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A SEMIDEFINITE APPROACH TO THE Ki COVER
PROBLEM

JOÃO GOUVEIA AND JAMES PFEIFFER

Abstract: We apply theta body relaxations to the Ki cover problem and use this
to show polynomial time solvability for certain classes of graphs. In particular, we
show that the facets corresponding to Ki-p-holes can be optimized over in polyno-
mial time, answering an open question of Conforti et al [1]. For the triangle free
problem on Kn, we show that the theta body relaxations do not converge by n/4
steps; we also prove an integrality gap of 2 for the second theta body and all G.

1. Introduction
A common way to model a combinatorial optimization problem is as the

optimization of a function over the set S ⊆ {0, 1}n of characteristic vectors
of the objects in question. When the objective function is linear, we may
replace S by its convex hull conv(S). The problem can be solved efficiently if
we can find a small description of this polytope. Since for NP hard problems
we cannot expect this, we look instead for approximations to conv(S). One
possibility is to use semidefinite approximations, as introduced by Lovász [9]
with the construction of the theta body of the stable set polytope of a graph.
Another famous example is the approximation algorithm for the max cut
problem due to Goemans and Williamson [3]. In this paper we will use the
semidefinite relaxations introduced by Gouveia, Parrilo and Thomas [5] to
analyze the Ki cover problem.

Recall that Ki denotes the complete graph, or clique, on i vertices. Given
a graph G, let Kj(G) be the collection of cliques in G of size j (usually, the
graph is clear from context, and we write Kj). A collection C ⊂ Ki−1 is said
to be a Ki-cover if for each K ∈ Ki, there is some H ∈ C with H ⊂ K. In
this case we say that H covers K. The Ki cover problem is, given a graph
G and a set of weights on Ki−1, to compute the minimum weight Ki cover.
The case i = 2 is more commonly known as the vertex cover problem, in
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which we seek a collection of vertices such that each edge in G contains at
least one vertex from the collection. However, note that the usage of “cover”
is reversed here: the vertex cover problem is the K2 cover problem, not the
K1 cover problem.

A closely related problem, and the setting in which we will prove our results,
is the Ki free problem. As before, we are given a graph and a collection of
weights on Ki−1. But now we seek the maximum weight collection C ⊆ Ki−1

such that C is Ki-free. That is, for each K ∈ Ki, there is some H ∈ Ki−1,
with H ⊂ K and H /∈ C. Again, the case i = 2 of this problem is well-known
as the stable set problem: we seek a maximum weight stable set C, where C
is stable if no two of its vertices are connected by an edge.

The vertex cover and stable set problems are related in the following sense:
let G = (V,E) be a graph. Then a subset C of vertices is a vertex cover if
and only if V \ C is a stable set. The same is true for the Ki cover and Ki

free problems: a subset C ⊂ Ki−1 is a Ki-cover if and only if Ki−1 \ C is
Ki-free. Therefore, for a given set of weights on Ki−1, optimal solutions to
the two problems are complementary, and so solving one solves the other.

In this paper, we consider the polytope associated with the Ki free problem.
Let Pi(G) = conv({χS : S ⊂ Ki−1(G) and S is Ki-free}), the convex hull of
the incidence vectors of the Ki free sets. Note that Pi(G) ⊆ [0, 1]Ki−1(G).

As the Ki free problem is NP-complete (see [1]), we cannot expect a small
description of Pi(G) for general graphs G. However, for certain classes of
facets of Pi(G), we can solve the separation problem in polynomial time.
Conforti, Corneil, and Mahjoub [1] worked this out for several families of
facets. We answer an open question from their paper by solving the separa-
tion problem for the Ki-p-hole facets.

The structure of this paper is: in section 2, we outline the main algebraic
machinery, theta bodies, a semidefinite relaxation hierarchy. In section 3
we use theta bodies to give a separation algorithm for the Ki-p-hole facets.
Finally, in section 4 we focus on the triangle free problem. We use a result of
Krivelevich to show an integrality gap of 2 for the second theta body. On the
other hand, we show that in the case of G = Kn, the theta body relaxations
cannot converge in less than n/4 steps.
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2. Theta bodies
Theta bodies are semidefinite approximations to the convex hull of an

algebraic variety. For background, see [2] and [5]. Here we state the necessary
results for this paper without proofs.

Let V ⊆ Rn be a finite point set. One description of the convex hull of V
is as the intersection of all affine half spaces containing V :

conv(V ) = {x ∈ Rn : f(x) ≥ 0 for all linear f such that f |V ≥ 0}.
Since it is computationally intractable to find whether f |V ≥ 0, we relax this
condition. Let I be the vanishing ideal of V , i.e., the set of all polynomials
vanishing on V . Recall that f ≡ g mod I means f −g ∈ I, and implies that
f and g agree on V . A function f is said to be a sum of squares of degree at
most k mod I, or k-sos mod I, if there exist functions gj, j = 1, . . . ,m with
degree at most k, such that f ≡

∑m
j=1 g

2
j mod I. If f is k-sos mod I for any

k, it is clear that f |V ≥ 0 since g2
j is visibly nonnegative on V . Therefore,

we make the following definition of THk(I), the k-th theta body of I:

THk(I) = {x ∈ Rn : f(x) ≥ 0 for all linear f ≡ k-sos mod I}.
The reason why the theta bodies THk(I) provide a computationally tractable
relaxation of conv(V ) is that the membership problem for THk(I) can be
expressed as a semidefinite program, using moment matrices that are reduced
mod I.

For what follows, we will restrict ourselves to a special class of varieties,
and suppose that our variety V ⊆ {0, 1}n and is down-closed; i.e., if x ≤ y
componentwise, and y ∈ V , then x ∈ V . Additionally, we will always assume
that V contains the canonical basis of Rn, {e1, · · · , en}, as otherwise we could
restrict ourselves to a subspace. All combinatorial optimization problems of
avoiding certain finite list of configurations, such as stable set, Ki free, etc.,
have down-closed varieties. The restriction to this class is not necessary,
but makes the theta body exposition simpler. In particular, the ideal of a
down-closed variety has the following simple description.

Lemma 2.1. Let V be a down-closed subset of {0, 1}n. Then its vanishing
ideal is given by

I = 〈x2
j − xj : j = 1, . . . , n;xS : S /∈ V 〉,

and a basis for R[V ] = R[x]/I is given by B = {xS : S ∈ V }, where xS :=∏
i∈S xi is a shorthand used throughout the paper.
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Another important fact about THk(I) in this setting (when I is real radical)
is that a linear inequality f(x) ≥ 0 is valid on THk(I) if and only if f
is actually k-sos modulo I. In section 3, we will prove that certain facet-
defining inequalities of Pi(G) are also valid on its theta relaxations THk(I)
by presenting a sum of squares representation modulo the ideal. For now,
we observe that by considering degrees, we can get a bound on which theta
bodies are trivial; that is, equal to the hypercube [0, 1]n.

Lemma 2.2. Let V ⊆ {0, 1}n be down-closed, and suppose that all elements
x /∈ V have

∑
j xj ≥ k. Let I be its vanishing ideal. Then for l < k/2,

THl(I) = [0, 1]n.

Proof : Let f be linear with f ≡
∑

j g
2
j mod I with each gj of degree at

most l. Then f −
∑

j g
2
j =: F ∈ I, and F has degree at most 2l. But

the basis from Lemma 2.1 is a Groebner basis, and the only elements with
degree 2l or less are x2

j − xj, so F ∈ I ′ := 〈x2
j − xj; j = 1, . . . , n〉. Thus

THl(I) ⊇ THl(I
′) = [0, 1]n.

Let Vk be the subset of V whose elements have at most k entries equal to
one. For convenience, we will often identify the elements of V , characteristic
vectors χS for S ⊆ {1, . . . , n}, with their supports, via S ↔ χS. Given
y ∈ RV2k we denote the reduced moment matrix of y with respect to I to be
the matrix MVk(y) ∈ RVk×Vk defined by

[MVk(y)]X,Y =

 yX∪Y if X ∪ Y ∈ V,

0 otherwise.

With these matrices we can finally give a semidefinite description of THk(I).

Proposition 2.3. With I and V as before, THk(I) is the projection onto the
coordinates (ye1, · · · , yen) of the set

{y ∈ RV2k : MVk(y) � 0 and y0 = 1}.

In particular, optimizing to arbitrary fixed precision over THk(I) can be done
polynomially in n for fixed k.

Now we can consider the specific case of the Ki-free problem. Here the
variety V ⊆ RKi−1(G) is the set of characteristic vectors of Ki-free subsets of
Ki−1(G), Vk is the subset of V of elements of size at most k, and I is the
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vanishing ideal of V , described by Lemma 2.1. Since the Kis in G are the
minimal elements not in V , by Lemma 2.1 we can write the ideal I as follows.

I = 〈x2
j − xj : j ∈ Ki−1(G);

∏
j⊆K

xj : K ∈ Ki(G)〉.

For example, let G be a triangle, with edges A, B, C, and consider the
triangle free problem on G. Then the ideal is

I = 〈x2
A − xA, x2

B − xB, x2
C − xC , xAxBxC〉,

and the variety V is as follows.

V = {∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}} ≡ {0, 1, 2, 3, 4, 5, 6}.

Note that here, we again use our identification of sets with their characteristic
vectors. To avoid writing, e.g., y{A,C} or even yχ{A,C}, we label the elements
of V by numbers as above. Then the moment matrix MV2(y) is as follows:

MV2(y) =



y0 y1 y2 y3 y4 y5 y6

y1 y1 y4 y5 y4 y5 0
y2 y4 y2 y6 y4 0 y6

y3 y5 y6 y3 0 y5 y6

y4 y4 y4 0 y4 0 0
y5 y5 0 y5 0 y5 0
y6 0 y6 y6 0 0 y6


Projecting the set {y : y0 = 1,MV2(y) � 0} onto (y1, y2, y3) gives TH2(I) for
this graph.

3. Polynomial-time algorithm
In this section, we will give a polynomial-time separation algorithm for a

class of facets of Pi(G), thus answering an open question in Conforti, Corneil
and Mahjoub [1]. The facets we consider are called the Ki-p-hole facets. A
graph H is a Ki-p-hole if H contains p copies of Ki as subgraphs, G1, . . . , Gp,
and Gj and Gl share a common Ki−1 if and only if j − l = ±1 mod p;
see Figure 1. Theorem 3.5 in [1] establishes that for i ≥ 3 and odd p, the
inequality

∑
Ki−1(H) xj ≤ (p−1

2 )(2i − 3) + i − 2 defines a facet of Pi(G) for
each induced Ki-p-hole H of G. We will show that the facets corresponding
to induced Ki-p-holes are valid on THdi/2e(I), and therefore that there is a
polynomial-time separation algorithm for them. Note that in this section,
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the ideal I always refers to the Ki free problem, and the associated graph G
will be clear from context.

Figure 1. Three non-isomorphic K3-12-holes.

The first lemma is an auxiliary result that a class of functions are sums of
squares. For an ideal I, a function f is said to be idempotent mod I if f 2 ≡ f
mod I. Since an idempotent is visibly a square, we can use it as a summand
in our sum of squares. In practice, idempotents end up being very useful in
sums of squares.

Lemma 3.1. Suppose A ⊆ B ⊆ Ki−1(Ki). Denote the variables in Ki−1(Ki)
by {xk : 1 ≤ k ≤ i}. Then f(x) = |B \ A| − xA + xB −

∑
k∈B\A xk is |B|-sos

mod I.

Proof : Let A = A1 ⊂ A2 . . . ⊂ Am = B be a maximal chain, where Ak ∪
{xk} = Ak+1, for k = 1, . . . ,m−1. Check that gk(x) = 1−xk−xAk +xAk+1 is
idempotent mod I. Adding them up we get that f(x) =

∑m−1
k=1 gk(x). Since

each summand has degree at most |B| the assertion holds.

The stable set polytope STAB(G) has a fractional relaxation FRAC(G),
given by imposing nonnegativities xi ≥ 0, and inequalities xi + xj ≤ 1 for
each edge (i, j) of G. Similarly, we can define a fractional Ki free polytope
FRACi(G) by imposing nonnegativities, and the inequalities

∑
k∈Ki−1(H) xk ≤

i− 1 for each H ∈ Ki(G). The following corollary shows that these inequali-
ties are di/2e-sos, and therefore that the relaxation THdi/2e(I) ⊆ FRACi(G).
This is parallel to the result that the Lovász theta body lies inside FRAC(G).
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Corollary 3.2. The inequality
∑

k∈Ki−1(H) xk ≤ i − 1 is valid on THdi/2e(I)

for every H ∈ Ki(G).

Proof : Let J be a subset of Ki−1(H) of size di/2e. Applying Lemma 3.1 with
A = ∅ and B = J we see that

f(x) = |J | − 1 + xJ −
∑
l∈J

xl

is |J |-sos. Similarly

g(x) = |J c| − 1 + xJ
c −
∑
l∈Jc

xl

is |J c|-sos. Finally observe that h(x) = 1 − xJ − xJc

is idempotent. Since
these polynomials are all di/2e-sos, it remains to observe that their sum,

f(x) + g(x) + h(x) = i− 1−
∑

k∈Ki−1(H)

xk,

is also di/2e-sos.

Now we are ready to prove that the Ki-p-hole inequalities are valid on
THdi/2e(I). Recall that if H is a Ki-p-hole, we write G1, . . . , Gp for the Kis in
H, with adjacent Ki sharing a common Ki−1. If G has an induced Ki-p-hole
H, then the inequality

k(2i− 3) + i− 2−
∑
i∈H

xi ≥ 0

defines a facet of Pi(G) for i ≥ 3; see [1].

Lemma 3.3. The Ki-p-hole inequalities are di/2e-sos for p odd.

Proof : Let p = 2k + 1. For each l = 1, . . . , 2k + 1, there is exactly one Ki−1

common to Gl and Gl−1 (taking indices mod 2k+1). Denote this variable by
xl. Now fix l. Let the variables {yk} correspond to the Ki−1 contained in only
Gl. Then the variables corresponding to Ki−1(Gl) are {xl, xl+1, y1, . . . , yi−2}.
We will show that pl(x, y) = i− 2−

∑
yk − xlxl+1 is di/2e-sos.

Let J1 = {1, . . . , di/2e − 2} and J2 = {di/2e − 1, . . . , i − 2}. Applying
Lemma 3.1, we see that the following two functions are di/2e-sos. First
apply the lemma with A = {xl, xl+1} and B = {yj : j ∈ J1} ∪ {xl, xl+1}:

f(x, y) = |J1| − xlxl+1 + xlxl+1y
J1 −

∑
j∈J1

yj.
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Second, take A = ∅ and B = J2:

g(x, y) = |J2| − 1 + yJ2 −
∑
j∈J2

yj.

Finally, observe that the following is idempotent:

h(x, y) = 1− xlxl+1y
J1 − yJ2.

Adding these up we get that pl(x, y) = f(x, y) +g(x, y) +h(x, y) is di/2e-sos.

Now with p(x, y) =
∑2k+1

l=1 pl(x, y), we have that p is di/2e-sos:

p(x, y) = (2k + 1)(i− 2)−
2k+1∑
l=1

∑
yk⊆Gl

yk −
2k+1∑
l=1

xlxl+1,

where the sum
∑
yk is over all Ki−1 contained in a unique Ki. It remains to

show that k−
∑
xl +

∑
xlxl+1 is di/2e-sos. Observe that this is attained by

adding the following two quantities, each of which is a sum of idempotents.

k∑
l=1

(1− x2l−1 − x2l − x2l+1 + x2l−1x2l + x2l−1x2l+1 + x2lx2l+1)

k∑
l=2

(x2l−1 − x2l−1x1 − x2l−1x2l+1 + x2l+1x1)

In section 3.3 of Conforti, Corneil, and Mahjoub [1], a polynomial-time
separation oracle is given for the class of facets corresponding to odd wheels
of order i− 2. These form a subclass of the Ki-odd hole inequalities, which
at the time were not known to have such a separation oracle. Using Lemma
3.3, we can construct such an oracle.

Theorem 3.4. The separation problem for the Ki-odd hole facets of Pi(G)
can be solved in polynomial time in the number of vertices of G, for fixed i.

Proof : Let G have n vertices. By Lemma 3.3, the Ki-p-hole facets are valid
on THdi/2e(I). By Lemma 2.3,we can optimize over THdi/2e(I) in time poly-

nomial in the number of variables in Ki−1(G), at most
(
n
i

)
. But this is still

polynomial in n.
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4. Related Problems
Here we apply two results appearing in the literature to the triangle free

problem.

4.1. Cuts, and a lower bound on theta convergence. In this section
we use a result of Laurent on the max cut problem to give a negative result
for the approximability of P3(Kn) by theta bodies. The max cut problem is
the problem of finding a cut of maximum cardinality in a given graph. The
theta body approach can be used also in this case, as in [4], providing us
a hierarchy of approximation. We will compare these two theta bodies to
prove a lower bound on the k such that THk(I) = P3(Kn).

Let G be a graph with edge set E. A cut in G arises from a partition of the
nodes of G into two sets S1 and S2, whereupon the associated cut is the set
of edges from S1 to S2. Define CG and VG ⊆ {0, 1}E to be the collections of
characteristic vectors of cuts and triangle-free subgraphs, respectively. Then
take their convex hulls, to get the associated polytopes CUT(G) and, as
before, P3(G). Note that since a cut is by definition bipartite, it is also
triangle-free. Therefore, we have CG ⊆ VG and CUT(G) ⊆ P3(G).

Lemma 4.1. Let X ⊆ Y be two real varieties, with ideals I(X) and I(Y ).
Then for any k, THk(I(X)) ⊆ THk(I(Y )).

Proof : If X ⊆ Y , then the reverse inclusion holds for their ideals: I(Y ) ⊆
I(X). Any function which is k-sos mod I(Y ) is then also k-sos mod I(X).
The result follows from the definition of THk(I).

Consider the complete graph Kn, for odd n. The inequality∑
e∈E

xe ≤
n2 − 1

4

defines a facet of both P3(Kn) and CUT(Kn); see [8]. The results in [8] imply
that for k < n

4 , this inequality is not valid on THk(I(CKn
)). By Lemma 4.1,

it is also not valid on THk(I(VKn
)). We have proved:

Theorem 4.2. For k < n
4 , P3(Kn) ( THk(I(VKn

)).

This implies that the theta body hierarchy fails to yield a polynomial time
separation algorithm for the Kn inequalities, as the size of the reduced mo-
ment matrices associated with the n/4-th theta body is exponential in n. It
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is still an open question for which k ≥ dn/4e, in either the cut or triangle
free case, THk(I) = P (G).

4.2. Tuva’s conjecture, and an integrality gap. Let G be a graph.
A triangle packing is a collection of triangles in G, no two of which share
an edge. A triangle cover is a collection of edges, containing at least one
edge from every triangle in G. Let τ(G) be the minimum-size triangle cover
in G (in the language of the introduction, the K3 cover problem with unit
weights). Let v(G) be the maximum-size triangle packing in G. It is an easy
exercise to check that v(G) ≤ τ(G) ≤ 3v(G). However, Tuva conjectured in
[10] that the stronger inequality τ(G) ≤ 2v(G) holds for all graphs G. The
problem is currently open; see [6] for more information.

Let E and T be the sets of edges and triangles in G. Krivelevich [7] defined
the fractional relaxations of τ(G) and v(G):

τ ∗(G) = min

{∑
e∈E

xe : x ∈ [0, 1]E and for all triangles ∆,
∑
e∈∆

xe ≥ 1

}

v∗(G) = max

{∑
∆∈T

y∆ : y ∈ [0, 1]T and for all edges e,
∑
e∈∆

y∆ ≤ 1

}
Note that by LP strong duality, τ ∗(G) = v∗(G).

Krivelevich proved that τ(G) ≤ 2τ ∗(G), and that v∗(G) ≤ 2v(G). Due
to the duality τ ∗(G) = v∗(G), these are equivalent to the fractional Tuva
conjecture: τ(G) ≤ 2v∗(G) and τ ∗(G) ≤ 2v(G).

Let I be the ideal of the triangle cover problem. Define the following
semidefinite relaxation:

τ †(G) = min

{∑
e∈E

xe : x ∈ TH2(I)

}
.

Recall that S is a triangle cover if and only if E \ S is triangle free. This
implies that x ∈ THk for the triangle free problem if and only if 1−x ∈ THk

for the triangle cover problem. Then by Corollary 3.2, τ †(G) ≥ τ ∗(G).
We have proved the following integrality gap:

Theorem 4.3. For any graph G, τ †(G) ≥ τ(G)
2 .
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