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1. Introduction

In this paper we continue the study of weakly Mal’tsev categories. Af-
ter having studied internal categorical structures, namely internal categories
and internal groupoids [25], the connection with the classical definition of
Mal’tsev category [6, 7] via strong relations [13], and considered the particu-
lar example of distributive lattices [26], we now turn to the dual of a weakly
Mal’tsev category in general.
Our motivating example is the dual of the category of topological spaces

and continuous maps. Indeed, as Zurab Janelidze observed (during the 2008
CT conference in Calais), the dual of the category of topological spaces is
weakly Mal’tsev. It is also well known that the dual of any topos is Mal’tsev
(but even more is true, see for instance [2, 1, 14]). Since every Mal’tsev
category is in particular weakly Mal’tsev, it is only natural to look for those
properties on a topos which should be maintained in a category if its dual is
expected to be, not necessarily Mal’tsev, but weakly Mal’tsev. The particular
case of topological spaces should be considered as the leading example. This
work is devoted to giving a satisfactory answer to that question.
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In the next section we give a quick survey on weakly Mal’tsev catego-
ries and introduce a general class of examples containing in particular any
Mal’tsev variety of universal algebras, the category of distributive lattices
and the category of commutative magmas with cancellation, and also any
quasi-subvariety of those classes of algebras (Proposition 2.1).
In Section 3 we introduce the notion of split exact cospan (Definition 3.3),

as one which is obtained by pushout of a split monomorphism along a split
monomorphism, and give a characterization of the dual of a weakly Mal’tsev
category (Corollary 3.5).
Section 4 contains the main result stating that the dual of a category with

pullbacks and pushouts of split monomorphisms along split monomorphisms,
in which a cospan is jointly epimorphic whenever it is obtained by pulling
back a split exact cospan, is weakly Mal’tsev (Theorem 4.1).
The main result is then used in Section 5 to prove that the dual of any quasi-

adhesive category [19] is weakly Mal’tsev. The proof is based on the notion of
Van Kampen square [3] and uses the fact that any split exact cospan, indeed
any pushout along a regular monomorphism in a quasi-adhesive category, is
part of a Van Kampen square (Proposition 5.1).
Finally, in the last section we show that the dual of any category with

pullback-stable epimorphisms and stable coproducts in the sense of [10] is
weakly Mal’tsev. Examples include for instance the dual of any extensive
category with pullback-stable epimorphisms or the dual of any solid quasi-
topos [15]. Keeping in mind that the original motivation was the case of
topological spaces, we give specific references showing that many familiar
categories of spaces fit into the above setting, such as the dual of any lax
algebra, or (T, V )-category in the sense of [9].

2. A quick survey on weakly Mal’tsev categories

The notion of weakly Mal’tsev category, introduced in [25], has proved
to be a convenient and general setting for working with internal categorical
structures: every reflexive graph, in a weakly Mal’tsev category, can have
at most one multiplicative graph structure and every multiplicative graph is
automatically an internal category. Moreover, contrary to the well known
case of Mal’tsev categories [6, 7], not every internal category is an internal
groupoid. For instance the linearly ordered set of natural numbers is an in-
ternal category in the category of commutative monoids with cancellation
(a weakly Mal’tsev category) and it is obviously not an internal groupoid.
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The category of distributive lattices is another important example of a we-
akly Mal’tsev category which is not Mal’tsev [26]. However, the category of
modular lattices is not weakly Mal’tsev [26]. Thus, in this way it is possible
to cover a wider range of examples while still keeping some of the useful
properties desirable for internal categorical structures. As proved in [27], in
the context of weakly Mal’tsev categories, groupoids and internal categories
coincide if and only if every reflexive and transitive relation (i.e. a preor-
der) is an equivalence relation. Remarkably, when the category is regular the
weak Mal’tsev property is not necessary and groupoids coincide with internal
categories as soon as preorders coincide with equivalence relations [29].
Mal’tsev categories are characterized by the fact that every reflexive re-

lation is an equivalence relation. From [13] we now know that the weak
Mal’tsev property can be characterized by the fact that every strong relation
is difunctional, or equivalently that every reflexive and strong relation is an
equivalence relation.
Another characterization of a Mal’tsev category, due to Bourn [2], is that

every pair of local product injections is jointly strongly epimorphic. By
definition a weakly Mal’tsev category is one where local product injections are
jointly epimorphic (further details can be found in [13] but will not be needed
here). A general example of a class of categories with the weak Mal’tsev
property, including in particular every Mal’tsev variety of universal algebras
(such as groups, rings, Lie-algebras, etc.), the category of distributive lattices
or the category of commutative magmas with cancellation, is presented next.

Proposition 2.1. Let I be a fixed set of indices and consider the category
whose objects are triples (B, p, (qi)i∈I) where B is a set, p and qi, i ∈ I, are
ternary operations on the set B, and the following conditions are satisfied

p(x, y, y) = p(y, y, x)

qi(x, y, y) = qi(y, x, x), for all i ∈ I

and if for some a ∈ B,

p(x, a, a) = p(x′, a, a)

and

qi(x, a, a) = qi(x
′, a, a), for all i ∈ I,

then x = x′. The morphisms are the expected ones.
Then the category just described is a weakly Mal’tsev category.
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Proof : The proof is a small variation of a similar result, involving only the
ternary operation p(x, y, z) above, that can be found in the introduction of
[26]. We only observe that, given any diagram of the form

A
f

//

α   @
@@

@@
@@

B
s

//

β
��

r
oo C

g
oo

γ~~~~
~~

~~
~

D

with fr = 1B = gs and αr = β = γs, and two morphisms ϕ, ϕ′ : A×B C −→ D,
such that for every a ∈ A and c ∈ C,

ϕ(a, sf(a)) = ϕ′(a, sf(a)) = α(a)

ϕ(rg(c), c) = ϕ′(rg(c), c) = γ(c)

then, for every a ∈ A and c ∈ C with f(a) = b = g(c) ∈ B, we have

p(ϕ(a, c), β(b), β(b)) = p(ϕ′(a, c), β(b), β(b)) = p(α(a), β(b), γ(c))

= p(γ(c), β(b), α(a))

and

qi(ϕ(a, c), β(b), β(b)) = qi(ϕ
′(a, c), β(b), β(b)) = qi(α(a), γ(c), γ(c))

= qi(γ(c), α(a), α(a)),

from which we conclude that ϕ(a, c) = ϕ′(a, c).

Every Mal’tsev variety with a Mal’tsev term m(x, y, y) = m(y, y, x) = x

is an instance of the case above: choose I to be the empty set and put
p = m. The case of distributive lattices is another instance of the above: take
I = {1, 2} and define p(x, y, z) = y, q1(x, y, z) = x ∧ (y ∨ z) and q2(x, y, z) =
x ∨ (y ∧ z). The case of commutative magmas with cancellation may be
captured by choosing again I as the empty set and defining p(x, y, z) =
y · (x · z) = y · (z · x).

3. Exact and split exact cospans – the dual of a weakly

Mal’tsev category

Recall that a category C is said to be weakly Mal’tsev [25] if it has pullbacks
of split epimorphisms along split epimorphisms and if every two morphisms
into a pullback of split epimorphisms, which are induced by the given sections
of the respective split epimorphisms, form a jointly epimorphic cospan.
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The following is an immediate consequence of the definition of a weakly
Mal’tsev category.

Proposition 3.1. Let C be a category with pushouts of split monomorphisms
along split monomorphisms. The dual of the category C is weakly Mal’tsev if
and only if for every diagram of the form

A
r

// B
f

oo
g

//
C

s
oo

with rf = 1B = sg, the two morphisms p1 = [1, fs] : A+B C −→ A and
p2 = [gr, 1] : A+B C −→ C, canonically induced from the pushout diagram

B
g

//

f
��

C

ιC
��

A
ιA // A+B C

p2

OO

p1
oo

by the conditions

p1ιA = 1A, p1ιC = fs and p2ιA = gr, p2ιC = 1C ,

are jointly monomorphic.

We will say that a cospan is exact if it is the pushout of its pullback. More
specifically:

Definition 3.2. A cospan

A
i // Q B

j
oo

is an exact cospan if the pullback of i and j exists and, moreover, the square

A×Q B
π2 //

π1

��

B

j
��

A
i // Q

is a pushout square.

It is clear from Proposition 3.1 that we will only be interested in cospans
arising as the pushout of split monomorphisms along split monomorphisms.
The following definition of split cospan is used to precisely capture that idea,
as observed in Proposition 3.4.



6 NELSON MARTINS-FERREIRA

Definition 3.3. An exact cospan

A
i // Q B

j
oo

is said to be split exact if there exist two morphisms

A
α //

B
β

oo

such that

jα = iβα , iβ = jαβ

π1 = βπ2 , απ1 = π2.

In other words, in a category with pullbacks, a cospan (i, j) is split exact
if the square

A×Q B
π2 //

π1

��

B

j
��

A
i // Q

is a pushout square and there exists

A
α //

B
β

oo

making the diagram

A×Q B
π2 //

π1

��

B

β{{wwwwwwwwwww

iβ
��

A

α
;;wwwwwwwwwww

jα
// Q

commutative.
From now on we assume that our setting is at least a category with pull-

backs and pushouts of split monomorphisms along split monomorphisms.

Proposition 3.4. A cospan is split exact if and only if it is obtained as a
pushout of a split monomorphism along a split monomorphism.

Proof : Let f and g be split monomorphisms with the same codomain, as
displayed in the diagram

A
r

// B
f

oo
g

//
C

s
oo
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with the respective retractions, that is,

rf = 1B = sg. (1)

We have to show that the canonical inclusions, (ιA, ιC), into the pushout of
f and g,

B
g

//

f
��

C

ιC
��

A ιA
// A+B C

,

gives rise to a split exact cospan.
First we observe that the square above is a pullback square. Indeed, given

any u : Z −→ A and v : Z −→ C with ιAu = ιCv, there exists w : Z −→ B

such that fw = u and gw = v, namely w = sv = ru, as we shall now see.
The equation sv = ru follows from (1), which gives

[1, fs] : A+B C −→ A,

in the following way

sv = rfsv = r[1, fs]ιCv = r[1, fs]ιAu = ru;

in addition fru = u is obtained as

u = [1, fs]ιAu = [1, fs]ιCv = fsv = fru,

and similarly for gsv = v:

v = [gr, 1]ιCv = [gr, 1]ιAu = gru = gsv.

The uniqueness of w is guaranteed by the fact that f (and g) is a split
monomorphism. This shows that the square above is a pullback square;
indeed, this also follows from the square being obtained as a pushout along
split monomorphisms, which is a well-known result. This shows that the
cospan (ιA, ιC) is exact. In order to prove that it is split exact we simply
observe that the two morphisms

A
gr

//
C

fs
oo
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render the following diagram commutative:

B
g

//

f
��

C

fs
zzuuuuuuuuuuu

ιAfs
��

A

gr

::uuuuuuuuuuu

ιCgr
// A+B C

Conversely, given a diagram of the form

A

i ��?
??

??
??

α //
B

j����
��

��
��β

oo

Q

such that the pullback square

A×Q B
π2 //

π1

��

B

j
��

A
i // Q

is also a pushout square, and the diagram

A×Q B
π2 //

π1

��

B

β{{wwwwwwwwwww

iβ
��

A

α
;;wwwwwwwwwww

jα
// Q

commutes, we have to show that π1 and π2 are split monomorphisms. The
identity iβα = jα induces a morphism

〈βα, α〉 : A −→ A×Q B

satisfying

π1〈βα, α〉 = βα and π2〈βα, α〉 = α

and this morphism is such that

〈βα, α〉π1 = 〈βαπ1, απ1〉

= 〈βπ2, π2〉

= 〈π1, π2〉 = 1A×QB
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proving that π1 is a split monomorphism. Similarly, the identity jαβ = iβ

induces
〈β, αβ〉 : B −→ A×Q B

such that

〈β, αβ〉π2 = 〈βπ2, αβπ2〉

= 〈π1, απ1〉

= 〈π1, π2〉 = 1A×QB

proving that π2 is a split monomorphism.

As a result we obtain a new characterization for the weak Mal’tsev property
(stated in the dual form).

Corollary 3.5. Let C be a category with finite limits and pushouts of split
monomorphisms along split monomorphisms. The following conditions are
equivalent:

(a) Cop is weakly Mal’tsev.
(b) for every split exact copan, with specified α and β,

A

i ��?
??

??
??

α //
C

j����
��

��
�β

oo

Q

(2)

the induced morphism

〈[1, β], [α, 1]〉 : Q −→ A× C

is a monomorphism.

Proof : Using Proposition 3.1 and Proposition 3.4 we simply observe that
given a split exact cospan as in (2), the two morphisms p1 = [1, β] and
p2 = [α, 1], induced from the pushout square presenting (i, j) as an exact
cospan via the following commutative diagrams

A×Q C
π2 //

π1

��

C

β

��

j
��

A

RRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRR
i // Q

p1
?

?

��?
?

A

and A×Q C
π2 //

π1

��

C

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

j
��

A

α

++

i // Q

p2
?

?

��?
?

C
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are well defined.

4. The main result

In this section we show that the dual of a category with pullbacks and
pushouts of split monomorphisms along split monomorphisms, in which pull-
backs of split exact cospans are jointly epimorphic, is weakly Mal’tsev.

Theorem 4.1. Let C be a category with pushouts of split monomorphisms
along split monomorphisms, pullbacks, and such that for every commutative
diagram

A //

��

C

��

Eoo

��

B // D Foo

(3)

where both squares are pullback squares, if the bottom cospan is split exact
then the top one is jointly epimorphic. Then Cop is a weakly Mal’tsev category.

Proof : Consider a diagram in C of the form

A
r

// B
f

oo
g

//
C

s
oo

with rf = 1B = sg, and take the pushout of the split monomorphism f along
the split monomorphism g in order to obtain a square of split monomorphisms

B g
//

f
��

C
soo

ιC
��

A

r

OO

ιA // A+B C

p2

OO

p1
oo

with p1 = [1, fs] and p2 = [gr, 1]. It follows from Proposition 3.4 that the
cospan

A
ιA // Q C

ιCoo ,

with Q = A+B C, is a split exact cospan.
Now, assume the existence of two morphisms

u, v : D −→ Q

with p1u = p1v and p2u = p2v.
Our task is to prove u = v.
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First consider the commutative diagram

DA
i //

uA

��

D

u
��

DC

j
oo

uC

��

A
ιA // Q C

ιCoo

obtained by pulling back u along ιA and along ιC . This means that the
cospan (i, j) is obtained by pullback from a split exact cospan, and so, by
assumption on C, it is a jointly epimorphic cospan. As a consequence, the
morphism u is completely determined by ui and uj and in fact we have

ui = ιAuA , uj = ιCuC ;

similarly v : D −→ Q is determined by vi and vj. Repeating the process, we
obtain the two diagrams below

D1
k1 //

v1
��

DA

vi
��

D2
k2oo

v2
��

A
ιA // Q C

ιCoo

D3
k3 //

v3
��

DC

vj
��

D4
k4oo

v4
��

A
ιA // Q C

ιCoo

by taking the pullbacks of vi and vj along ιA and along ιC , so that the four
squares above are pullback squares.
Again, by assumption on C, the cospans (k1, k2) and (k3, k4) are jointly

epimorphic. This means that the four-tuple (ik1, ik2, jk3, jk4) is jointly epi-
morphic and therefore any morphism h : D −→ Z, with domain D, is uni-
quely determined by

h = (hik1, hik2, hjk3, hjk4).

Hence, v is completely determined by

v = (vi, vj) = ((ιAv1, ιCv2), (ιAv3, ιCv4)),

and if writing

u1 = uAk1 , u2 = uAk2 , u3 = uCk3 , u4 = uCk4

we have that u is also of the form

u = ((ιAu1, ιAu2), (ιCu3, ιCu4)).



12 NELSON MARTINS-FERREIRA

The morphisms determining u and v may be displayed in the following dia-
gram.

D1

v1
CC

C

!!C
CC

C
u1

CC
C

!!C
CC

C

D2

u2

��

v2
CC

!!C
CC

CC

D3

v3
{{

}}{{
{{

{ u3

��

D4

u4
{{

{

}}{{{
{ v4

{{
{

}}{{{
{

A C

We conclude the proof by observing that p1u = p1v and p2u = p2v implies

v1 = u1, ιCv2 = ιAu2, ιAv3 = ιCu3, u4 = v4.

Indeed,

p1u = [1, fs]u = ((u1, u2), (fsu3, fsu4))

and

p1v = [1, fs]v = ((v1, fsv2), (v3, fsv4)),

so that

u1 = v1

u2 = fsv2

fsu3 = v3

fsu4 = fsv4;

similarly, from p2u = p2v or [gr, 1]u = [gr, 1]v, we obtain

gru1 = grv1

gru2 = v2

u3 = grv3

u4 = v4.

We already have u1 = v1 and u4 = v4, but from above we also deduce

ιAu2 = ιAfsv2 = ιCgsv2 = ιCg1Bsv2 = ιCgrfsv2

= ιCgru2 = ιCv2

and

ιCu3 = ιCgrv3 = ιAfrv3 = ιAf1Brv3 = ιAfsgrv3

= ιAfsu3 = ιAv3.

This shows that u = v and completes the proof.
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5. Adhesive and quasi-adhesive categories

Adhesive categories were introduced in [18]. The category of directed
graphs is an example of an adhesive category. The main feature of an adhe-
sive category is the fact that pushouts along monomorphisms are well beha-
ved with respect to pullbacks. As many interesting examples, mainly from
computer science, were not covered by the setting of adhesive categories, the
wider notion of quasi-adhesive category was introduced in [19], see also [16].
In a quasi-adhesive category not all monomorphisms are require to induce
well behaved pushouts; this is only demanded from strong monomorphisms.
A category is quasi-adhesive when it has pullbacks, pushouts along regu-

lar monomorphisms and such pushouts are Van Kampen squares [3]. As is
clear from the proof of the following result, if restricting the class of strong
monomorphisms to the class of split monomorphisms in the definition of
quasi-adhesive category, the result is still valid and hence the dual of such
categories are weakly Mal’tsev.

Proposition 5.1. The dual of any quasi-adhesive category is weakly Mal’tsev.

Proof : Consider a commutative diagram of the form

E
k //

f
��

D

g
��

F
loo

h
��

A
i // Q B

j
oo

(4)

in which both squares are pullback squares and the cospan (i, j) is split exact.
We will show that the cospan (k, l) is exact and hence in particular jointly
epimorphic. The proof is then completed using Theorem 4.1.
The square

A×Q B
π2 //

π1

��

B

j
��

A
i

// Q

is a Van Kampen square. Indeed, it is a pushout (since (i, j) is exact) and π1
is a strong monomorphism (in fact it is a split monomorphism because (i, j)
is split exact — Proposition 3.4). Now, diagram (4) can be completed into
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a commutative cube

E ×D F
π′

2 //

π′

1 $$I
II

II
II

II
I

���
�

�

�

�

�

�
F

l

��@
@@

@@
@@

@

h

��

E
k //

f

��

D

g

��

A×Q B
π2 //

π1
##H

HH
HH

HH
HH

H
B

j

��>
>>

>>
>>

>

A
i

// Q

in which the top face is obtained by pulling back k and l, and the dashed
arrow is given by

〈fπ′
1, hπ

′
2〉 : E ×D F −→ A×Q B.

In order to show that the top face is a pushout (and hence (k, l) is an exact
cospan) it suffices to prove that the left and rear squares are pullback squares
(observe that the bottom face is a Van Kampen square).
In order to see that the square

E ×D F
π′

2 //

〈fπ′

1
,hπ′

2
〉
��

F

h
��

A×Q B
π2 // B

is a pullback square, consider any two morphisms x : Z −→ A×Q B and
y : Z −→ F with π2x = hy. It is not difficult to find a morphism

w : Z −→ E ×D F

such that

π′
2w = y

〈fπ′
1, hπ

′
2〉w = x.

In fact, since iπ1x = gly and k〈π1x, ly〉 = ly we have

w = 〈〈π1x, ly〉, y〉,

with

〈fπ′
1, hπ

′
2〉〈〈π1x, ly〉, y〉 = 〈π1x, hy〉 = 〈π1x, π2x〉 = x.
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It remains to prove that w is uniquely determined. Suppose there exists
w′ = 〈u, y〉 : Z −→ E ×D F with 〈fπ′

1, hπ
′
2〉〈u, y〉 = x, that is

〈fu, hy〉 = 〈π1x, π2x〉

and consequently fu = π1x, hence u = 〈fu, ku〉 = 〈π1x, ly〉. This shows
uniqueness.
Similarly we prove that the left face in the cube is a pullback.

6. Stable coproducts, quasi-toposes and extensive cate-

gories

In a category with pullbacks and finite coproducts we say that coproducts
are stable [10] if, given any commutative diagram

D
k //

f
��

F

h
��

E
loo

g
��

A
i // C B

j
oo

in which both squares are pullback squares, the square

D + E
[k,l]

//

f+g
��

F

h
��

A+B
[i,j]

// C

also is a pullback square.

Proposition 6.1. Let C be a category with pullbacks, finite coproducts and
pushouts of split monomorphisms. If in addition C has

(a) pullback-stable epimorphisms, and
(b) stable coproducts,

then Cop is weakly Mal’tsev.

Proof : Given a commutative diagram of the form

D
k //

f
��

F

h
��

E
loo

g
��

A
i // C B

j
oo
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in which both squares are pullbacks and the bottom row is an exact cospan,
the induced morphism [i, j] : A+ B −→ C is a regular epimorphism. Also,
since epimorphisms are stable under pullback and the square

D + E
[k,l]

//

f+g
��

F

h
��

A+B
[i,j]

// C

is a pullback, the induced morphism [k, l] : D + E −→ F is an epimorphism.
The result in Theorem 4.1 concludes the proof.

Recall from [5] that a category is extensive if and only if it has disjoint and
universal finite coproducts. Coproducts are universal when the pullback of a
coproduct diagram is also a coproduct diagram. Coproducts are said to be
disjoint when coproduct inclusions are monomorphisms and the pullback of
any coproduct diagram is the initial object.
It is not difficult to see that the duals of such categories, in which epi-

morphisms are persistent (in [17] an epimorphism f is called persistent if
every pullback of f exists and is an epimorphism), are weakly Mal’tsev.

Corollary 6.2. Let C be an extensive category with pullbacks, pushouts of
split monomorphisms along split monomorphisms, and such that the pullback
of an epimorphism along any morphism is still an epimorphism. Then Cop

is a weakly Mal’tsev category.

Proof : An extensive category with pullbacks always has stable coproducts,
see for instance [21] Proposition 1.2.

In particular the category Top of topological spaces and continuous maps
is extensive and epimorphisms (i.e. surjections) are pullback stable (see for
instance [8] and [17]).
Many other familiar categories of spaces share these properties, for instance

(T, V )-categories [9], which include approach spaces [23], preordered sets
and metric spaces [22], probabilistic metric spaces [28, 12], or closure spaces
[30]. Indeed, any (T, V )-category, or lax (T, V )-algebra, is extensive ([24],
Corollary 8) and has pullback stable epimorphisms [9].
In [20] it is proved that any topos is adhesive. Combining the results

from that paper, in particular the theorem by Brown and Janelidze on Van
Kampen squares [3], we also see that the dual of any extensive and locally
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cartesian closed category is weakly Mal’tsev. Indeed, in a locally cartesian
closed category, a morphism is effective for descent if and only if it is a
regular epimorphism ([20], Lemma 12). In an extensive category any split
exact cospan gives rise to a Van Kampen square. This is just a particular
case of Theorem 23 as stated in [20]; see also [3], where the morphisms are
not arbitrary monomorphisms but are split monomorphisms.
In [4] it is proved that the category of Kelly spaces is a regular category,

it is also extensive because coproducts coincide with topological sums, hence
its dual is weakly Mal’tsev.
Finally, it is worth noting that every solid quasi-topos [15] is extensive and

has pullback stable epimorphisms, hence its dual is weakly Mal’tsev.

Corollary 6.3. The dual of a solid quasi-topos (one with disjoint coproducts)
is a weakly Mal’tsev category.
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[19] S. Lack and P. Sobociński, Adhesive and quasiadhesive categories, Theor. Inform. Appl., 39
(2005), no. 3, 511–545.
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