Pré-Publicações do Departamento de Matemática Universidade de Coimbra Preprint Number 12–44

AN OBSERVATION ON PREORDERS AND INTERNAL CATEGORIES

DIANA RODELO AND TIM VAN DER LINDEN

Dedicated to René Guitart on the occasion of his sixty-fifth birthday

ABSTRACT: We prove that in a regular category all reflexive and transitive relations are symmetric if and only if every internal category is an internal groupoid. In particular, these conditions hold when the category is n-permutable for some n.

KEYWORDS: Mal'tsev, Goursat, *n*-permutable category; preorder; equivalence relation; internal category, groupoid. AMS SUBJECT CLASSIFICATION (2010): 08C05, 18C10, 18B99, 18E10.

We take \mathscr{C} to be a regular category. It is well known that any internal preorder, being a reflexive and transitive relation (R, r_1, r_2) on an object X of \mathscr{C} , may be considered as an internal category in \mathscr{C} . In fact, a preorder is the same thing as a skeletal category, an internal category of which the domain and codomain morphisms $r_1, r_2: R \to X$ are jointly monic. This internal category will be a groupoid precisely when the given reflexive and transitive relation Ris symmetric, so that if in \mathscr{C} every internal category is an internal groupoid, then all of its internal preorders are equivalence relations.

The converse implication is interesting due to its close relation with the following question: "What conditions does a regular category need to satisfy for all internal categories in it to be internal groupoids?" One of the main results of [1] gives a sufficient condition: the Mal'tsev property, that is, 2-permutability RS = SR of internal equivalence relations or, equivalently, congruences R, S. But when \mathscr{C} is a variety, already the strictly weaker *n*-permutability condition $(RSRS \dots = SRSR \dots$ with *n* factors *R* or *S* on each side) is sufficient [6]. Furthermore—here we follow a remark in [5]—a variety is *n*-permutable if and only if [2] all of its internal preorders are equivalence relations (= congruences). Altogether:

Received November 22, 2012.

The first author was supported by CMUC/FCT (Portugal) and the FCT Grant PTDC/MAT/120222/2010 through the European program COMPETE/FEDER.

The second author works as *chargé de recherches* for Fonds de la Recherche Scientifique–FNRS.

Both authors wish to thank the University of Cape Town for its kind hospitality during their stay in South Africa.

Proposition. If \mathscr{V} is a variety of universal algebras, then the following conditions are equivalent:

- (i) all preorders in \mathscr{V} are congruences;
- (ii) all internal categories in $\mathscr V$ are internal groupoids;
- (iii) \mathscr{V} is n-permutable for some n.

This result is no longer true for regular categories. The number n in the third condition is obtained through a construction on a free algebra, and it cannot be replaced by a purely categorical argument—see [4] for a counterexample. On the other hand, the equivalence between the upper two conditions makes sense in general and, given any n-permutable category, we may ask whether they hold or not. As it turns out, the situation is as good as it could possibly be:

Theorem. If \mathscr{C} is a regular category, then the following conditions are equivalent:

- (i) all preorders in \mathscr{C} are equivalence relations;
- (ii) all internal categories in \mathscr{C} are internal groupoids.

Furthermore, these conditions hold if \mathscr{C} is n-permutable for some n.

Proof: We already recalled that the second condition is stronger than the first. As for the final statement, the article [4] gives new equivalent conditions for n-permutable categories, based on the varietal case [3], which easily imply (i). So we are left with proving (i) \Rightarrow (ii), for which it suffices to observe that the argument given by Carboni, Pedicchio and Pirovano in the Mal'tsev context [1, Theorem 2.2] is still valid. For the sake of completeness, let us briefly sketch how it goes.

Consider an internal category

$$M * M \xrightarrow{m} M \xrightarrow{d}_{c} O$$

and the induced relation S on M defined by

 $\beta S \alpha \qquad \Leftrightarrow \qquad \exists_{\gamma \in M} \quad \gamma \beta = \alpha$

as on page 103 of [1]. Then the relation S is not just reflexive as mentioned there, but it is clearly also transitive. As a consequence, condition (i) tells us that S is an equivalence relation on M. Now given any $\alpha \in M$, we have that $1_{d(\alpha)}S\alpha$. Hence $\alpha S1_{d(\alpha)}$ yields an element α of M such that $\alpha \alpha = 1_{d(\alpha)}$. Via a similar argument we obtain $\alpha^{\bullet} \in M$ satisfying $\alpha \alpha^{\bullet} = 1_{c(\alpha)}$. We have

$$\bullet \alpha = \bullet \alpha(\alpha \alpha \bullet) = (\bullet \alpha \alpha) \alpha \bullet = \alpha \bullet,$$

so ${}^{\bullet}\alpha = \alpha^{\bullet}$ is a two-sided inverse for α . Finally, given any other such inverse α^{-1} ,

$$\alpha^{-1} = \alpha^{-1}(\alpha \alpha^{\bullet}) = (\alpha^{-1}\alpha)\alpha^{\bullet} = \alpha^{\bullet},$$

which proves its uniqueness.

References

- A. Carboni, M. C. Pedicchio, and N. Pirovano, Internal graphs and internal groupoids in Mal'cev categories, Proceedings of Conf. Category Theory 1991, Montreal, Am. Math. Soc. for the Canad. Math. Soc., Providence, 1992, pp. 97–109.
- [2] I. Chajda and J. Rachůnek, Relational characterizations of permutable and n-permutable varieties, Czechoslovak Math. J. 33 (1983), 505–508.
- [3] J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8–12.
- [4] Z. Janelidze, D. Rodelo, and T. Van der Linden, On permutability of congruences in categories, in preparation, 2012.
- [5] N. Martins-Ferreira and T. Van der Linden, Categories vs. groupoids via generalised Mal'tsev properties, preprint arXiv:1206.2745v1, 2012.
- [6] D. Rodelo, Internal structures in n-permutable varieties, J. Pure Appl. Algebra 216 (2012), no. 8–9, 1879–1886.

Diana Rodelo

CMUC, University of Coimbra, 3001–501 Coimbra, Portugal Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005–139 Faro, Portugal

$E\text{-}mail\ address: \texttt{drodelo@ualg.pt}$

TIM VAN DER LINDEN

Institut de recherche en mathématique et physique, Université catholique de Louvain, chemin du cyclotron 2 b
te L7.01.02,B–1348 Louvain-la-Neuve, Belgium

 $E\text{-}mail\ address: \texttt{tim.vanderlinden@uclouvain.be}$