for p < r, Xg(p) = ag(r),g(p)[Xg(r)]. Since p+1 6 r,

g(p+1) is defined, so there is a pair h(p) of elements ofXg(r) whose projections
to Ag(p+1) are different but are merged by ag(p+1),g(p). This gives a map
h : r → Xg(r) × Xg(r). Let us check that h is injective. Let p < q. Since
p + 1 ≤ q, g(p + 1) ≤ g(q). Now h(q) is a pair whose projections to Ag(q+1)

are merged by ag(q+1),g(q), so the projections of this pair h(q) to Ag(p+1) are
not different. But the projections of the pair h(p) to Ag(p+1) are different,
whence h(q) 6= h(p).

Note that the case λ = ω of Lemma 4.3 appears in [5, Example 3(iv)].
For any set functor F , we say that an ordinal i is the convergence ordinal

of the final chain of F if F i1 = F i+11, and i is the smallest ordinal with this
property.

Theorem 4.4. For λ an infinite cardinal, the convergence ordinal of the final
chain of Pλ is precisely

(a) λ+ ω, if λ is regular, and
(b) λ+, if λ is singular.

Proof : (a) Let λ be regular. In view of Worrell’s result all we need to prove
about the final chain Wi = P i

λ1 is that the connecting map after λ steps

wλ+1,λ : Wλ+1 → Wλ



ON FINAL COALGEBRAS OF POWER-SET FUNCTORS AND SATURATED TREES 19

is not an epimorphism. It easily follows that the next one, wλ+2,λ+1 =
Pλwλ+1,λ is also not an epimorphism, etc. Thus, convergence before λ + ω
is impossible.
We define elements aij ∈ Wi for all ordinals j ≤ i ≤ λ and prove that

aλλ does not lie in the image of wλ+1,λ.

At the same time, we verify that for j, k ≤ i,

wi,k(a
i
j) = akmin(j,k). (4.2)

These elements aij are defined by transfinite recursion on i: For i = 0, we

take a00 to be the element of 1 = W0. Obviously we have w0,k(a
0
j) = akmin(j,k)

for j = k = 0.
Suppose that i < λ and that we have aij ∈ Wi for all j ≤ i. Let

ai+1
j = {ail; l < j}, j ≤ i+ 1.

Since i < λ, this is an element of PλWi = Wi+1. To verify (4.2), we use
induction on k. For k = 0, this point is again trivial. Assuming (4.2) for
k ≤ i, we see that for all j ≤ i+ 1,

wi+1,k+1(a
i+1
j ) = Pλwi,k{ail : l < j}

= {wi,k(a
i
l); l < j}

= {akmin(k,l); l < j}

= {akl ; l < min(j, k + 1)}
= ak+1

min(j,k+1)

When k ≤ i is a limit ordinal, note that for l < k,

wk,l · wi+1,k(a
i+1
j ) = wi+1,l(a

i+1
j )

= almin(j,l)

= almin(l,min(j,k))

= wk,l(a
k
min(j,k))

This for all l < k shows that wi+1,k(a
i+1
j ) = akmin(j,k).

This concludes the definition of the elements ai+1
j . If i ≤ λ is a limit ordinal,

given akl for all l ≤ k < i, define

aij = (a00, a
1
1, . . . , a

j
j, a

j+1
j , aj+2

j , . . . ), j ≤ i.
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(That is, for k ≤ i, the k-th term in this sequence is akmin(j,k).) This sequence

is easily seen to be compatible with the chain morphisms, using (4.2) below
i. Further, (4.2) holds at i, by definition.
At this point, we have elements aij ∈ Wi for all j ≤ i ≤ λ. It is easy to

check by induction on i that if j 6= k ≤ i, then aij 6= aik. We are ready to

prove that aλλ does not lie in the image of wλ+1,λ. Assuming the contrary,

wλ+1,λ(b) = aλλ for some b ∈PλWλ,

we derive a contradiction: the set b ⊆ Wλ must have cardinality at least λ.
To see this, we prove that the following subsets

ci = {y ∈ b; wλ,i+1(y) = ai+1
i }, i < λ,

are nonempty and pairwise disjoint.
We check first that ci 6= ∅: the subset ai+2

i+2 of Wi+1 contains clearly the

element ai+1
i . From (4.2) we get

ai+2
i+2 = wλ,i+2(a

λ
λ)

= wλ,i+2 · wλ+1,λ(b)
= Pλwλ,i+1(b)
= {wλ,i+1(y); y ∈ b}.

Thus, for ai+1
i ∈ ai+2

i+2 there exists y ∈ b with ai+1
i = wλ,i+1(y).

Second, ci ∩ cj = ∅ for all i < j: consider y ∈ cj, and observe that (4.2)
implies

wλ,i+1(y) = wj+1,i+1 · wλ,j+1(y) = wj+1,i+1(a
j+1
j ) = ai+1

min(j,i+1) = ai+1
i+1.

Since the elements ai+1
i and ai+1

i+1 are distinct, y 6∈ ci.

(b) Let λ be singular. By Lemma 4.3, Pλ preserves limits of λ+-chains.
Thus the final chain converges in at most λ+ steps. In order to prove that it
does not converge before λ+, we can argue precisely as in [6, Theorems 5.5 and
5.8]. (Let us remark that the equivalence ∼i in that paper is precisely ∼i+ω

of Notation 3.1 above. For the rest of the present proof we use the notation
of [6].) In that argument it is sufficient to find, for every ordinal i < λ+,
a pair ti, si of λ-branching trees satisfying ti ∼i si but not ti ∼i+1 si. For
that, given a limit ordinal j < λ+, choose a cofinal subset Qj of j containing
0 and having cardinality less than λ. (This is possible since λ is singular,
hence, the first cardinal with cofinality larger or equal to λ is λ+.) Now
the construction of the trees ti and si presented in [6] works provided that
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we perform one simple modification: where the trees for limit ordinals j are
defined in Definition 5.7, the running index k ranges (instead of through all
ordinals smaller than j) through Qj.

Remark 4.5. We also have precise information about the convergence ordi-
nal of the initial chain of Pλ. It is the smallest regular cardinal ≥ λ. Call
this κ, so that

κ =

{
λ if λ is regular,
λ+ if λ is singular.

Here is the proof. We assume that the initial chain is constructed so that
the connecting maps are inclusions and the limit steps are unions. For each
i < κ, fix a cofinal set Qi of size < λ.
Define sets Q̂i by recursion:

Q̂i = {Q̂j : j ∈ Qi}.

By induction on i, we see that Q̂i ∈P
i+1
λ (0). Assuming this for j < i,

Q̂i ⊆
⋃

j<i

P
j+1
λ (0) ⊆P

i
λ(0).

Since card(Q̂i) < λ, Q̂i ∈ P
i+1
λ (0). But also, we show that for i ≤ j < κ,

Q̂j /∈ P i
λ(0). The proof is by induction on i. For i = 0, this is because

P0
λ(0) = 0. Assume that for i ≤ j, Q̂j /∈P i

λ(0). Fix j ≥ i+ 1 > i. Since Qj

is cofinal in j, let k ≥ i belong to Qj. So Q̂k ∈ Q̂j. By induction hypothesis,

Q̂k /∈ P i
λ(0). And so Q̂j /∈ P

i+1
λ (0). Finally, let i be a limit ordinal and

assume that for k < i: if k ≤ j, then Q̂j /∈ Pk
λ(0). Fix j ≥ i. Then

Q̂j /∈
⋃

k<i P
k
λ(0) = P i

λ(0).

The upshot is that for i < κ, Q̂i ∈ P
i+1
λ (0) \P i

λ(0). This shows that the
ordinal of convergence of the initial chain of Pλ is at least κ. Since Pλ is
κ-accessible, it is at most κ.

Note that in [9] it is shown that the initial chain of any endofunctor on
Set, if it converges at all, converges at either 0, 1, 2, 3 or a regular infinite
cardinal.

Remark 4.6. We have only treated Pλ for infinite cardinals. We can also
consider the functors Pn for 1 < n < ω. Pn gives the set of subsets of at
most n − 1 elements. Pn preserves colimits of ω-chains, and so the initial
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chain converges at ω. Lemma 4.3 shows that the final chain of Pn also
converges at ω.

5.Modally saturated trees and modal structures

At this point, we have concluded our general results on the final chain of P

and related functors such as Pλ. We turn back to the finite power set functor
Pf , and we present another characterization of the trees in Pω1 = Pω

f 1; as
we know, these are the ω-saturated trees. As before, we simplify terminology
and refer to them as saturated.
K. Fine [14] introduced the concept of modal saturatedness for Kripke

structures in modal logic. In this section, we review all of the needed defini-
tions, and we prove that modally saturated trees are the same as saturated
trees.

(a) We work with modal logic formulated without atomic propositions. The
sentences ϕ of modal logic are then given by

ϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ | �ϕ

We use the usual abbreviations:

⊥ = ¬⊤ ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) ϕ→ ψ = ¬ϕ ∨ ψ ⋄ ϕ = ¬ � ¬ϕ.

A sentence has depth n if n is the maximum of nested � in it.
(b) We interpret modal logic on Kripke structures. Since we have no atomic

sentences, our Kripke structures are just graphs G = (G,→), where →
is a binary relation on the set G. The main semantic relation is the
satisfaction relation |= between the vertex set of a given graph and the
sentences of the logic. This is defined as follows:

a |= ⊤ always
a |= ¬ϕ iff it is not the case that a |= ϕ
a |= ϕ ∧ ψ iff a |= ϕ and a |= ψ
a |= �ϕ iff for all neighbors b of a, b |= ϕ

Given a tree t we write t � ϕ if the root satisfies ϕ.
(c) A theory is a set S of sentences. We write a � S if a � ϕ for all ϕ ∈ S

and call a a model of S.
(d) Turning to the proof system, the modal logic K extends the propositional

logic (Hilbert’s style) by one axiom �(ϕ → ψ) → (�ϕ → �ψ), called K,
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and one deduction rule: if ϕ ∈ K then �ϕ ∈ K. We write ⊢ ϕ if ϕ can be
derived in this logic.
This logic is sound and complete. That is, ⊢ ϕ holds iff for every vertex

a of any graph, a � ϕ.
(e) A theory S is inconsistent if for some finite {ϕ1, . . . , ϕn} ⊆ S, ⊢ ¬

∧
ϕi.

S is consistent if S is not inconsistent. Or, equivalently, S has a model.
If, moreover, S ∪ {ϕ} is inconsistent for every sentence ϕ /∈ S, then S is
maximal consistent.

(f) �S denotes the theory {�ϕ : ϕ ∈ S}, and �
kS = �(�k−1S) for k ≥ 2. We

use the notation ⋄S similarly.

Definition 5.1. We define canonical sentences χ of depth n by recursion on
n, as follows:

(a) ⊤ is the only canonical sentence of depth 0, and
(b) canonical sentences of depth n+ 1 are precisely the sentences

∇S = (
∧
⋄S) ∧ �

∨
S,

where S is a set of canonical sentences of depth n.

We use the conventions that
∧
∅ = ⊤,

∨
∅ = ⊥, and we often identify

sentences ϕ and ψ when ⊢ ϕ↔ ψ in K.

Example 5.2. We have two canonical sentences of depth 1.

∇∅ = ⊤ ∧ � ⊥ = �⊥ and ∇{⊤} = ⋄⊤ ∧ �⊤ = ⋄⊤
distinguishing whether the given vertex has a neighbor or not.

Theorem 5.3 (K. Fine [14] and L. Moss [25]). For every vertex a of a
graph and every n ∈ N there exists a unique canonical sentence χ of depth n
satisfied by a. Moreover, for every canonical sentence χ of depth n and every
sentence ψ of depth at most n, either ⊢ χ→ ψ or ⊢ χ→ ¬ψ.

Corollary 5.4. The sentences of depth at most n form a finite set (up to
logical equivalence in K).

Proof : Observe first that there are only finitely many canonical sentences of
depth n. Let ψ be any sentence of depth n. Let A be the set of all canonical
sentences χ of depth n with ⊢ χ → ψ and let B be the canonical sentences
χ of depth n with ⊢ χ→ ¬ψ. So we have ⊢

∨
A→ ψ and ⊢

∨
B → ¬ψ. By

Theorem 5.3, we have

⊢
∨
A ∨

∨
B.
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So by propositional logic we have ⊢
∨
A↔ ψ. Thus, every sentence of depth

n is equivalent to a disjunction of canonical sentences of depth n, from which
the desired result follows.

Notation 5.5. (a) For every tree t we denote by χn(t) the unique canonical
sentence of depth n satisfied in the root. It is easy to prove that

χn+1(t) = ∇
{
χn(tx) : x child of the root of t

}
.

(b) For any graph G, and any a ∈ G, we denote by Sa the set of all
sentences ϕ with a � ϕ in G. For a tree t, we similarly denote by St the set
of sentences satisfied by the root of t.
(c) Recall from [11] that the canonical model of K is the graph C whose

vertices are the maximal consistent theories, and with S → S ′ iff ⋄S ′ ⊆ S
(equivalently, �S ⊆ S ′). The Truth Lemma (see [11, Lemma 4.21]) is the
statement that for all S ∈ C,

{ϕ : S |= ϕ in C} = S.

This lemma is easy to check by induction on ϕ.

Corollary 5.6. For two trees t and s we have t ∼n s iff t � χn(s). Conse-
quently, t ∼ω s iff St = Ss.

Proposition 5.7. The limit Pω
f 1 can be described as the set C of all maximal

consistent theories in K.

Proof : We have described Pω
f 1 as the set of all saturated, strongly exten-

sional trees. We prove that t 7→ St is a bijection between this set and C.
This finishes the proof. (a) For every t ∈ Pω

f 1 the theory St is maximal
consistent. Indeed, it is obviously consistent. Given ϕ /∈ S of depth n, we
have t 2 ϕ and t � χn(t), thus, 6⊢ χn(t)→ ϕ. By Theorem 5.3, ⊢ χn(t)→ ¬ϕ.
Therefore, St∪{ϕ} is inconsistent. (b) By the Truth Lemma, every maximal
consistent theory S is of the form St for some t: let t be the expansion of the
canonical graph C at S. Moreover, t can be taken as saturated and strongly
extensional, since the saturation operation on trees preserves modal theories
(see Corollary 5.6).

Definition 5.8. A theory S is called hereditarily finite if it is maximal con-
sistent and for every k ∈ N there exist only finitely many maximal consistent
theories S ′ with ⋄kS ′ ⊆ S.
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Theorem 5.9. The set of all hereditarily finite theories is a final coalgebra
for Pf via the coalgebra map S 7→ {S ′ : ⋄S ′ ⊆ S}.

Proof : We prove that the bijection t 7→ St of Proposition 5.7 has the property
that for t ∈Pω

f 1 we have that t is finitely branching iff St hereditarily finite.
From that our theorem follows, since the coalgebra map above corresponds
to the coalgebra map of νPf . Indeed:
(a) If St is hereditarily finite, then t is finitely branching. It is sufficient

to verify that t is finitely branching at the root. Given a node x of depth k,
we then apply this to tx: the theory of this subtree is also hereditarily finite,
since ⋄kStx ⊆ St (indeed: if tx � ϕ then t � ⋄kϕ).
Every child a of the root of t fulfils ⋄Sta ⊆ St. Thus, there are only finitely

many such theories Sta. Now let a and b be children of the root of t with
Sta = Stb, whence ta ∼ω tb by Corollary 5.6. So since ta and tb are saturated
and strongly extensional, we have ta = tb by Lemma 3.8. Therefore, the root
has only finitely many children.
(b) If t is finitely branching, then St is hereditarily finite. Indeed, for every

maximal consistent theory S ′ with ⋄kS ′ ⊆ St let s be a tree with S ′ = Ss

(see Proposition 5.7). Then for every n ∈ N we have t � ⋄kχn(s), i.e., some
node of t of depth k satisfies χn(s). Since we have only finitely many such
nodes, one of them, say a, satisfies χn(s) for all n. That is, ta ∼n s for n ∈ N,
hence, Sta = S ′, see Corollary 5.6. Since we have only finitely many nodes a
of depth k, we see that St is hereditarily finite.

Definition 5.10 (see [14]). A graph is called modally saturated if for every
node a, given a theory S such that

a � ⋄
∧

S0 for every finite S0 ⊆ S (5.1)

there exists a neighbor b of a satisfying S.

Theorem 5.11. A tree is saturated iff it is modally saturated.

Proof : (a) Let t be modally saturated. Let a be a node in t, and let s be a
tree with the property that there exist children xn of a with s ∼n txn

(n < ω).
We prove s ∼ω tb for some child b. The theory Ss fulfils (5.1): given S0 ⊆ Ss

finite, let n be the maximum of the depths of all ψ ∈ S0; then ⊢ χn(s)→ ψ
for all ψ ∈ S0 (see Theorem 5.3). By Corollary 5.6, s ∼n txn

iff xn |= χn(s),
and this implies xn � ψ for all ψ ∈ S0. Thus, a � ⋄

∧
S0. Let b be a neighbor

of a satisfying Ss. Then tb � χn(s) for all n; i.e., s ∼ω tb by Corollary 5.6.
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(b) Let t be saturated. Let a be a node of t and S be a theory satisfy-
ing (5.1). For every natural number n define Sn to be a set of representatives
of all ψ ∈ S of depth at most n modulo logical equivalence in K. By Corol-
lary 5.4 the sentences of depth n form a finite set (up to logical equivalence).
As a corollary of Theorem 5.3 one readily proves that there is only a finite
set of sentences of depth at most n (up to logical equivalence). So we have
that Sn is finite. By (5.1) we see that for every n, there exists a child bn of
a such that

bn � ψ for all ψ ∈ Sn.

It is our task to prove that a has a child b satisfying S.
Let v be the graph whose nodes are all canonical sentences χ of depth any

n = 0, 1, 2, . . . such that a � ⋄χ and ⊢ χ→ ψ for all ψ ∈ Sn. We make v a
graph using the converse of logical implication in K. So the neighbors of the
node χ are all the nodes χ′ of depth n+ 1 with ⊢ χ′ → χ. The root is ⊤, and
every node χ′ of v has indeed a unique parent (so v is a tree): since a � ⋄χ′,
we have a child c of a with c � χ′ which by Theorem 5.3 implies χ′ = χn+1(tc).
Put χ = χn(tc), then ⊢ χ′ → χ. (This is because ⊢ χ′ → ¬χ cannot happen
due to c � χ′ and c � χ. Now use Theorem 5.3). Consequently, χ is a parent
of χ′. And the uniqueness of the parent is obvious: suppose ⊢ χ→ χ′ where
χ′ ∈ v has depth n, then tc � χ

′, therefore χ′ = χn(tc).
The tree v is obviously finitely branching. And since each χn(tbn) lies in v

and each of these formulas has a different depth, they form an infinite set of
nodes of v. By König’s Lemma, v has an infinite branch

⊤ = χ0 ← χ1 ← χ2 . . .

Each S ∪ {χn} is consistent. Indeed, by compactness it is sufficient to verify
that Sk ∪ {χn} is consistent for every k ≥ n: due to a � ⋄χk we have a
child c of a satisfying χk, then tc is a model of Sk (due to ⊢ χk → ψ for all
ψ ∈ Sk) and of χn (due to ⊢ χk → χn). Consequently, S ∪ {χ0, χ1, χ2, . . . }
is consistent: use compactness again. Let s be a tree which is a model of
the last theory. Then s � χn which by Theorem 5.3 implies χn = χn(s) for
every n. On the other hand, since a � ⋄χn, we have a child cn of a with
cn � χn, thus, χn = χn(tcn). By Corollary 5.6 this proves s ∼n tcn. Since t is
saturated, there exists a child b of a with s ∼ω tb. Then S ⊆ Ss = Stb which
concludes the proof: b satisfies S.
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5.1. Modal structures. Our previous section related Pω1, the set of all
strongly extensional saturated trees, to the set of modally saturated trees.
The point is that we have uncovered a definition of a structure which happens
to be isomorphic to Pω1 and which was proposed for other reasons. We
continue in this vein. The following definition comes from R. Fagin and
M. Vardi [13], changing the notation a little but not the ideas. The changes
are partly due to our decision to work without atomic propositions; these are
of little importance in what we do. Further, we also work without “agents”,
since the concerns of epistemic logic are even farther from this paper.

Definition 5.12. We define the sets Sn of n-ary worlds as follows. S0

is a singleton set, say {∗}. Sn+1 is the set of functions f with domain
n+ 1 = {0, . . . , n} meeting certain conditions; we write fi for the value of f
at i. These fi are functions in the sense of being sets of ordered pairs; their
codomains are their ranges. We require that the following conditions hold:

(1) f0 = ∗.
(2) For 1 ≤ i < n+ 1, fi ⊆ Si.
(3) If n > 1, then for all (n − 1)-ary worlds g, g ∈ fn−1 iff there is some set

g∗n of n-ary worlds such that g ∪ {(n, g∗n)} ∈ fn.

As an illustration of what is going on, for every graph G, we get maps
kn : G→ Sn by recursion. The map k0 is the constant f0. The inductive step
defines kn(x)(i) for all vertices x in G and all 0 ≤ i < n+1 by kn+1(x)(0) = ∗,
and for i > 0,

kn+1(x)(i) = {ki(y) : y is a child of x in G}.

We shall prove that n-ary modal worlds correspond to elements of Pn1,
that is, to extensional trees of depth at most n. To do this, we build a family
of bijections bn : Sn → Pn1. For this, we need some maps based on the
definition above. There is a map

ρn : Sn+1 → Sn

taking an (n+ 1)-ary world and restricting it to n = {0, 1, . . . , n− 1}. (For
n = 0, the map is the constant.) There is also a map

ηn : Sn+1 →PSn

taking an (n+ 1)-ary world and returning its value on n.
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Our formulation of point (3) above is that for all n ≥ 1, we have a pullback
square

Sn+2
ηn+1

//

ρn+1

��

PSn+1

Pρn
��

Sn+1 ηn
// PSn

(5.2)

Lemma 5.13. For all n, ρn is surjective and ηn is bijective.

Proof : We show by induction on n that ρn and ηn are surjective. For n = 0,
we verify directly. Obviously, ρ0 is surjective. As for η1, P(S0) = {∅, {∗}},
and

η1({(0, ∗), (1, {∗})}) = {∗}
η1({(0, ∗), (1, ∅)}) = ∅

Assuming that ρn and ηn are surjective, we get the same property for n+ 1
using the pullback square in (5.2).
We are left with the verification that each ηn is injective. Suppose that

ηn(f) = ηn(f
′). Then by (5.2), ηn−1 ◦ ρn(f) = ηn−1 ◦ ρn(f ′). Precomposing

with Pρn−2 and using (5.2) again, we see that

ηn−2 ◦ ρn−1 ◦ ρn(f) = ηn−2 ◦ ρn−1 ◦ ρn(f
′).

Continuing in this manner, we see that for 1 ≤ j ≤ n,

ηj ◦ ρj+1 ◦ · · · ◦ ρn(f) = ηj ◦ ρj+1 ◦ · · · ◦ ρn(f
′).

This is a long-winded way to say that the functions f and f ′ are identical.

In the statement below, we remind the reader of Remark 2.15, a description
of the first ω-terms in the final chain of P in terms of extensional trees of
finite depth and the “cuttoff” functions ∂n.

Lemma 5.14. There is a family of bijections bn : Sn → Pn1 such that the
following diagrams commute:

Sn+1
bn+1

//

ρn
��

Pn+11

∂n
��

Sn
bn

// Pn1

(5.3)
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Proof : We define the maps bn by recursion. For n = 0, S0 and P01 are
both singleton sets, so b0 is determined. The main part of the definition is
bn+1 = Pbn · ηn. An easy induction using Lemma 5.13 shows that the maps
bn are bijections. We check that the squares in (5.3) commute by induction
on n. For n = 0, we use the fact that P01 is a singleton. Assuming that
(5.3) commutes for n, we show that it commutes for n+ 1 by examining the
diagram below:

Sn+2
bn+2

//

ρn+1

��

ηn+1

%%KKKKKKKKK
Pn+21

∂n+1=P∂n

��

PSn+1

Pρn
��

Pbn+1

88rrrrrrrrrr

PSn
Pbn

&&LLLLLLLLLL

Sn+1
bn+1

//

ηn
99ssssssssss

Pn+11

The top and bottom triangles are the definitions of bn+2 and bn+1, respec-
tively. The region on the right is the induction hypothesis, with P added.
The region on the left is (5.2).

At this point, we know that the set Sn of n-ary worlds correspond to Pn1.
The main definition in [13] is that of a modal structure:

Definition 5.15. A modal structure is a function f with domain ω such that
for all n ≥ 1, the restriction rn(f) of f to n is an n-ary world. Let MS be
the set of modal structures.

It is clear that the MS together with the maps (rn)n∈ω is a limit cone for

S0 S1
ρ0

oo S2
ρ1

oo · · ·
ρ2

oo

By Lemma 5.14, this diagram is isomorphic to

P01 P11
∂0

oo P21
∂1

oo · · ·
∂2

oo

This proves the following result:

Theorem 5.16. The set MS of modal structures is isomorphic to the set
Pω1.
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In fact, features of modal structures mentioned in [13] are now immediate
corollaries. Let us mention two of them: There are canonical maps κGn : G→
Sn for all graphs G; we have seen these in the beginning of this section.
And there is a way to turn MS into a graph, and the result is strongly
extensional.
Summary. The set Pω1 may be described in various ways:

(1) the limit of the first ω terms in the final chain of P ,
(2) the set of strongly extensional saturated trees,
(3) the set of modally saturated trees,
(4) the set of maximal consistent sets in K, and
(5) the set of modal structures.

6. Finite multisets with multiplicities in a commutative

monoid

Here we continue the project initiated by H.-P. Gumm and T. Schröder [17]
of investigating finitely branching Kripke structures with transitions having
weights from a given commutative monoid (M,+, 0). These are the coal-
gebras for the functor Mf : Set → Set (denoted by Mω in [17]) assigning
to every set X the set MfX of all finite multisets in X, i.e. all functions
A : X →M with A−1[M \ {0}] finite. Given a function h : X → Y , the map
Mfh assigns to every finite multiset A : X → M the finite multiset Mfh(A)
sending y ∈ Y to

∑
x∈X,h(x)=y A(x).

Example 6.1. The Boolean monoid P = {0, 1} yields the finite power-set
functor Pf . The cyclic group C = {0, 1} yields a functor Cf which coincides
with Pf on objects but is very different on morphisms. Using the natural
numbers (N,+, 0), we obtain the usual notion of a multiset.

Definition 6.2. By an M-labeled graph G is meant a graph whose edges
are labeled in M \ {0}. We denote by wG : G × G → M the corresponding
“weight” function with wG(x, y) 6= 0 iff y is a neighbor of x.

Remark 6.3. (a) The coalgebras for Mf are precisely the finitely branching
M -labeled graphs. Indeed, given such a graph G, define the coalgebra
structure G → MfG by assigning to every vertex x the finite multiset
wG(x,−) : G→M . Conversely, every finitely branchingM -labeled graph
is obtained from precisely one coalgebra for Mf .
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(b) Coalgebra homomorphisms between two finitely branching M -labeled
graphs G and H are precisely the functions f : G → H between the
vertex sets such that

wH

(
f(x), y

)
=

∑

x′∈G,f(x′)=y

wG(x, x
′) for all x ∈ G, y ∈ H. (6.1)

(c) We identify, once again, two M -labeled trees whenever they are isomor-
phic (as coalgebras for Mf).

Definition 6.4. An M -labeled tree is extensional if distinct children of any
vertex define non-isomorphic M -labeled subtrees.
The extensional modification of a finite M -labeled tree t is obtained by

successively performing the following operation, from the leaves towards the
root: Given two vertices x and y of t with the same parent z, and such that
tx = ty, if wt(z, x) + wt(z, y) 6= 0, identify tx with ty and put wt(z, x̄) =
wt(z, x)+wt(z, y), where x̄ is the identification of x with y; otherwise remove
tx and ty and the edges (z, x) and (z, y). Since t is finite, this process certainly
stops, and the resulting tree is extensional.

We use ∼n and ∼ω in an obvious analogy to Notations 2.14 and 3.1.

Remark 6.5. (a) Given a set functor F : Set → Set, let (A, α) and (B, β)
be coalgebras for F . Following [3], a bisimulation from (A, α) to (B, β)
is a relation R ⊆ A× B for which there is a structure map δ : R → FR
making the projection maps π1 : R → A and π2 : R → B coalgebra
homomorphisms. If F weakly preserves pullbacks, then a congruence in
a coalgebra (A, α) is just an equivalence relation which is a bisimulation.

(b) As observed in [17, Lemma 5.5], it follows that, in the particular case of
the functor Mf , a relation R ⊆ A×B is a bisimulation iff, for every aRb,
there is a matrix:

m : A× B →M

with only a finite number of non-zero entries, such that:

(1) wA(a, a
′) =

∑

b′∈B

m(a′, b′) for all a′ ∈ A,

(2) wB(b, b
′) =

∑

a′∈A

m(a′, b′) for all b′ ∈ B, and

(3) m(a′, b′) 6= 0 implies a′Rb′.
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In the following,B denotes the coalgebra of all finitely branchingM -labeled
trees with the structure map β : B → MfB assigning to each tree t with

root x0, the map βt : B → M defined by βt(t
′) = wB(t, t

′) =
∑

t′=tx

wt(x0, x)

with x running through the vertices of t.

Theorem 6.6. Let M be a commutative monoid. The coalgebra B/∼ω of all
finitely branching M-labeled trees modulo Barr equivalence is final for Mf .

Proof : (1) B is weakly final. Indeed, for every finitely branching M -labeled
graph (A, α) we define a coalgebra homomorphism h : A→ B by assigning to
every vertex a ∈ A the tree expansion of a, ta. Recall that the vertices of the
tree expansion of a are the paths a0a1 . . . ak of A starting in a = a0, including
the empty path, a, which is the root. A child of a0a1 . . . ak is any extension
a0a1 . . . akak+1 and its weight in the tree expansion of a is wG(ak, ak+1), see
Definition 6.2. We need to prove that the square

A
α

//

h
��

MfA

Mfh
��

B
β

// MfB

commutes, that is, for all a ∈ A and s ∈ B, it holdswB(h(a), s) =
∑

a′∈A

h(a′)=s

wA(a, a
′)

(see Remark 6.3(b)). Indeed, let a be a vertex of A. Then

wB(h(a), s) = wB(ta, s) =
∑

ta′=s

wta(a, aa
′) =

∑

a′∈A

h(a′)=s

wA(a, a
′).

(2) The final coalgebra is obtained from B by the quotient modulo the
largest congruence: in general the quotient of a weakly final object by the
largest congruence on it yields a final object.
(3) The Barr equivalence is a congruence on B. That is, the quotient B/∼ω

carries a coalgebra structure for Mf such that the quotient map q : B →
B/∼ω is a coalgebra homomorphism. To prove this, all we need to verify is
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that given two trees

t =
· · ·

t1 tk

m1

tttttttt
ttt mk

JJJJJJJJJJJ

		
		

		
	

55
55

55
5

		
		

		
	

55
55

55
5 and u =

· · ·

u1 ul

n1

ttttttttttt nl
JJJJJJJJJJJ

		
		

		
	

55
55

55
5

		
		

		
	

55
55

55
5

with t ∼ω u, then the multiset given by [ti] and mi is the same one as the
given by [uj] and nj. This means that for every s ∈ B it holds the following
equality:

k∑

i=1

s∼ωti

mi =

l∑

j=1
s∼ωuj

nj.

Indeed, we have ∂nt = ∂nu for all n ∈ ω, that is, the cutting of t and u at the
level n have the same extensional modification (see Definition 6.4). We can
obtain ∂nt from t by first transforming each ti into ∂n−1ti for all i and finally
identifying all those trees ∂n−1ti which are equal, with the corresponding
weights given as described in Definition 6.4. Analogously for the tree u.
Thus, it is clear that, for all n ∈ ω, we have

k∑

i=1

s∼nti

mi =

l∑

j=1

s∼nuj

nj.

For a fixed tree s of B, let An be the set of all trees ti, i = 1, . . . , k, and all
trees uj, j = 1, . . . , l which are ∼n-related with s. Of course Am ⊆ An for
m ≥ n. Consequently, since the sets An have cardinality not greater than
k + l, there is some n0 ∈ ω, from which on all An are equal, and then An0

is
just the set of all ti and uj which are ∼ω-related to s. Consequently,

k∑

i=1

s∼ωti

mi =

k∑

i=1

s∼n0
ti

mi =

l∑

j=1
s∼n0

uj

nj =

l∑

j=1
s∼ωuj

nj.

(4) Every congruence ≈ on B is contained in ∼ω. That is, our task is to
prove the implication

t ≈ t′ implies ∂nt = ∂nt
′ for all n ∈ N.
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As observed in (3), to be a congruence means that for every pair t ≈ t′ of
trees of the form

t =
· · ·

t1 tk

m1

ttttttttt
tt mk
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5 t′ = · · ·

t′1 t′ℓ

m′1

ttttttttttt m′ℓ
JJJJJJJJJJJ
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for every tree s ∈ B the two sums below are equal:

k∑

i=1
s≈ti

mi =
ℓ∑

j=1
s≈t′j

m′j . (6.2)

From this we derive ∂nt = ∂nt
′ as follows.

Case n = 0 is trivial: ∂nt is the root-only tree.
Case n = 1. We are to prove m1 + · · · +mk = m′1 + · · · +m′l. For every

s = ti0, i0 = 1, . . . , k, we have the equality in (6.2). In case the left-hand
sum is nonzero, we thus have some j with ti0 ≈ t′j . And we can express
m1 + · · ·+mk as the sum of all non-zero sums∑

s≈ti0

mi

where i0 ranges over a set of representatives (for ≈) of all indexes 1, . . . , k
making the left-hand sum in (6.2) nonzero. By symmetry, this yields m1 +
· · ·+mk = m′1 + · · ·+m′l, as desired.
Analogously for n = 2: here we take any ti0 with

∑
ti0≈ti

mi 6= 0 and find a

corresponding t′j ≈ ti0 (and vice versa). Then, by applying the case n = 1

to the pairs ti0, t
′
j, we conclude that, for each ti0,

k∑

i=1

ti0∼1ti

mi =

l∑

j=1

ti0∼1t
′
j

m′j, then

t ∼2 t
′. Etc.

Definition 6.7 (See [17]). A commutative monoid M is called

(a) positive if a+ b = 0 implies a = 0 = b and
(b) refinable if a1 + a2 = b1 + b2 implies that there exists a 2× 2 matrix with

row sums a1 and a2, respectively, and column sums b1 and b2, respectively.

Theorem 6.8. The following conditions on a commutative monoid M are
equivalent:
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(a) The functor Mf weakly preserves pullbacks,
(b) M is positive and refinable, and
(c) whenever a1 + · · · + an = b1 + · · · + bk, there exists an n × k-matrix

whose vector of row sums is a1, . . . , an and the vector of column sums
is b1, . . . , bk.

In [17] this theorem is proved, except that in lieu of (a) weak preservation
of non-empty pullbacks is requested. However, the functor Mf has a unique
distinguished point in the sense of V. Trnková [29], namely, the empty set ∅ ∈
MfX. Since Mf∅ = {∅}, it follows from the result in [29] that Mf preserves
weak pullbacks iff it preserves the nonempty ones. Now for (a) ⇐⇒ (b),
see [17, Theorem 5.13], and concerning (b) ⇐⇒ (c), Proposition 5.10 of
loc. cit. states that refinability is equivalent to condition (c) with n, k > 1,
and positivity of M is equivalent to condition (c) with n > 1 and k = 0. For
n = 1, condition (c) is trivial.

Example 6.9 (See [17]). The Boolean monoid P = {0, 1} and the monoids
(N,+, 0) and (N, ·, 1) are positive and refinable. The cyclic group C = {0, 1}
is refinable but not positive. For every lattice L the monoid L = (L,∨, 0) is
positive, and it is refinable iff L is a distributive lattice.

Remark 6.10. For M a positive and refinable monoid, the concepts of tree
bisimulation and strong extensionality (see Definitions 2.4 and 2.6) imme-
diately generalize to M -labeled trees. It is clear that tree bisimulations are
closed under unions. Thus, for each M -labeled tree t there is a largest tree
bisimulation on t. Since, by Theorem 6.8, Mf preserves weak pullbacks, the
largest bisimulation is an equivalence, and the corresponding quotient is a
strongly extensional M -labeled tree t̄.

Theorem 6.11. Let M be a positive and refinable monoid. The coalgebra Bs

of all strongly extensional, finitely branching M-labeled trees is final for Mf .

Remark. For the coalgebra B of M -labeled trees, all strongly extensional
trees clearly form a subcoalgebra m : Bs →֒ B. We prove that the composite
of m with the quotient homomorphism q : B → B/∼ω is an isomorphism
q·m : Bs → B/∼ω. This proves that Bs is final.

Proof : Since q·m is a homomorphism of coalgebras, it is sufficient to prove
that it is a bijection, then it is an isomorphism. In other words: we are to
prove that Bs is a choice class of ∼ω on the set B.
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(1) Every tree t in B is Barr equivalent to its strongly extensional quotient
tree t̄ (see Remark 6.10). Indeed, since the roots of t and t̄ are bisimilar,
the two unique homomorphisms into the final coalgebra B/∼ω map them to
the same element of B/∼ω. But for every tree t we know that the unique
coalgebra homomorphism f : t → B/∼ω takes the root of t to the ∼ω-
equivalence class [t]. Consequently, t ∼ω t̄.
(2) If two strongly extensional trees are Barr equivalent, then they are

equal. Instead, we prove in items (3) and (4) below that given extensional
trees t, s ∈ B then

if t ∼ω s then t is tree bisimilar to s.

Thus, since Mf weakly preserves pullbacks, this proves in case t and s are
strongly extensional, that they are equal (up to isomorphism), see Remark
6.10.
(3) We consider the given trees t ∼ω s as elements of the coalgebra B. We

know that ∼ω is the greatest congruence, hence, the greatest bisimulation
on B. By Remark 6.5, there exists a matrix

m : B × B →M

such that

(a) wB(t, t
′) =

∑

s′∈B

m(t′, s′) for all t′ ∈ B

(b) wB(s, s
′) =

∑

t′∈B

m(t′, s′) for all s′ ∈ B, and

(c) m(t′, s′) 6= 0 implies t′ ∼ω s
′.

Since M is positive, whenever m(t′, s′) 6= 0 we have wB(t, t
′) 6= 0, that is,

there exists a child x of the root x0 of t with

t′ = tx and wB(t, t
′) = wt(x0, x).

Analogously, m(t′, s′) 6= 0 implies s′ = sy for some child y of the root y0 of s
with

wB(s, s
′) = ws(y0, y).

Since t and s are extensional, the trees t′ ∈ B with wB(t, t
′) 6= 0 are in bijec-

tive correspondence with the children x of x0 in t via x 7→ tx. Analogously
for s. Therefore we can translate (a)–(c) as follows:

(a∗) wt(x0, x) =
∑

y∈s

m(tx, ty) for all x ∈ t
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(b∗) ws(y0, y) =
∑

x∈t

m(tx, ty) for all y ∈ s, and

(c∗) m(t′, s′) 6= 0 implies that there exists a unique child x of x0 in t and a
unique child y of y0 in s with tx ∼ω ty, t

′ = tx and s′ = sy.

(4) We prove that given trees t̄, s̄ ∈ B with t̄ ∼ω s̄, it follows that the
relation R ⊆ t̄× s̄ defined recursively by

x R y iff t̄x ∼ω s̄y and x and y are roots or have R-related parents

is a tree bisimulation. If x R y then put t := t̄x and s := s̄y and let
m̄ : t̄× s̄→M be the following matrix

m̄(x′, y′) =

{
m(tx′ , sy′) if x′ is a child of x and y′ a child of y

0 else

The property (c∗) tells us that m̄ is obtained from the matrix m by removing
all zero columns and zero rows. Therefore, (a∗) and (b∗) imply that m̄ has
the desired row and column sums:

wt̄(x, x
′) =

∑

y′∈s̄

m̄(x′, y′) for all x ∈ t̄

ws̄(y, y
′) =

∑

x′∈t̄

m̄(x̄′, ȳ′) for all y′ ∈ s̄.

Moreover, by definition, m̄(x′, y′) 6= 0 only if x′ and y′ have R-related parents
(or are the roots) and m(tx′, ty′) 6= 0; and, by (c), m(tx′, ty′) 6= 0 implies that
tx′ ∼ω sy′. Therefore m̄(x′, y′) 6= 0 implies x′ R y′.

Example 6.12. The above theorem does not generalize to all positive monoids.
To see this, consider the monoid L = (L,∨, 0) for the lattice {0, a, b, c, 1}
where a, b, c are pairwise incomparable. Then strongly extensional finitely
branching L -labeled trees do not form a final coalgebra, since they are not
a choice class of the Barr equivalence. The following trees are easily seen to
be Barr equivalent:

t :

•

•

•

•...

1

1

1

s :

•

• •

• • • •

• • • •

. . . . . .

. . . . . .. . . . . .

a
oooooooooooo c

OOOOOOOOOOOO

a
��

��
��

� b
??

??
??

? b
��

��
��

� c
??

??
??

?

a
��

��
��

� b
??

??
??

? b
��

��
��

� c
??

??
??

?
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Here s has as vertices the binary words, and the weights are, for all x ∈
{0, 1}∗, defined by ws(x0, x00) = a, ws(x1, x11) = c and ws(x0, x01) = b =
ws(x1, x10). It is obvious that t is strongly extensional. To prove that so
is s, let R ⊆ s× s be a tree bisimulation. Using the conditions (a)–(c) in the
preceding proof it is easy to verify that R ⊆ ∆s.

7. Conclusions and related work

A new description of the final coalgebra and/or the final chain of the power-
set functor and its “relatives” has been presented in our paper. For example,
for the finite power-set functor Pf we have given a short proof of Worrell’s
description of the final coalgeba as the set of all finitely branching, strongly
extensional trees (cf. [30]). And we provided an alternative description as
the set of all hereditarily finite modal theories. We also described the step ω,
Pω

f 1, of the final chain as the set of all saturated, strongly extensional trees
(which is related to Worrell’s description as all compactly branching, strongly
extensional trees). Related descriptions were provided by S. Abramsky [1],
A. Kurz and D. Pattinson [20] and by J. Rutten [26, Theorem 7.4].
The above saturated trees were also proved to precisely correspond to the

modally saturated trees of K. Fine [14]. We generalized saturatedness to
α-saturatedness and proved that the final chain of the power-set functor P

can be described for all α of cofinality ω by saying that Pα1 consists of
all strongly extensional α-saturated trees; for such ordinals, the connecting
maps wα,β were proved to be surjective, and the canonical maps from graphs
were proved to be given by the α-saturation of the tree expansions. We also
proved that for all infinite regular cardinals λ, the smallest ordinal for the
convergence of the final chain of Pλ is λ+ ω, and it is λ+ in the case where
λ is an infinite singular cardinal.
General ordinals present a difficulty. Thus we have at present no analogous

description of Pω11. We leave to future work an analysis of this issue in
the light of the results concerning completeness in Forti and Honsell [16,
especially Lemma 2.2], and also R. Lazić and A. Roscoe [21, Theorems 14
and 15].
Another direction generalizing the functor Pf was taken by H.-P. Gumm

and T. Schröder [17]. They introduced the functor Mf of finite multisets
with multiplicitites from a given commutative monoid. We have described
its final colagebra: it consists of all finitely branching strongly extensional
M -labeled trees. This holds for all positive and refinable monoids. Our proof
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is substantially different from Worrell’s, since it is based on congruences on
the coalgebra of all extensional trees. We would like to generalize our work
on saturated trees to the case of functors Mf . And we plan to apply our
methods to probabilistic transition systems.
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8. Appendix: saturations of trees for all ordinals

We prove Theorem 3.9: for each tree t and each ordinal α, there is a unique
α-saturation of t.

Proposition 8.1. For every ordinal α, there is a set Sα such that every tree
is ∼α to some tree in Sα.

Proof : By induction on α. S0 is the singleton of a one-point tree. Given Sα,
let Sα+1 be the set of tree-tuplings of sets of trees from Sα. Given Sα for
α < λ, first let T = Πα<λSα. Then let

T ′ = {f ∈ T : there is a tree t so that t ∼α f(α) for all α < λ}.

Finally, let Sλ be any set of trees with the property that for every f ∈ T ′

there is some t ∈ Sλ such that for all α < λ, t ∼α f(α). To check that this
works, let t be any tree. Let f ∈ T be such that for all α < λ, t ∼α f(α).
By construction f ∈ T ′. So for some t′ ∈ S, t′ ∼α f(α) for all α < λ. Then
t ∼α t

′ for all α < λ, so t ∼λ t
′.

Definition 8.2. Let s and t be trees. Let T denote the category of trees
and maps that preserve the root and the edges. (Of course, T has more
morphisms than the category Tree used in Notation 2.10.) A T -morphism
f : s → t is an ∼α-embedding if f is injective on vertices, and for all x ∈ s,
sx ∼α tf(x).
An ∼α-chain is a functor

F : β → T

for some ordinal β, such that for every γ < δ < β, Ffγ,δ is an ∼α-embedding,
where fγ,δ : γ → δ is the morphism in β. We write tδ for F (δ).
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Lemma 8.3. Let F : β → T be an ∼α-chain, and let t∗ be its colimit, with
injections iγ : t

γ → t∗. Then each morphism iγ is an ∼α-embedding.

Proof : It is easy to check that the colimit t∗ is formed as in Set, by taking
the disjoint union of the trees tγ and making a tree in the natural way, by
putting an edge from x to y if for some γ < β, x and y both belong to tγ, and
x has y as a child in tγ. Moreover, each colimit injection iγ is an inclusion.
We check by induction on δ ≤ α that each map iγ : tγ → t∗ is a ∼δ-

embedding. For 0, this is obvious, and the induction step for limit ordinals
is trivial. So assume our result for δ < α, and then let us check that for
all γ and all x ∈ tγ, tγx ∼δ+1 t

∗
iγ(x)

. First, let y be a child of x in tγ. Then

by induction hypothesis, tγy ∼δ t
∗
iγ(y)

. Since iγ(y) is a child of iγ(x) in t
∗, we

have verified half of what we need. For the other half, let y be any child of
iγ(x) in t∗. For some γ ′ < β, and some x′, y′ ∈ tγ

′

, iγ′(x′) = iγ(x), y
′ is a

child of x′ in tγ
′

, and iγ′(y′) = y. We may assume that γ < γ ′, since the case

γ ′ ≤ γ is similar. Recall that iγ,γ′ is an ∼α-embedding. Thus tγx ∼α t
γ′

iγ,γ′(x)
.

And since δ + 1 ≤ α, tγx ∼δ+1 t
γ′

iγ,γ′(x)
. Moreover, iγ,γ′(x) = x′; this is because

iγ′(iγ,γ′(x)) = iγ(x) = iγ′(x′), and iγ′ is injective. So we have tγx ∼δ+1 t
γ′

x′ .
Thus there is some child y of x in tγ such that

tγy ∼δ t
γ′

y′ ∼δ t
∗
iγ′(y

′).

(The last equality uses the induction hypothesis.) And t∗iγ′(y′) = t∗y. This

completes the proof.

With this lemma, we prove Theorem 3.9.

Theorem 3.9: The uniqueness comes from Lemma 3.8, and so we only argue
for the existence. We use induction on α. For α = 0, we take a one-point
tree. Assuming our result for α, we get it for α+ 1 by tree-tupling the trees
tx
∗
α as x ranges over the children of the root of t.
For the limit step, we first need to define a certain infinite cardinal κ.

As an ordinal κ will be the length of a certain ∼α-chain. Let Sα be as in
Proposition 8.1, and let ρ be the (ordinal) maximum of α and the cardinality
of Sα. Let κ = ℵρ+1. Here are the properties of κ which we shall need:

(1) Being a successor cardinal, κ is regular.
(2) κ ≥ ρ+ 1 > α.
(3) κ ≥ ρ+ 1 > |Sα|.



42 J. ADÁMEK, P. LEVY, S. MILIUS, L. S. MOSS AND L. SOUSA

Fix a map

c : κ→ Sα

which is surjective in the strong sense that for every tree u ∈ Sα, c
−1(u) is

unbounded.
Fix a tree t. Define an ∼α-chain of trees tβ by recursion on β < κ as

follows. First, t0 = t. Fix β ≤ κ, and assume that we have trees tβ and
∼β-embeddings fγ,β : tγ → tβ for γ ≤ β. If β is a limit ordinal, then we take
tβ to be the colimit; by Lemma 8.3 the evident injections are ∼α-embeddings.
The main work concerns the successor case, defining tβ+1 from tβ.
We consider the tree c(β) ∈ Sα. Consider all nodes x in tβ such that for all

γ < α there is some child y of x in tβ so that c(β) ∼γ t
β
y . If there are no such

nodes, set tβ+1 = tβ. Otherwise, for each such x, add a new subtree below x
isomorphic to c(β). This is tβ+1. We take fβ,β+1 to be the inclusion of trees.
We claim that fβ,β+1 is an ∼α-embedding. For this, we show by induction

on δ < α that fβ,β+1 is a ∼δ-embedding. Because this map fβ,β+1 is an
inclusion, we shall drop it from the notation. The steps for 0 and for limit
ordinals are immediate, and we are left with the successor case. Assume that
the inclusion is a ∼δ-embedding; we show that it is a ∼δ+1-embedding. Fix
a node x ∈ tβ. Half is easy: for every child y of x in tβ, there is a child y
of x in tβ+1 such that tβy ∼δ t

β+1
y . (This is by the induction hypothesis.) In

the more interesting direction, let y be a child of x in tβ+1. If y is a node in
tβ, then we are easily done by the induction hypothesis. Otherwise, the tree
s = c(β) has the property that for all γ < α there is some child z of x so that
s ∼γ t

β
z , and moreover our construction arranged that, tβ+1

y = s. Taking γ

to be δ, we see that there is some child z of x in tβ with tβ+1
y ∼δ t

β
z , just as

desired. This concludes our inductive step.
The claim shown, this concludes the definition of our chain. The tree that

we are after is its colimit, tκ. Let x be the root of t = t0. Since morphisms of
our category T preserve the root, t = tx ∼α t

κ
i0(x)

= tκ. Moreover, tκ need not

be strongly extensional, but once we show that it is α-saturated, its strongly
extensional quotient will also have this property, and we shall be done.
To check that tκ is α-saturated, let s be any tree, let x be a node in tκ and

assume that for all β < α there is some child yβ of x such that s ∼β t
κ
yβ
. We

might as well assume that s belongs to Sα: it is ∼α to some tree in Sα, and
then replacing s by this other tree and carrying out the coming argument
will show what we want. By regularity of κ, there is some δ < κ so that for
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all β < α there is some child yβ of x such that yβ is a node in tδ and s ∼β t
κ
yβ
.

(In more detail, for each β < α, there is a least ordinal ρβ containing some yβ
with the property we want. Then by regularity, supβ ρβ < κ.) By Lemma 8.3,

tκyβ ∼α t
δ
yβ

for all β < α. By definition of c, let γ be such that δ < γ < κ and

c(γ) = s. Using Lemma 8.3 again, we have that for all β < α, tδyβ ∼α t
γ
yβ
.

Since α > β, s ∼β t
γ
yβ

for all β < α. Our construction has arranged that tγ+1

contains a child y of x such that tγ+1
y ∼α s. By Lemma 8.3 one last time,

tκy ∼α t
γ+1
y ∼α s.
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