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1. Introduction
The principal objective of this paper is to present a common account to the

study of ordered compact Hausdorff spaces and stably compact spaces on one
side and monoidal categories and representable multicategories on the other
one. Both theories have similar features but were developed independently.

On the topological side, the starting point is the work of Stone on the repre-
sentation of Boolean algebras [29] and distributive lattices [30]. In the latter
paper, Stone proves that (in modern language) the category of distributive
lattices and homomorphisms is dually equivalent to the category of spectral
topological spaces and spectral maps. Here a topological space is spectral
whenever it is sober and the compact open subsets form a basis for the topol-
ogy which is closed under finite intersections; and a continuous map is called
spectral whenever the inverse image of a compact open subset is compact.
Later Hochster [14] showed that spectral spaces are, up to homeomorphism,
the prime spectra of commutative rings with unit, and in the same paper
he also introduced a notion of dual spectral space. A different perspective
on duality theory for distributive lattices was given by Priestley in [26]: the
category of distributive lattices and homomorphisms is also dually equivalent
to the category of certain ordered compact Hausdorff spaces (introduced by
Nachbin in [25]) and continuous monotone maps. In particular, this full sub-
category of the category of ordered compact Hausdorff spaces is equivalent
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to the category of spectral spaces. In fact, this equivalence generalises to all
ordered compact Hausdorff spaces: the category OrdCompHaus of ordered
compact Hausdorff spaces and continuous monotone maps is equivalent to
the category StablyComp of stably compact spaces and spectral maps (see
[10]). Furthermore, as shown in [28] (see also [8]), stably compact spaces can
be recognised among all topological spaces by a universal property; namely,
as the algebras for a Kock-Zöberlein monad (or lax idempotent monad, or
simply KZ; see [22]) on Top. Finally, Flagg [9] proved that OrdCompHaus
is also monadic over ordered sets.

Independently, a very similar scenario was developed by Hermida in [12, 13]
in the context of higher-dimensional category theory, now with monoidal
categories and multicategories in lieu of ordered compact Hausdorff spaces
and topological spaces. More specifically, he introduced in [12] the notion
of representable multicategory and constructed a 2-equivalence between the
2-category of representable multicategories and the 2-category of monoidal
categories; that is, representable multicategories can be seen as a higher-
dimensional counterpart of stably compact topological spaces. More in detail,
we have the following analogies:

topological space multicategory,
ordered compact Hausdorff space monoidal category,

stably compact space representable multicategory;

and there are KZ-monadic 2-adjunctions

OrdCompHaus >
**

jj Top MonCat >
**

jj MultiCat,

which restrict to 2-equivalences

OrdCompHaus ' StablyComp MonCat ' RepMultiCat.

To bring both theories under one roof, we consider here the setting used
in [7] to introduce (T,V)-categories; that is, a symmetric monoidal closed
category V together with a (not necessarily cartesian) monad T on Set laxly
extended to the bicategory V-Rel of V-relations. After recalling the notions
of (T,V)-categories and (T,V)-functors, we proceed showing that the above-
mentioned results hold in this setting: the Set-monad T extends naturally
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to V-Cat, and its Eilenberg–Moore category admits an adjunction

(V-Cat)T >
**

jj (T,V)-Cat,

so that the induced monad is of Kock-Zöberlein type. Following the terminol-
ogy of [12], we call the pseudo-algebras for the induced monad on (T,V)-Cat
representable (T,V)-categories. We explain in more detail how this notion
captures both theories mentioned above. Finally, we introduce a notion of
dual (T,V)-category. We recall that this concept turned out to be crucial in
the development of a completeness theory for (T,V)-categories when V is a
quantale, i.e. a small symmetric monoidal closed complete category (see [5]).

From a more formal point of view, (T,V)-categories are monads within a
certain bicategory-like structure. Some of the theory presented in this paper
is “formal monad theoretic” in character. This perspective will be developed
in an upcoming paper [4].

2. Basic assumptions
Throughout the paper V is a complete, cocomplete, symmetric monoidal-

closed category, with tensor product ⊗ and unit I. Normally we avoid explicit
reference to the natural unit, associativity and symmetry isomorphisms.

The bicategory V-Rel of V-relations (also called Mat(V): see [2, 27]) has
as

– objects sets, denoted by X, Y , . . . , also considered as (small) discrete
categories,

– arrows (=1-cells) r : X −→7 Y are families of V-objects r(x, y) (x ∈ X, y ∈
Y ),

– 2-cells ϕ : r → r′ are families of morphisms ϕx,y : r(x, y) → r′(x, y)
(x ∈ X, y ∈ Y ) in V, i.e., natural transformations ϕ : r → r′; hence, their
(vertical) composition is computed componentwise in V:

(ϕ′ · ϕ)x,y = ϕ′x,yϕx,y.

The (horizontal) composition of arrows r : X −→7 Y and s : Y −→7 Z is given
by relational multiplication:

(sr)(x, z) =
∑
y∈Y

r(x, y)⊗ s(y, z),
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which is extended naturally to 2-cells; that is, for ϕ : r → r′, ψ : s→ s′,

(ψϕ)x,z =
∑
y∈Y

ϕx,y ⊗ ψy,z : (sr)(x, z)→ (s′r′)(x, z).

There is a pseudofunctor Set −→ V-Rel which maps objects identically
and treats a Set-map f : X → Y as a V-relation f : X−→7 Y in V-Rel,
with f(x, y) = I if f(x) = y and f(x, y) = ⊥ otherwise, where ⊥ is a fixed
initial object of V. If an arrow r : X−→7 Y is given by a Set-map, we shall
indicate this by writing r : X → Y , and by normally using f, g, . . . , rather
than r, s, . . . .

Like for V, in order to simplify formulae and diagrams, we disregard the
unity and associativity isomorphisms in the bicategory V-Rel when conve-
nient.

V-Rel has a pseudo-involution, given by transposition: the transpose r◦ :
Y −→7 X of r : X −→7 Y is defined by r◦(y, x) = r(x, y); likewise for 2-cells.
In particular, there are natural and coherent isomorphisms

(sr)◦ ∼= r◦s◦

involving the symmetry isomorphisms of V. The transpose f ◦ of a Set-map
f : X → Y is a right adjoint to f in the bicategory V-Rel, so that f is really
a “map” in Lawvere’s sense; hence, there are 2-cells

1X
λf
// f ◦f and ff ◦

ρf
// 1Y

satisfying the triangular identities.

We fix a monad T = (T, e,m) on Set with a lax extension to V-Rel, again
denoted by T, so that:

– There is a lax functor T : V-Rel → V-Rel which extends the given Set-
functor; hence, for an arrow r : X −→7 Y we are given Tr : TX −→7 TY ,
with Tr a Set-map if r is one, and T extends to 2-cells functorially:

T (ϕ′ · ϕ) = Tϕ′ · Tϕ, T1r = 1Tr;

furthermore, for all r and s : Y −→7 Z there are natural and coherent 2-cells

κ = κs,r : TsTr −→ T (sr),
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so that the following diagrams commute:

TsTr
κs,r

//

(Tψ)(Tϕ)
��

T (sr)

T (ψϕ)
��

TtT (sr)
κt,sr

// T (tsr)

Ts′Tr′
κs′,r′

// T (s′r′) TtTsTr
κt,s−

//

−κs,r
OO

T (ts)Tr

κts,r

OO
(lax)

(also: κr,1X = 1Tr = κ1Y ,r; all unity and associativity isomorphisms are
suppressed).

Furthermore, we assume that T (f ◦) = (Tf)◦ for every map f .
It follows that whenever f is a set map κs,f is invertible. Its inverse is the
composite

T (sf)
−λTf−−−→ T (sf)Tf ◦Tf

κsf,f◦−−−−−→ T (sff ◦)Tf
T (sρf )−−−−−→ TsTf.

Also, κf◦,s is invertible. Its inverse is the composite

T (f ◦s)
λTf−−−−→ TfT (f ◦s)

−κf,f◦s−−−−→ Tf ◦T (ff ◦s)
−T (ρfs)−−−−→ Tf ◦Ts.

– The natural transformations e : 1 → T , m : T 2 → T of Set are op-lax in
V-Rel, so that for every r : X −→7 Y one has natural and coherent 2-cells

α = αr : eY r → TreX , β = βr : mY T
2r → TrmX , as in

X �r //

eX
��

Y

eY
��

α⇐
T 2X �T 2r //

mX
��

T 2Y
β⇐ mY

��

TX �

Tr
// TY TX �

Tr
// TY

(oplax)

such that αf = 1eY f , βf = 1mY T 2f whenever r = f is a Set-map.
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– The following diagrams commute (where again we disregard associativity
isomorphisms):

mY TeY Tr
−κeY ,r

//

1

��

mY T (eY r)
−Tαr// mY T (TreX)

−κ−1
Tr,eX��

mY eTY Tr
−αTr //

1 ��

mY T
2reTX
βr−��

mY T
2rTeX
βr−��

Tr
1 // TrmXeTX Tr

1 // TrmXTeX

mY TmY T
3r

1 ��

−κmY ,T2r
// mY T (mY T

2r)
−Tβr // mY T (TrmX)

−κ−1
Tr,mX��

mYmTY T
3r

−βTr ��

mY T
2rTmX

βr−��
mY T

2rmTX
βr−

// TrmXmTX 1
// TrmXTmX .

(mon)

– One also needs the coherence conditions

eZsr
αs− //

1
��

TseY r
−αr // TsTreX

κs,r−��

eZsr
αsr // T (sr)eX

mZT
2sT 2r

βs− //

−κTs,Tr ��

TsmY T
2r
−βr // TsTrmX

κs,r−

��

mZT (TsTr)
−Tκs,r ��
mZT

2(sr)
βsr // T (sr)mX .

(coh)

– And the following naturality conditions, for all ϕ : r → r′,

TϕeX · αr = αr′ · eYϕ and TϕmX · βr = βr′ ·mY T
2ϕ. (nat)

The op-lax natural transformations e and m induce two lax natural trans-
formations

(e◦, α̂) : T → IdV-Rel and (m◦, β̂) : T → T 2

on V-Rel: for each r : X−→7 Y we have

TX �Tr //

_e◦X
��

α̂⇒
TY

_ e◦Y
��

TX �Tr //

_m◦X ��
β̂⇒

TY
_ m◦Y��

X �
r
// Y T 2X �

T 2r
// T 2Y
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where α̂r : re◦X → e◦Y Tr and β̂r : T 2rm◦X → m◦Y Tr, are mates of αr and βr
respectively, i.e. they are defined by the composites:

re◦X
λeY − // e◦Y eY re

◦
X

−αr− // e◦Y TreXe
◦
X

−ρeX // e◦Y Tr

T 2rm◦X
λmY

−
// m◦YmY T

2rm◦X
−βr−// m◦Y TrmXm

◦
X

−ρmX// m◦Y Tr.

3. (T,V)-categories
Now we define the 2-category (T,V)-Cat of (T,V)-categories, (T,V)-

functors and transformations between these:

– (T,V)-categories are defined as (X, a, ηa, µa), with X a set, a : TX −→7 X
a V-relation, and ηa and µa 2-cells as in the following diagrams:

X

1X !!

eX // TX
_ a
��

TX
_a
��

T 2X�Taoo

mX
��

ηa⇒
X X

µa⇒
TX�

a
oo

furthermore, ηa, µa provide a generalized monad structure on a, i.e., the
following diagrams must commute (modulo associativity isomorphisms):

aeXa
−αa // aTaeTX

µa−
��

aT (aeX)
−κ−1a,eX // aTaTeX

µa−
��

a

ηa−
OO

1 // amXeTX a

−Tηa
OO

1 // amXTeX

aTaT 2a
−κa,Ta

//

µa−
��

aT (aTa)
−Tµa // aT (amX)

−κ−1a,mX
��

amXT
2a

−βa
��

aTaTmX

µa−
��

aTamTX
µa− // amXmTX

1 // amXTmX .

(cat)

We will sometimes denote a (T,V)-category (X, a, ηa, µa) simply by (X, a).
– A (T,V)-functor (f, ϕf) : (X, a, ηa, µa) → (Y, b, ηb, µb) between (T,V)-

categories is given by a Set-map f : X → Y equipped with a 2-cell ϕf :
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fa→ bTf

TX
Tf
//

_a
��

TY
_ b
��

X
f
//

ϕf⇒
Y.

making the following diagrams commute:

f
−ηa //

ηb−
��

faeX

ϕf−
��

beY f
1 // bTfeX

faTa
−µa //

ϕf−
��

famX

ϕf−

��
bTfTa

−κf,a
��

bTfmX

1

��

bT (fa)

−Tϕf

��

bT (bTf)
−κ−1b,Tf

// bTbT 2f
µb− // bmY T

2f

(fun)

– A (T,V)-natural transformation (or simply a natural transformation) be-
tween (T,V)-functors (f, ϕf)→ (g, ϕg) is defined as a 2-cell ζ : ga→ bTf

TX
Tf
//

_a
��

TY
_ b
��

X g
//

ζ⇒
Y.
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such that the two sides of the following diagram commute

gaeXa
ζ−
ww

ga
−ηa−oo

ζ

��

1 // ga
ϕg

((
bTfeXa

1
��

bTg

−T (gηa)
��

beY fa
−ϕf
��

bT (gaeX)

−T (ζeX)
��

beY bTf

−αb− &&

bT (bTfeX)

−κ−1b,eY ,f
vv

bTbeTY Tf µb−
// bTf bTbTeY Tfµb−

oo

Such a 2-cell ζ is determined by the 2-cell

(g
ζ0 // beY f) = (g

−ηa // gaeX
ζ−
// bTfeX = beY f), (ζ0)

from which it can be reconstructed by either side of the above diagram.

The composite of (T,V)-functors (f, ϕf) and (g, ϕg) is defined by the pic-
ture

TX
Tf
//

_a
��

TY
_ b
��

Tg
// TZ

_ c
��

X
f

//

ϕf⇒
Y g

//

ϕg⇒
Z,

that is as (gf, ϕgf), with ϕgf = (ϕgTf)(gϕf). The identity (T,V)-functor on
(X, a) is (1X , 1a). The horizontal composition of (T,V)-natural transforma-
tions ζ : (f, ϕf)→ (g, ϕg) and ζ ′ : (f ′, ϕf ′)→ (g′, ϕg′) is defined by a picture
obtained from the above one by replacing φf and φg with ζ and ζ ′. The
vertical composition of (T,V)-natural transformations ζ : (f, ϕf) → (g, ϕg)
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and ζ ′ : (g, ϕg)→ (h, ϕh) is defined by the diagram

TX

1TX
Tηa⇒
""

TeX ��

Tf
// TY

TeY��

` bmY TeY =bµb−⇒

��

T 2X
Tζ⇒_Ta

��

T 2f
// T 2Y

_ Tb
��

TX

ζ ′⇒

Tg
//

_a
��

TY
_ b
��

X
h // Y ;

The identity natural transformation on a (T,V)-functor (f, ϕf) is the 2-cell
ϕf itself.

The definitions of horizontal and vertical compositions can be naturally
stated in terms of the alternative definition of (T,V)-natural transformation
too.

When T is the identity monad, identically extended to V-Rel, the category
(T,V)-Cat is exactly the 2-category V-Cat of V-categories, V-functors and
V-natural transformations.

Next we summarize briefly our two main examples. In the first example,
V = 2 and T is the ultrafilter monad together with a suitable extension to
2-Rel = Rel. In this case (T,V)-Cat is the category of topological spaces
and continuous maps. In the second example, V = Set and T is the free-
monoid monad with a suitable extension to Set-Rel = Span. In this case
(T,V)-Cat is the category of multicategories and multifunctors. For details
on these examples, as well as for other examples, see [7, 18].

For any T there is an adjunction of 2-functors:

V-Cat >
A◦

**

Ae

jj (T,V)-Cat (adj)

Ae is the algebraic functor associated with e, that is, for any (T,V)-
category (X, a, ηa, µa), (T,V)-functor (f, ϕf) and (T,V)-natural transfor-
mation ζ : (f, ϕf)→ (g, ϕg), Ae(X, a, ηa, µa) = (X, aeX , ηa, µa), where

(aeXaeX
µa // aeX) = (aeXaeX

−αa−// aTaeTXeX
µa− // amXeTXeX = aeX),
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Ae(f, ϕf) = (f, ϕfeX) and Ae(ζ) = ζeX (see [7] for details).
A◦ is defined as follows. For a V-category (Z, c, ηc, µc), A

◦(Z, c, ηc, µc) is
the (T,V)-category (Z, c], ηc], µc]) where c] = e◦ZTc, while ηc] : 1 → e◦ZTceZ
and µc] : e◦ZTcT (e◦ZTc)→ e◦ZTcmZ are defined by the composites

1
λeZ // e◦ZeZ

−Tηc−// e◦ZTceZ

T 2Z

mZ

��

�T
2c //

µc⇐

�T (e◦Tc)

κ−1
e◦,T c⇐

&&
T 2Z �Te◦Z //

1TZ ��
ρTeZ⇐

TZ
_Tc
��

TeZppT 2Z

mZ
��

TZ

_e◦Z

��TZ �

Tc
//

�

Tc

Tµc⇐
::TZ �

Tc
// T 2Z �

e◦Z

//

For a V-functor (f, ϕf) : (Z, c)→ (Z ′, c′), A◦(f, ϕf) is defined by the diagram

TZ �Tc //

Tf
��

TZ �e
◦
Z //

Tf
��

Z

f
��

TZ ′ �

Tc′
//

ϕf⇐
TZ ′ �

e◦
Z′

//

⇐
Z ′,

wherein the right 2-cell is the mate of the identity 2-cell 1TfeZ=eZ′f . On
V-natural transformations A◦ is defined by a similar diagram. By direct
verifications A◦ is indeed a 2-functor, and as already stated we have:

Proposition 3.1. A◦ is a left 2-adjoint to Ae.

Proof : The unit of the adjunction has the component at a V-category (Z, c)
given by a V-functor consisting of 1Z and the 2-cell

c
λeZ−// e◦ZeZc

−αc // e◦ZTceZ

The counit of the adjunction has the component at a (T,V)-category (X, a)
given by a (T,V)-functor consisting of 1X and the 2-cell

e◦XT (aeX)
−κ−1a,eX// e◦XTaTeX

ηa− // aeXe
◦
XTaTeX

−ρeX−// aTaTeX
µa− // amXTeX = a.
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The triangle identities are then directly verified.

The next proposition is a (T,V)-categorical analogue of the ordinary- and
enriched-categorical fact that an adjunction between functors induces iso-
morphisms between hom-sets/-objects.

Proposition 3.2. Given an adjunction (f, ϕf) a (g, ϕg) : (X, a)→ (Y, b) in
the 2-category (T,V)-Cat, there is an isomorphism: g◦a ∼= bTf.

Proof : The unit and the counit of the given adjunction are (T,V)-natural
transformations (1X , 1a)→ (g, ϕg)(f, ϕf) and (f, ϕf)(g, ϕg)→ (1Y , 1b). These
are given by 2-cells υ0 : gf → aeX and ε0 : 1Y → aeY fg respectively. Define
a 2-cell bTf → g◦a by

TX
Tf

//

TeX
��

1TX

oo

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g

��

1Y //

λg⇐

Y,

T 2X

mX

��

�Ta //

µa⇐
TX �a // X

g◦

88

TX
'
a

88

wherein the blank symbols stand for the obvious instances of κ or κ−1. In
the opposite direction define a 2-cell g◦a→ bTf by

Y

g
��

ρg⇐

1Y
ε0⇐

��

TX �
a

//

Tf
��

ϕf⇐

X

f
��

1X //

g◦
77

X

f
��

TY �b //

eTY
��

1TY

//

αb⇐
Y

eY
��

Y

eY
��

T 2Y �

b
//

mY

��

µb⇐
TY

_b
��

TY

_ b
��

TY �

b
// Y

1Y
// Y.

These two 2-cells are inverses to each other. The following calculation shows
that the equality (bTf → g◦a→ bTf) = 1bTf holds. The remaining equation
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is proved using analogous arguments. Pasting the first diagram on top of the
second, and using the equation (gλg)(ρgg) = 1g we obtain

TX
Tf

//

TeX
��

1TX

oo

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

		

T 2X

mX

��

�Ta //

µa⇐
TX �a // X

f

��

TX
'
a

77

Tf
��

ϕf⇐
TY �b //

eTY
��

1TY

//

αb⇐
Y

eY
��

T 2Y �

b
//

mY

��

µb⇐

TY

_b
��

TY �

b
// Y ;

using (fun) for (f, ϕf) we get

TX
Tf

//

TeX
��1TX

��

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

		

T 2X

T 2f
��

�Ta //

−Tϕf−⇐
mX

{{

TX �a //

Tf
��

ϕf⇐

X

f
��

TX

Tf ##

T 2Y �Tb //

mY

��

µb⇐
TY �b // Y

eY

��

TY

eTY
��

'

b

77

1TY

//

αb⇐
T 2Y �

b
//

mY

��

µb⇐
TY

_b
��

TY �

b
// Y.
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Then, using naturality of α we obtain

TX
Tf

//

TeX
��1TX

��

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

		

T 2X

T 2f
��

�Ta //

−Tϕf−⇐
mX

{{

TX �a //

Tf
��

ϕf⇐

X

f
��

TX

Tf
��

T 2Y
mY

{{

�Tb //

eT2Y
��

αTb⇐

TY

eTY
��

�b //

αb⇐

Y

eY
��

TY

1TY

%%

eTY ##

T 3Y �T
2b //

TmY
��

−Tµb−⇐

T 2Y �Tb // TY

_b

��

T 2Y

mY

��

'

Tb

77

µb⇐
TY �

b
// Y,

and using the associativity axiom in (cat) for µb we get

TX
Tf

//

TeX
��

Tf

//

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX �a //

Tf
��

ϕf⇐

X

f
��

T 2Y �Tb //

eT2Y
��

αTb⇐

TY

eTY
��

�b //

αb⇐

Y

eY
��

T 3Y �T
2b //

TmY

		
mTY

��
−Tµb−⇐

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y T 2Y

mY

��

�Tb //

µb⇐
TY �b // Y.

TY
&

b

77

mY ��
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From (mon) we obtain

TX
Tf

//

TeX
��

Tf

//

−Tυ0−⇐

TY �b //

Tg
��

ϕg⇐

Y

g
��

1Y
ε0⇐

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX �a //

Tf
��

ϕf⇐

X

f
��

T 2Y

1T2Y

��

�Tb //

eT2Y
��

TY

1T2Y

��

eTY
��

�b //

αb⇐

Y

eY
��

T 3Y

mTY

��

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y

mY

��

�Tb //

µb⇐

TY �b // Y,

TY
'

b

77

and the axiom of a (T,V)-natural transformation for ε0 gives

TX
Tf

//

TeX
��

Tf

//

−Tυ0−⇐

TY

Tg
��

1TY

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX

Tf
��

T 2Y

1T2Y

��

�Tb // TY

1T2Y

��

TeY
��

−Tε0−⇐

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y

mY

��

�Tb //

µb⇐
TY �b // Y.

TY
'

b

77
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Using (mon) again we obtain

TX
Tf

//

TeX
��

Tf

//

−Tυ0−⇐

TY

Tg
��

1TY

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX

Tf
��

T 2Y

1T2Y

��

TeTY
��

�Tb //

−Tαb−⇐

TY

TeY
��

−Tε0−⇐

T 3Y

mTY

��

�T
2b //

βb⇐

T 2Y

mY

��

�Tb //

µb⇐

TY

_b
��

T 2Y

mY

��

�Tb //

µb⇐

TY �b // Y,

TY
'

b

77

and using associativity of µb again we get

TX
Tf

//

TeX
��

Tf

//

−Tυ0−⇐

TY

Tg
��

1TY

��

T 2X

T 2f
��

�Ta //

−Tϕf−⇐

TX

Tf
��

T 2Y

TeTY
��

�Tb //

−Tαb−⇐

TY

TeY
��

−Tε0−⇐

T 3Y
mTY

		
TmY
��

�T
2b //

−Tµb−⇐

T 2Y �Tb // TY

_b
��

T 2Y T 2Y

mY

��

'Tb

77

µb⇐
Y.

TY
mY �� &

b

77
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Now, one of the triangle equations satisfied by the unit υ0 and the counit ε0
of our adjunction gives us

TX
Tf

//

TeX
��

Tf

//

−Tηb−⇐

TY

TeY

��

1TY

��

T 2X

T 2f
��

T 2Y

TeTY
��

�
Tb

++
1TY

��

T 3Y

TmY
��

TY

_b
��

T 2Y

mY

��

'Tb

88

µb⇐

Y,

TY
'

b

88

and finally, by the unity axiom in (cat), this equals to

TX
Tf

//

Tf

��

TY
TeY
{{

b

��

T 2Y
mY

{{

TY
b // Y,

which is the identity map 1bTf .
We leave it to the reader to verify the equality (g◦a → bTf → g◦a) =

1g◦a.

4. T as a V-Cat monad
In this section we show that the properties of the lax extension of the

Set-monad T to V-Rel allow us to extend T to V-Cat. Straightforward
calculations show that:

Lemma 4.1. (1) If (X, a, ηa, µa) is a V-category, then (TX, Ta, Tηa, Tµaκa,a)
is a V-category.
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(2) If (f, ϕf) : (X, a, ηa, µa) → (Y, b, ηb, µb) is a V-functor, then (Tf, ϕTf) :
(TX, Ta)→ (TY, Tb), where ϕTf := κ−1

b,f Tϕf κf,a, is a V-functor as well.

(3) If ζ : (f, ϕf)→ (g, ϕg) is a V-natural transformation, then so is κ−1
b,fTζ κf,a :

(Tf, ϕTf)→ (g, ϕTg).

These assignments define an endo 2-functor on V-Cat that we denote again
by T : V-Cat → V-Cat. The 2-cells α, β of the oplax natural transforma-
tions e,m on V-Rel equip e and m so that they become natural transforma-
tions in V-Cat, as we show next.

Lemma 4.2. For each V-category (X, a):

(1) (eX , αa) : (X, a)→ (TX, Ta) is a V-functor;
(2) (mX , βa) : (T 2X,T 2a)→ (TX, Ta) is a V-functor.

Proof : To check that the diagrams

eX
−ηa //

Tηa−
��

eXa

αauu

mX

−ηT2a //

ηTa−
��

mXT
2a

βauu
TaeX TamX

commute one uses the naturality conditions (nat) with respectively ϕ = η
and ϕ = β. For the diagrams

eXaa
−µa //

αa−
�� αa,a

$$

eXa

αa

��

TaeAa

−αa
��

TaTaeX

1
2

κa,a−
// T (aa)eX

Tµa− // TaeX

mXT
2aT 2a

−κTa,Ta
//

βa−
��

mXT (TaTa)
−Tκa,a

// mXT
2(aa)

−T 2µa //

βaa

��

mXT
2a

βa

��

TamXT
2a

−βa
��

TaTamX

3

κa,a−
// T (aa)mX

4

Tµa− // TamX
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commutativity of 1 and 3 follows from the coherence conditions (coh), while
commutativity of 2 and 4 follows from the naturality conditions (nat).

Lemma 4.3. For each V-category (X, a), let e(X,a) = (eX , αa) and m(X,a) =
(mX , βa).

(1) e = (e(X,a))(X,a)∈V-Cat : IdV-Cat → T is a 2-natural transformation.
(2) m = (m(X,a))(X,a)∈V-Cat : T 2 → T is a 2-natural transformation.

Proof : To check that, in the diagrams

X
eX //

>a

��

f

��

TX
8

Ta||
Tf

��

T 2X
mX //

6T 2a

{{

T 2f

��

TX
8

Ta||
Tf

��

X

⇓ϕf

αa⇒
eX //

f

��

TX

⇓ϕTf

Tf

��

T 2X

⇓ϕT2f

βa⇒

T 2f

��

mX // TX

⇓ϕTf

Tf

��

Y
eY //

>b

��

TY
8

Tb||

T 2Y
mY //

6T 2b

{{

TY
8

Tb||

Y

αb⇒
eY // TY T 2Y

βb⇒
mY // TY

the composition of the 2-cells commute, one uses again diagrams (nat) and
(coh). To prove 2-naturality just take in these diagrams a 2-cell ζ giving a
transformation of (T,V)-functors instead of ϕf .

Theorem 4.4. (T, e,m) is a 2-monad on V-Cat.

Proof : It remains to check the commutativity of the diagrams

(TX, Ta)
(eTX ,αTa) //

(1,1)

%%

(T 2X,T 2a)

(mX ,βa)

��

(TX, Ta)
(TeX ,κTαaκ−1)
oo

(1,1)

yy

(T 3X,T 3a)
(mTX ,βTa) //

(TmX ,κTβaκ
−1)

��

(T 2X,T 2a)

(mX ,βa)

��
(TX, Ta) (T 2X,T 2a)

(mX ,βa) // (TX, Ta)

which follows again from diagrams (nat) and (coh).
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Denoting the 2-category of algebras of this 2-monad by (V-Cat)T, we get
a commutative diagram

SetT

a UT

��

//> (V-Cat)T

a UT

��

oo

Set

FT

OO

//> V-Cat
oo

FT

OO
(T-alg)

5. The fundamental adjunction

From now on we assume that β̂r : Trm◦X → m◦Y Tr is an isomorphism for
each V-relation r : X−→7 Y , so that m◦ : T → T 2 becomes a pseudo-natural
transformation on V-Rel.

In this section we will build an adjunction

(V-Cat)T >
K

**

M

jj (T,V)-Cat (ADJ)

Let ((Z, c, ηc, µc), (h, ϕh)) be an object of (V-Cat)T. The V-category unit
ηc is a 2-cell 1Z → c = cheZ . Let µ̃c be the 2-cell defined by:

chT (ch)
−κc,h

// chTcTh
−ϕh−// cchTh = cchmZ

µc− // chmZ . (µ̃c)

Lemma 5.1. The data (Z, ch, ηc, µ̃c) gives a (T,V)-category.

Proof : Each of the three (T,V)-category axioms follows from the correspond-
ing V-category axiom for (Z, c, ηc, µc), using (mon) and the fact that (h, ϕh)
is an algebra structure.

We set

K((Z, c, ηc, µc), (h, ϕh)) = (Z, ch, ηc, µ̃c).

K extends to a 2-functor in the following way. For a morphism of T-
algebras (f, ϕf) : ((Z, c), h)→ ((W,d), k), we set K(f, ϕf) = (f, ϕfh), where
ϕfh : fch −→ dfh = dkTf . For a natural transformation of T-algebras
ζ : (f, ϕf) → (g, ϕg) we define K(ζ) = ζh. By straightforward calculations
these indeed define a 2-functor.
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Let now (X, a, ηa, µa) be a (T,V)-category. Denote â = Tam◦X . Define a
2-cell ηâ : 1TX → â by the composite

1TX = T1X
Tηa // T (aeX)

κ−1a,eX // TaTeX
−λmX

−
// Tam◦XmXTeX = Tam◦X , (ηâ)

and define µâ : ââ→ â by

TX �m
◦
X //

_m◦X ��

T 2X �Ta //

_m◦TX ��
β̂−1

⇐

TX
_m◦X ��

T 2X �Tm◦X //

ρTm◦X⇐
1T2X

00

T 3X �T 2a //

TmX
��

−Tµa−⇐
T 2X

_Ta
��

TX �a // X

Lemma 5.2. The data (TX, â, ηâ, µâ) determines a V-category.

Proof : The three V-category axioms follow from the corresponding (T,V)-
category axioms for (X, a, ηa, µa).

Let ϕâ : mXT â→ âmX be the composite 2-cell

T 2X

mX
��

�Tm◦X //

⇐

�T (Tam◦X)

κ−1
Ta,m◦X⇐

%%

T 3X �T 2a //

mTX
��

βa⇐
T 2X

mX
��

TX �

m◦X

// T 2X �

Ta
// TX

Wherein the left 2-cell is the mate of the identity map 1mXmTX=mXTmX
. Direct

calculations yield:

Lemma 5.3. The pair (mX , ϕâ) is a V-functor T (TX, â)→ (TX, â); more-
over, it defines a T-algebra structure on the V-category (TX, â).

We set

M(X, a) = ((TX, â), (mX , ϕâ)).
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We extend this construction to a 2-functor as follows. For a (T,V)-functor
(f, ϕf) : (X, a)→ (Y, b), M(f, ϕf) = (Tf, ϕ̃Tf), where ϕ̃Tf is given by

TX

Tf
��

�m
◦
X //

β̂f⇐

T 2X �Ta //

T 2f ��
−Tϕf−⇐

TX

Tf
��

TY �

m◦Y

// T 2Y �

Tb
// TY

For a natural transformation of (T,V)-functors ζ : (f, ϕf) → (g, ϕg), M(ζ)
is defined by a similar diagram. By direct verification M is a 2-functor.

Theorem 5.4. M is a left 2-adjoint to K.

Proof : Given a (T,V)-category (X, a, ηa, µa),

(eX , α̃a) : (X, a, ηa, µa) // KM(X, a, ηa, µa) = (TX, Tam◦XmX , ηâ, µ̃a),

is a (T,V)-functor, where α̃a is the composite

(eXa
αa // TaeTX

−λmX
−
// Tam◦XmXeTX = Tam◦XmXTeX), (unit)

These functors define a natural transformation 1→ KM . Given a T-algebra
((Z, c, ηc, µc), (h, ϕh)),

(h, ϕ̃h) : MK((Z, c, ηc, µc), (h, ϕh)) = (TZ, T (ch)m◦X , η̂ch, µĉh)
// ((Z, c, ηc, µc), (h, ϕh)) ,

is a morphism of T-algebras, where ϕ̃h is defined as

hT (ch)m◦X
−κ−1c,h−−−→ hTcThm◦X

ϕh−−−→ chThm◦X = chmXm
◦
X

−ρmX−−−→ ch,

These define a natural transformation MK → 1. These natural transfor-
mations serve as the unit and the counit of our adjunction. The triangle
identities are straightforwardly verified.

6. T as a (T,V)-Cat monad
Let us identify the 2-monad on (T,V)-Cat induced by the adjunction

K aM , which we denote again by T = (KM = T, e,m).
Thus, T = KM is a 2-endofunctor on (T,V)-Cat. To a (T,V)-category

(X, a, ηa, µa) it assigns the (T,V)-category (TX, âmX = Tam◦XmX , ηâ, µ̃â)
with components defined in the diagrams (ηâ) and (µ̃c) of the last section, to
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a (T,V)-functor (f, ϕf) it assigns the (T,V)-functor (Tf, ϕ̃f) which can be
diagrammatically specified by

T 2X

mX
��

T 2f
// T 2Y

mY
��

TX
_m◦X ��

Tf
// TY

_ m◦Y��

T 2X

β̂f⇒
_Ta
��

T 2f
// T 2Y

_ Tb
��

TX

Tϕf⇒Tf
// TY.

and the T-image of a (T,V)-natural transformation ζ : (f, ϕf) → (g, ϕg) is
computed by a similar diagram.

The unit of the 2-monad is the unit (e, α̃) of the adjunction K a M de-

fined in (unit). The multiplication of the 2-monad is given by (m, β̃), the
component of which at a (T,V)-category (X, a), – which is a (T,V)-functor
MKMK(X, a)→MK(X, a) –, is pictorially described by:

T 3X

_MKMK(a)

//

mTX
��

TmX // T 2X

_ MK(a)

oo

mX
��

T 2X
mX //

_m◦TX ��

TX

1
��

T 3X mXmTX

//

−ρmTX⇒

TmX
��

TX

1
��

T 2X
_Tm◦X ��

mX // TX
_ m◦X��

T 3X
mTX //

(−ρTmX )(λmX−)
⇒

_
T 2a

��

T 2X
_ Ta
��

T 2X
mX //

βa⇒
TX.

Theorem 6.1. The 2-monad (T, e,m) on (T,V)-Cat is a KZ monad.
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Proof : One of the equivalent conditions expressing the KZ property is the
existence of a modification δ : Te→ eT : T → TT such that

δe = 1ee and mδ = 11T . (mod)

For a (T,V)-category (X, a, µa, ηa), let δ(X,a) be the composite 2-cell

eTX
T 2ηa−// T 2(aeX)eTX

Tκa,eX−// T (TaTeX)eTX
κTa,TeX

−
// T 2aT 2eXeTX

= T (Ta)eT 2XTeX
T (TaλmX

)λmTX
−
// T (Tam◦XmX)m◦TXmTXeT 2XTeX .

This defines a (T,V)-natural transformation

δ(X,a) : (TeX , T α̃a)→ (eTX , α̃âmX
).

The family of these natural transformations gives the required modification
Te → eT . The first of the two required equalities (mod) is straightforward.
The second one follows from (mon).

7. Representable (T,V)-categories: from Nachbin spaces
to Hermida’s representable multicategories

Being a KZ monad, for the monad T on (T,V)-Cat a T-algebra structure
on a (T,V)-category (X, a) is, up to isomorphism, a reflective left adjoint to
the unit e(X,a); hence, having a T-algebra structure is a property, rather than
an additional structure, for any (T,V)-category. As Hermida in [12], we say
that:

Definition 7.1. A (T,V)-category is representable if it has a pseudo-algebra
structure for T.

In the diagram below ((T,V)-Cat)T is the 2-category of T-algebras, FT a
GT is the corresponding adjunction, and K̃ is the comparison 2-functor:

(V-Cat)T

>

K̃ //

K

''

((T,V)-Cat)T

GTvv

⊥

(T,V)-Cat
M

gg FT 66

The composition of the adjunctions FT a GT and A◦ a Ae (see (adj) in
Section 3) gives an adjunction FT

e a GT
e that induces again the monad T on
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V-Cat. Let Ãe be the corresponding comparison 2-functor as depicted in
the following diagram:

(V-Cat)T

>

��

>
K̃

//
K

''

((T,V)-Cat)T

GTvv

⊥

Ãeoo

GT
e

��

⊥

(T,V)-Cat
M

gg FT 66

Ae

��

a

V-Cat

\\

FT
e

AA

A◦

OO

Theorem 7.1. K̃ and Ãe define an adjoint 2-equivalence.

Proof : The isomorphism ÃeK̃ ∼= 1 can be directly verified. We will establish
that K̃Ãe

∼= 1.
Suppose that a (T,V)-functor (f, ϕf) : T (X, a) → (X, a) is a T-algebra

structure on a (T,V)-category (X, a). Observe that the underlying V-

relation of the representable (T,V)-category K̃Ãe((X, a), (f, ϕf)) is aeXf :
TX −→7 TX.

Since T is a KZ monad, following [21], (f, ϕf) is a left adjoint to the unit
(eX , α̃a) of T. By Proposition 3.2 we get an isomorphism

ω : e◦XTam
◦
XmX → aTf.

Let ι denote the composite isomorphism

aeXf = aTfeTX
ω−1−−−−→ e◦XTam

◦
XmXeTX = e◦XTam

◦
XmXTeX

ω−−→ aTfTeX = a.

It can be verified that the pair (1X , ι) is an isomorphism K̃Ãe((X, a), (f, ϕf))→
((X, a), (f, ϕf)) in ((T,V)-Cat)T . The family of these morphisms determine

the required 2-natural isomorphism K̃Ãe
∼= 1.

We explain now how representable (T,V)-categories capture two important
cases which were developed independently.

Nachbin’s ordered compact Hausdorff spaces. For V = 2 and T = U =
(U, e,m) the ultrafilter monad extended to 2-Rel = Rel as in [1], so that, for
any relation r : X−→7 Y , Ur = Uq(Up)◦, where p : R → X, q : R → Y are
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the projections of R = {(x, y) | x r y}. Then 2-Cat ' Ord and the functor
U : Ord→ Ord sends an ordered set (X,≤) to (UX,U≤) where

X (U≤) y whenever ∀A ∈ X, B ∈ y∃x ∈ A, y ∈ B . x ≤ y,

for all X, y ∈ UX. The algebras for the monad U on Ord are precisely the
ordered compact Hausdorff spaces as introduced in [25]:

Definition 7.2. An ordered compact Hausdorff space is an ordered set X
equipped with a compact Hausdorff topology so that the graph of the order
relation is a closed subset of the product space X ×X.

We denote the category of ordered compact Hausdorff spaces and monotone
and continuous maps by OrdCompHaus. It is shown in [32] that, for a
compact Hausdorff space X with ultrafilter convergence α : UX → X and
an order relation ≤ on X, the set {(x, y) | x ≤ y} is closed in X ×X if and
only if α : UX → X is monotone; and this shows

OrdCompHaus ' OrdU,

and the diagram (T-alg) at the end of Section 4 becomes

CompHaus

a UT

��

//> OrdCompHaus

a UT

��

oo

Set

FT

OO

//> Ord.
oo

FT

OO

The functor K : OrdCompHaus→ Top = (U, 2)-Cat of Section 5 can now
be described as sending ((X,≤), α : UX → X) to the space KX = (X, a)
with ultrafilter convergence a : UX−→7 X given by the composite

UX
α // X �≤ // X;

of the order relation ≤: X−→7 X of X with the ultrafilter convergence α :
UX → X of the compact Hausdorff topology of X. In terms of open subsets,
the topology of KX is given precisely by those open subsets of the compact
Hausdorff topology of X which are down-closed with respect to the order
relation of X. On the other hand, for a topological space (X, a), the ordered
compact Hausdorff space MX is the set UX of all ultrafilters of X with the
order relation

UX �m◦X // UUX �Ua // UX,
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and with the compact Hausdorff topology given by the convergence mX :
UUX → UX; put differently, the order relation on UX is defined by

X ≤ y ⇐⇒ ∀A ∈ X . A ∈ y

and the compact Hausdorff topology on UX is generated by the sets

{X ∈ UX | A ∈ X} (A ⊆ X).

The monad U = (U, e,m) on Top induced by the adjunction M a K assigns
to each topological space X the space UX with basic open sets

{X ∈ UX | A ∈ X} (A ⊆ X open).

By definition, a topological space X is called representable if X is a pseudo-
algebra for U, that is, whenever eX : X → UX has a (reflective) left adjoint.
Note that a left adjoint of eX : X → UX picks, for every ultrafilter X
on X, a smallest convergence point of X. The following result provides a
characterisation of representable topological spaces.

Theorem 7.2. Let X be a topological space. The following assertions are
equivalent.

(i) X is representable.
(ii) X is locally compact and every ultrafilter has a smallest convergence

point.
(iii) X is locally compact, weakly sober and the way-below relation on the

lattice of open subsets is stable under finite intersection.
(iv) X is locally compact, weakly sober and finite intersections of compact

down-sets are compact.

Representable T0-spaces are known under the designation stably compact
spaces, and are extensively studied in [11, 19, 23] and [28] (called well-compact
spaces there). One can also find there the following characterisation of mor-
phisms between representable spaces.

Theorem 7.3. Let f : X → Y be a continuous map between representable
spaces. Then the following are equivalent.

(i) f is a pseudo-homomorphism.
(ii) For every compact down-set K ⊆ Y , f−1(K) is compact.
(iii) The frame homomorphism f−1 : OY → OX preserves the way-below

relation.
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Hermida’s representable multicategories. We sketch now some of the
main achievements of [12, 13] which fit in our setting and can be seen as
counterparts to the classical topological results mentioned above. In [12, 13]
Hermida is working in a finitely complete category B admitting free monoids
so that the free-monoid monad M = (M, e,m) is Cartesian; however, for the
sake of simplicity we consider only the case B = Set here. We write Span
to denote the bicategory of spans in Set, and recall that a category can be
viewed as a span

C1
d

~~

c

  

C0 C0

which carries the structure of a monoid in the category Span(C0, C0). The
2-category of monoids in Cat (aka strict monoidal categories) and strict
monoidal functors is denoted by MonCat, and the diagram (T-alg) becomes

Mon

a UT

��

//> MonCat

a UT

��

oo

Set

FT

OO

//> Cat.
oo

FT

OO

A multicategory can be viewed as a span

C1
d

||

c

  

MC0 C0

in Set together with a monoid structure in an appropriate category. This
amounts to the following data:

– a set C0 of objects;
– a set C1 of arrows where the domain of an arrow f is a sequence (X1, X2, . . . , Xn)

of objects and the codomain is an object X, depicted as

f : (X1, X2, . . . , Xn)→ X;

– an identity 1X : (X)→ X;
– a composition operation.
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The 2-category of multicategories, morphisms of multicategories and appro-
priate 2-cells is denoted by MultiCat. Keeping in mind that Span is equiv-
alent to Set-Rel, for V = Set and T = M, the fundamental adjunction
(ADJ) of Section 5 specialises to:

Theorem 7.4. There is a 2-monadic 2-adjunction

MultiCat >
K

**

M

jj MonCat.

Here, for a strict monoidal category

C1
d

~~

c

  

C0 C0

with monoid structure α : MC0 → C0 on C0, the corresponding multicate-
gory is given by the composite of

MC0
1

zz

α

""

C1
d

~~

c

  

MC0 C0 C0

in Span; and to a multicategory

C1
d

||

c

  

MC0 C0

one assigns the strict monoidal category

MC1
d

yy

c

$$

MMC0
mC0

yy

MC0

MC0

where the objects in the span are free monoids.
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The induced 2-monad on MultiCat is of Kock-Zöberlein type, and a rep-
resentable multicategory is a pseudo-algebra for this monad. In elementary
terms, a multicategory

C1
d

||

c

  

MC0 C0

is representable precisely if for every (x1, . . . , xn) ∈MC0 there exists a mor-
phism (called universal arrow)

(x1, . . . , xn)→ ⊗(x1, . . . , xn)

which induces a bijection

hom((x1, . . . , xn), y) ' hom(⊗(x1, . . . , xn), y),

natural in y, and universal arrows are closed under composition.

8. Duals for (T,V)-categories
For a V-category (Z, c) = (Z, c, ηc, µc), the dual D(Z, c) of (Z, c) is defined

to be the V-category Zop = (Z, cop, ηcop, µcop), with cop = c◦, ηcop = η◦c and
µcop = µ◦c. This construction extends to a 2-functor

D : V-Cat→ V-Catco

as follows. For a V-functor (f, ϕf) : (Z, c) → (W,d) set D(f, ϕf) = f op =
(f, ϕop

f ) : (Z, c◦)→ (W,d◦), where ϕop
f is defined by

fc◦
−λf

// fc◦f ◦f = f(fc)◦f
ϕf−

// f(df)◦f = ff ◦d◦f
ρf−

// d◦f.

On 2-cells ζ : (f, ϕf) → (g, ϕg) of V-Cat, set D(ζ) = ζop, which is defined
analogously by

fc◦
−λg

// fc◦g◦g = f(gc)◦g
ζ−
// f(df)◦g = ff ◦d◦g

ρf−
// d◦g.

The monad T on V-Cat of Section 4 gives rise to a monad T on V-Catco.
From now on we assume that T (c◦) = (Tc)◦ for every V-relation c. Let
((Z, c), (h, ϕh)) be a T-algebra. Then

(TZ, Tc◦)
D(h,ϕh)

// (Z, c◦)

gives a T-algebra structure on (Z, c◦), which we write as ((Z, c◦), h).
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Definition 8.1. The dual of a T-algebra ((Z, c), h) is the T-algebra (Zop, h) =
((Z, c◦), h).

This construction extends to a 2-functor

D : (V-Cat)T −→ ((V-Cat)T)co (Dual)

as follows. If (f, ϕf) : ((Z, c), h) → ((W,d), k) is a morphism of T-algebras,
then D(f, ϕf) = f op : ((Z, c◦), h)→ ((W,d◦), k) is a morphism of T-algebras,
and if ζ : (f, ϕf) → (g, ϕg) is a 2-cell in (V-Cat)T, then D(ζ) = ζop :
D(g, ϕg)→ D(f, ϕf) is a 2-cell in V-CatT.

Using the adjunction M a K we can define the dual of a (T,V)-category
using the construction of duals in (V-Cat)T via the composition:

(V-Cat)TD

&&

>
K ..

(T,V)-Cat
M

nn

Definition 8.2. The dual of a (T,V)-category (X, a) is the (T,V)-category
KDM(X, a); that is,

Xop = (TX,mXTa
◦mX).

For representable (T,V)-categories (X, a) we can use directly extensions

of K̃ and Ãe to pseudo-algebras, so that we can obtain a dual structure X õp

on the same underlying set X via the composition K̃DÃe:

(V-Cat)TD

&&

>
K̃ ..

((T,V)-Cat)T

Ãe

nn

Then it is easily checked that, for any (T,V)-category X,

Xop = (TX)õp,

since TX, as a free T-algebra on (T,V)-Cat, is representable.
For V a quantale, duals of (T,V)-categories proved to be useful in the

study of (co)completeness (see [5, 6, 16]). Next we outline briefly the setting
used and the role duals play there.

Let V be a quantale. When the lax extension of T : Set→ Set to V-Rel
is determined by a map ξ : TV → V which is a T-algebra structure on V
(for the Set-monad T) as outlined in [5, Section 4.1], then, under suitable
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conditions, V itself has a natural (T,V)-category structure homξ given by
the composite

TV
ξ
// V �hom // V, ((T,V)-hom)

where hom is the internal hom on V .∗ Then the well-known equivalence:

Given V-categories (X, a), (Y, b), for a V-relation r : X−→7 Y ,

r : (X, a)−→7 (Y, b) is a V-module (or profunctor, or distrib-
utor)
⇐⇒ the map r : Xop ⊗ (Y, b)→ (V, hom) is a V-functor.

can be generalized to the (T,V)-setting. Here a (T,V)-relation r : X −⇀7 Y

is a V-relation TX−→7 Y , and (T,V)-relations X
r−⇀7 Y

s−⇀7 Z compose
as V-relations as follows:

TX �m
◦
X // T 2X �Tr // TY �s // Z;

we denote this composition by s ◦ r. A (T,V)-module ϕ : (X, a)−⇀7 (Y, b)
between (T,V)-categories (X, a), (Y, b) is a (T,V)-relation such that

ϕ ◦ a = ϕ = b ◦ ϕ.

The next result can be found in [5] (see also [17, Remark 5.1 and Lemma
5.2]).

Theorem 8.1. Let (X, a) and (Y, b) be (T,V)-categories and ϕ : X −⇀7 Y
be a (T,V)-relation. The following assertions are equivalent.

(i) ϕ : (X, a)−⇀7 (Y, b) is a (T,V)-module.
(ii) The map ϕ : TX × Y → V is a (T,V)-functor ϕ : Xop ⊗ (Y, b) →

(V, homξ).

In particular, the (T,V)-relation a : X −⇀7 X is a (T,V)-module from
(X, a) to (X, a). Although (T,V)-Cat is in general not monoidal closed for
⊗, the functor Xop ⊗ − : (T,V)-Cat → (T,V)-Cat has a right adjoint
(−)X

op

: (T,V)-Cat → (T,V)-Cat for every (T,V)-category X, and from
the (T,V)-module a we obtain the Yoneda (T,V)-functor

yX : X → VXop

.

∗This is the case when a topological theory in the sense of [15] is given; see [15] for details.
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By Theorem 8.1, we can think of the elements of VXop

as (T,V)-modules
from (X, a) to (1, e◦1). The following result was proven in [5] and provides a
Yoneda-type Lemma for (T,V)-categories.

Theorem 8.2. Let (X, a) be a (T,V)-category. Then, for all ψ in VXop

and
all X ∈ TX,

JTyX(X), ψK = ψ(X),

with J−,−K the (T,V)-categorical structure on VXop

.

To generalise these results to the general setting studied in this paper, that
is when V is not necessarily a thin category, one faces a first obstacle: When
can we equip the category V with a canonical (although non-legitimate)
(T,V)-category structure as in ((T,V)-hom)? The obstacle seems removable
when T = M is the free-monoid monad. In fact, as above, the monoidal
structure (X1, . . . , Xn) 7→ X1 ⊗ · · · ⊗ Xn defines a lax extension of M to
V-Rel, a monoidal structure on (M,V)-Cat ' V-MultiCat, and it turns
V into a generalised multicategory. We therefore conjecture that Theorems
8.1 and 8.2 hold also in this more general situation; however, so far we were
not able to prove this.
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