
Pré-Publicações do Departamento de Matemática
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Abstract: Several familiar results about normal and extremally disconnected (clas-
sical or pointfree) spaces shape the idea that the two notions are somehow dual to
each other and can therefore be studied in parallel. In this paper we investigate the
source of this ‘duality’ and show that each pair of parallel results can be framed by
the ‘same’ proof. The key tools for this purpose are relative notions of normality,
extremal disconnectedness, semicontinuity and continuity (with respect to a fixed
class of complemented sublocales) that bring and extend to pointfree topology a
variety of well-known classical variants of normality and upper and lower semiconti-
nuities in a illuminating unified manner. Then all classical insertion and extension
results will be unified under a single pointfree result.
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Introduction

Several pairs of results in classical topology like those in Table 1 char-
acterizing the concepts of normality and extremal disconnectedness (for a
different type of results see [24]) show a ‘remarkable duality’ (in the words of
[30]) between the two concepts: each pair is identical in structure but prove
facts about normal spaces on one side of the pair and about extremally dis-
connected spaces on the other. Nevertheless the proofs of the results in each
pair are quite different in nature (and the same happens with the proofs of
the results in [24]).
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Space X Normal Extremally Discon-
nected

Urysohn’s

separation

type lemma

Every two disjoint closed
subsets of X are
completely separated
(Urysohn [44]).

Every two disjoint open
subsets of X are
completely separated
(Gillman and Jerison [11]).

Tietze’s

extension type

lemma

Each closed subset of X
is C∗-embedded (Tietze
[42]).

Each open subset of X is
C∗-embedded (Gillman
and Jerison [11]).

Katětov-Tong

insertion type

theorem

For every upper semicon-
tinuous real function f

and lower semicontinu-
ous real function g satis-
fying f ≤ g, there exists
a continuous real function
h such that f ≤ h ≤ g

(Katětov [27], Tong [43]).

For every lower semicon-
tinuous real function f and
upper semicontinuous real
function g satisfying f ≤
g, there exists a continuous
real function h such that
f ≤ h ≤ g (Stone [41],
Lane [31]).

Hausdorff

mapping

invariance

type theorem

The image of X under any
closed continuous map is
normal (Hausdorff [22]).

The image of X under any
open continuous map is
extremally
disconnected.

Table 1. Characterizations of normal and extremally discon-
nected spaces

Our recent work in the more general pointfree setting (see e.g. [18, 14, 16])
reveals a similar picture, summarized in Table 2.
This shapes the idea that the two notions are somehow dual to each other

and therefore may be studied in parallel; hopefully, one may even find ‘dual’
proofs for each pair of results. It is the aim of this paper to examine this
parallel. In particular, we address the following questions:

(1) What is the source of this duality?
(2) The proofs of the results in each pair are very different in nature. Can

one unify them under the same result with a single proof?
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Locale L Normal Extremally Discon-
nected

Urysohn’s

separation

type lemma

Every two disjoint
closed sublocales of L
are completely separated.

Every two disjoint open
sublocales of L are
completely separated.

Tietze’s

extension type

lemma

Each closed sublocale of
L is C∗-embedded.

Each open sublocale of L
is C∗-embedded.

Katětov-Tong

insertion type

theorem

For every upper semicon-
tinuous real function f

and lower semicontinu-
ous real function g satisfy-
ing f ≤ g, there exists a
continuous real function h

such that f ≤ h ≤ g.

For every lower semicon-
tinuous real function f and
upper semicontinuous real
function g satisfying f ≤
g, there exists a continuous
real function h such that
f ≤ h ≤ g.

Table 2. Characterizations of normal and extremally discon-
nected locales

(3) There is a great variety of classical insertion type results (for several
variants of normality). Can one unify them under a single general result?

(4) Can one complete Table 2 with a pointfree extension of Hausdorff map-
ping invariance type theorems?

The main idea will be to fix a class A of complemented sublocales of a locale
(frame) L. Depending on the parameter A , we introduce and study dual
relative notions of normality and extremal disconnectedness (respectively A -

normality and A -disconnectedness) and notions of A -continuous and lower
and upper A -semicontinuous real functions on L. Taking for A the standard
closed sublocales, one obtains the usual notions. By varying the choice of A ,
we reach a wide array of examples.
Since every complemented sublocale of a space is a subspace [23], in the

case that the locale L is the lattice OX of open subsets of some space X,
these notions can be completely formulated in terms of the space X, with
no reference to sublocales, and provide an extension and a unification of the
most relevant classical notions in the literature [8, 9, 27, 31, 32, 33, 34, 38,
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40, 43] (some of them are here introduced and studied for the first time in
the pointfree setting).
Our results characterize A -normal locales and generalize all characteriza-

tions in Table 2. They hold for any class A that induces a Katětov relation
on the lattice of all sublocales. Then the dual results for A -disconnectedness
correspond to the results for the class A c of complements of elements of A

and are therefore obtained with no extra cost. Again, this approach allows to
extend and unify the most relevant classical insertion results [8, 27, 43, 32, 41].
By relativizing the notion of an extension of a real function on a sublocale

to the whole locale, we obtain a relative form of Tietze’s extension lemma and
the corresponding dual result. In addition we also prove a relative version for
the preservation of normality under localic maps that extends the Hausdorff
mapping invariance type theorems of Table 1 to the pointfree setting, thus
completing Table 2.

There is one important aspect of insertion and normality which is not
considered in this paper, namely strict insertion [15, 19] and its connection
with variants of perfect normality. This will be treated in a separate paper
[21].

1. Background and notation

If X is a topological space, the partially ordered set OX of open subsets
of X is a complete lattice, in which the infinite distributive law

U ∧
∨

S =
∨

{U ∧ S | S ∈ S}

holds for all open subsets U and collections of open subsets S in X. We
recall that a frame is an abstract complete lattice with these properties; like
inverse image along a continuous mapping, a frame homomorphism is taken
to preserve arbitrary joins (including the bottom element 0 of the lattice)
and finite meets (including the top element 1 of the lattice). We write Frm

for the category of frames and frame homomorphisms.
The above representation is contravariant: continuous maps f : X → Y

are represented by frame homomorphisms h : OY → OX. This is easily
mended, in order to keep the geometric motivation, by considering, instead
of Frm, its opposite category Loc of locales and localic maps. In Loc we have
“generalized continuous maps” f : L → M that can be regarded as frame
homomorphisms h : L ← M . In most of the paper we keep the algebraic



THE PARALLEL BETWEEN NORMALITY AND EXTREMAL DISCONNECTEDNESS 5

(frame) approach. When dealing with images and preimages in Section 9,
however, we have found the localic covariant approach (see [36] for more
information about it) more useful, enabling us to write the proof of the main
result in a very short and transparent way.
Any frame L is in particular a complete Heyting algebra (with Heyting

implication→) so there are the pseudocomplements

a∗ = a→ 0 =
∨

{b ∈ L | a ∧ b = 0}

satisfying a∧ a∗ = 0. Whenever a∗ is a complement of a (that is, a∗ ∨ a = 1)
we shall denote it by ac. An element a is regular if a∗∗ = a (equivalently, if
a = b∗ for some b).
For basic facts about pointfree topology and lattice theory we refer to [26]

and [37]. Below we recall some details of specific relevance to this paper.

The sublocale lattice. A sublocale set (briefly, a sublocale) S of a frame L
is a subset S ⊆ L such that

(S1) for every A ⊆ S,
∧

A is in S, and
(S2) for every s ∈ S and every x ∈ L, x→ s is in S.

In the lattice of sublocales of L the least element is {1} and the largest one
is L. The meets coincide with intersections and the joins are given by the
formula

∨

i∈I Si = {
∧

A | A ⊆
⋃

i∈I Si}.
This is a co-frame (i.e., its dual lattice is a frame). In the sequel, we make

it into a frame S(L) by considering the dual ordering

S1 ≤ S2 iff S2 ⊆ S1.

Thus, given {Si ∈ S(L) : i ∈ I}, we have
∨

i∈I

Si =
⋂

i∈I

Si and
∧

i∈I

Si = {
∧

A | A ⊆
⋃

i∈I

Si}.

Also, {1} is the top and L is the bottom in S(L) that we simply denote by
1 and 0, respectively.
For any a ∈ L, the sets c(a) = ↑a and o(a) = {a → b : b ∈ L} are the

closed and open sublocales of L, respectively. They are complements of
each other in S(L). Furthermore, the map a 7→ c(a) is a frame embedding
L →֒ S(L) providing an isomorphism c between L and the subframe c(L)
of S(L) consisting of all closed sublocales. On the other hand, denoting by
o(L) the sublattice of S(L) formed by all o(a) (contrarily to c(L), this is not
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a subframe of S(L)), the correspondence a 7→ o(a) establishes a dual lattice
isomorphism L→ o(L).
Given a sublocale S of L, its closure and interior are defined, respectively,

by S =
∨

{c(a) : c(a) ≤ S} = c(
∧

S) and S◦ =
∧

{o(a) : S ≤ o(a)}. They
have the following properties:

Proposition 1.1. Let S, T ∈ S(L), a ∈ L and A ⊆ L. Then:

(1) 1 = 1, S ≤ S, S = S, and S ∧ T = S ∧ T ,

(2) 0◦ = 0, S◦ ≥ S, S◦◦ = S◦, and (S ∨ T )◦ = S◦ ∨ T ◦,

(3) S◦ =
(

S∗
)

c

= o(
∧

S∗),
(4) c(a)◦ = o(a∗),

(5) o(a) = c(a∗).

A sublocale is said to be clopen if it is both closed and open. Clearly, S is
clopen iff S = c(a) = o(ac) for some complemented a in L.
A Gδ-sublocale is a countable join of open sublocales

∨

n∈N o(an) and an
Fσ-sublocale is a countable meet of closed sublocales

∧

n∈N c(an).

Real-valued functions. The frame of reals [3] is the frame L(R) generated
by all pairs (p, q) ∈ Q×Q satisfying the relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨

{(r, s) : p < r < s < q},
(R4)

∨

p,q∈Q(p, q) = 1.

We use the following notation: (p,—) =
∨

q∈Q(p, q) and (—, q) =
∨

p∈Q(p, q);
note that (p,—) ∧ (—, q) = (p, q).

Equivalently, L(R) may be defined as the frame with generators of the form
(r,—) and (—, r), r ∈ Q, subject to relations

(r1) (r,—) ∧ (—, s) = 0 whenever r ≥ s,
(r2) (r,—) ∨ (—, s) = 1 whenever r < s,
(r3) (r,—) =

∨

s>r(s,—), for every r ∈ Q,
(r4) (—, r) =

∨

s<r(—, s), for every r ∈ Q,
(r5)

∨

r∈Q(r,—) = 1,
(r6)

∨

r∈Q(—, r) = 1.

With (p, q) = (p,—) ∧ (—, q) one goes back to (R1)–(R4).
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Recall from [16] that a (general) real-valued function on L is a frame ho-
momorphism L(R) → S(L). The class of all real functions on L is denoted
by F(L). It is partially ordered by

f ≤ g ⇔ f(p,−) ≤ g(p,−) for every p ∈ Q

⇔ g(−, q) ≤ f(−, q) for every q ∈ Q.

For each r ∈ Q, we denote by r the constant real-valued function defined
for each p, q ∈ Q by

r(p,—) =

{

1 if p < r

0 if p ≥ r
and r(—, q) =

{

0 if q ≤ r

1 if q > r.

Furthermore, let S be a complemented sublocale of L. Then χS defined for
each p, q ∈ Q by

χS(p,—) =











1 if p < 0

Sc if 0 ≤ p < 1

0 if p ≥ 1

and χS(—, q) =











1 if q > 1

S if 0 < q ≤ 1

0 if q ≤ 0

belongs to F(L) and it is called the characteristic function of S.

Scales in S(L). In order to define an f ∈ F(L) it suffices to consider a map
from the set of generators {(r,—), (—, r) | r ∈ Q} of L(R) to S(L) that turns
the defining relations (r1)–(r6) into identities in S(L). This can be easily
done with scales. A family (Sp | p ∈ Q) of sublocales of L is a scale if

(S1) Sp ∨ Sq
∗ = 1 whenever p < q, and

(S2)
∨

p∈Q Sp = 1 =
∨

p∈Q Sp
∗.

As a basic fact in this context, any scale (Sr | r ∈ Q) determines an f ∈ F(L)
by the formulas

f(p,—) =
∨

r>p

Sr and f(—, q) =
∨

r<q

Sr
∗,

for every p, q ∈ Q.

Remarks 1.2. (1) By condition (S1) a scale is necessarily an antitone family.
On the other hand, if a family C = (Sp | p ∈ Q) of sublocales of L is antitone
and for each p < q in Q there exists a complemented sublocale Sp,q such that
Sq ≤ Sp,q ≤ Sp, then C satisfies (S1). Indeed, Sp ∨ Sq

∗ ≥ Sp,q ∨ Sp,q
c = 1

whenever p < q. In particular, if C consists of complemented sublocales, then
C satisfies (S1) if and only if it is antitone.
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(2) Given a real function f ∈ F(L), the families

(f(r,—) | r ∈ Q) and (f(—, r)∗ | r ∈ Q)

are clearly scales. Moreover, they both generate the real function f .

Lemma 1.3. Let (Sr | r ∈ Q) and (Tr | r ∈ Q) be scales generating real

functions f and g, respectively. Then:

f ≤ g ⇔ Sq ≤ Tp for every p < q.

Proof : Let p < q in Q and take r ∈ Q with p < r < q. Then Sq ≤ f(r,—) ≤
g(r,—) ≤ Tp. Conversely, for each p ∈ Q,

f(p,—) =
∨

r>p

∨

s>r

Ss ≤
∨

r>p

Tr = g(p,—).

Stone algebras. A Stone algebra is a distributive pseudocomplemented al-
gebra (p-algebra) A that satisfies the Stone identity a∗ ∨ a∗∗ = 1 for every
a ∈ A. It is well known that the first De Morgan law (a∨ b)∗ = a∗ ∧ b∗ holds
in any p-algebra while the second De Morgan law (a ∧ b)∗ = a∗ ∨ b∗ holds
only for Stone algebras:

Proposition 1.4. In any distributive p-algebra A we have:

(1) a ∧ b = 0⇔ a∗∗ ∧ b∗∗ = 0.
(2) (a ∨ b)∗ = a∗ ∧ b∗ for every a, b ∈ A.

(3) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ for every a, b ∈ A.

(4) If A is a Stone algebra then (a ∨ b)∗∗ = a∗∗ ∨ b∗∗ for every a, b ∈ A.

(5) If A is a Stone algebra then (a ∧ b)∗ = a∗ ∨ b∗ for every a, b ∈ A.

Proof : (1) a ∧ b = 0⇔ a ≤ b∗ ⇒ a∗∗ ≤ b∗∗∗ = b∗ ⇒ a∗∗ ∧ b∗∗ ≤ b∗ ∧ b∗∗ = 0.
The converse is obvious.

(2) is straightforward.

(3) (a ∧ b)∗∗ ≤ a∗∗ ∧ b∗∗ is obvious. Conversely, if x ∧ (a ∧ b) = 0 then,
applying (1), we get x ∧ a∗∗ ∧ b∗∗ = 0. For x = (a ∧ b)∗ this means that
a∗∗ ∧ b∗∗ ≤ (a ∧ b)∗∗.

(4) (a∨b)∗∗ ≥ a∗∗∨b∗∗ is always true. It remains to show that x∧(a∨b)∗ = 0
implies x ≤ a∗∗ ∨ b∗∗. Let x ∧ a∗ ∧ b∗ = 0. Then x ∧ a∗ ≤ b∗∗. Thus
x = x ∧ 1 = x ∧ (a∗ ∨ a∗∗) = (x ∧ a∗) ∨ (x ∧ a∗∗) ≤ b∗∗ ∨ a∗∗.

(5) Using (2), (3) and (4) we may write (a∧ b)∗ = (a∧ b)∗∗∗ = (a∗∗ ∧ b∗∗)∗ =
(a∗ ∨ b∗)∗∗ = a∗∗∗ ∨ b∗∗∗ = a∗ ∨ b∗.
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2. Normality versus extremal disconnectedness

Recall that a frame L is normal if

a ∨ b = 1 =⇒ ∃u, v ∈ L: u ∧ v = 0 and a ∨ u = 1 = b ∨ v. (2.1)

Proposition 2.1. (Cf. [10, Prop. 3.5]) The following are equivalent for a

frame L:

(1) L is normal.

(2) If c(a) ∨ c(b) = 1, then there exist u, v ∈ L such that c(u) ∧ c(v) = 0 and

c(a) ∨ c(u) = 1 = c(b) ∨ c(v).
(3) If o(a)∧ o(b) = 0, then there exist u, v ∈ L such that o(u)∨ o(v) = 1 and

o(a) ∧ o(u) = 0 = o(b) ∧ o(v).
(4) The frame ↑a is normal for every a ∈ L.

Proof : (1)⇔(2)⇔(3) and (4)⇒(1) are trivial.

(1)⇒(4): Let x, y ∈ ↑a satisfying x ∨ y = 1. By hypothesis, there exist
u, v ∈ L such that u ∧ v = 0 and x ∨ u = 1 = y ∨ v. It is then obvious that
u = u∨a ∈ ↑a and v = v∨a ∈ ↑a satisfy u∧ v = a and x∨u = 1 = y∨ v.

Remark 2.2. In any normal frame the rather below relation

a ≺ b ≡ a∗ ∨ b = 1

is interpolative. Indeed, if a∗ ∨ b = 1 then there exist u, v ∈ L satisfying
u∧v = 0 and a∗∨u = 1 = b∨v, and thus a ≺ u ≺ b (since u∗∨b ≥ v∨b = 1).
Note that when ≺ interpolates, it coincides with the relation ≺≺ where

a≺≺ b expresses the familiar relation that a is really inside, or completely
below, b (Johnstone [26]).

On the other hand, a frame L is said to be extremally disconnected (also
De Morgan) if it is a Stone algebra, that is, a∗ ∨ a∗∗ = 1 for every a ∈ L

(in other words, every regular element of L is complemented) [26, 35]. We
observe that this notion is in accordance with the corresponding classical one
for a topological space X: a space X is extremally disconnected iff the frame
OX is extremally disconnected.

Proposition 2.3. The following are equivalent for a frame L:

(1) L is extremally disconnected.

(2) The second De Morgan law holds in L.

(3) If a ∧ b = 0, then there exist u, v ∈ L such that u ∨ v = 1 and a ∧ u =
0 = b ∧ v.
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(4) If c(a) ∧ c(b) = 0, then there exist u, v ∈ L such that c(u) ∨ c(v) = 1 and

c(a) ∧ c(u) = 0 = c(b) ∧ c(v).
(5) If o(a)∨ o(b) = 1, then there exist u, v ∈ L such that o(u)∧ o(v) = 0 and

o(a) ∨ o(u) = 1 = o(b) ∨ o(v).
(6) If a ∧ b = 0, with a and b regular, then there exist u, v ∈ L such that

u ∨ v = 1 and a ∧ u = 0 = b ∧ v.

(7) If o(a) ∨ o(b) = 1, then o(a) ∨ o(b) = 1.
(8) If c(a) ∧ c(b) = 0, then c(a)◦ ∧ c(b)◦ = 0.
(9) The interior of every closed sublocale of L is clopen.

(10) The closure of every open sublocale of L is clopen.

(11) The frame ↓a is extremally disconnected for every a ∈ L.

Proof : (1)⇒(2) by Proposition 1.4(5).

(2)⇒(3): If a∧b = 0, taking u = a∗ and v = b∗ we have that u∨v = a∗∨b∗ =
(a ∧ b)∗ = 1 and a ∧ u = 0 = b ∧ v.

(3)⇔(4)⇔(5) and (5)⇒(6) are trivial.

(6)⇒(1): Since a∗∗ ∧ a∗ = 0 and both a∗∗ and a∗ are regular, there exist
u, v ∈ L satisfying u ∨ v = 1 and a∗∗ ∧ u = 0 = v ∧ a∗. This implies that
1 = u ∨ v ≤ a∗∗∗ ∨ a∗∗ = a∗ ∨ a∗∗.

(2)⇒(7): o(a) ∨ o(b) = 1 ⇔ a ∧ b = 0 ⇒ 1 = (a ∧ b)∗ = a∗ ∨ b∗ ⇒ 1 =

c(a∗) ∨ c(b∗) = o(a) ∨ o(b).

(7)⇔(8): It is obvious, since by complementation, o(a) ∨ o(b) = 1 ⇔ c(a) ∧

c(b) = 0 and o(a) ∨ o(b) = 1⇔ c(a)◦ ∧ c(b)◦ = 0.

(8)⇒(9): Since c(a) ∧ c(a∗) = 0, it follows that 0 = c(a)◦ ∧ c(a∗)◦ = o(a∗) ∧
o(a∗∗) and so o(a∗) = c(a∗∗). Hence, for every closed sublocale c(a), c(a)◦ =
o(a∗) = c(a∗∗).

(9)⇒(10): Consider an open sublocale o(a). Then, by hypothesis c(a)◦ is

clopen and thus, by Proposition 1.1(3), o(a) = (c(a)◦)c is also clopen.

(10)⇒(1): Let a ∈ L. Since o(a) = c(a∗) is clopen it follows that a∗ is
complemented in L.

(1)⇔(11): Let us denote by x¬ the pseudocomplement in ↓a of an element
x ∈ ↓a. Note that x¬ = a ∧ x∗. Further x¬¬ = a ∧ x∗∗. Indeed:

x¬¬ = a ∧ (x¬)∗ = a ∧ (a ∧ x∗)∗ ≥ a ∧ (a∗ ∨ x∗∗) = a ∧ x∗∗;

on the other hand, since a∧x∗∧(a∧x∗)∗ = 0, it follows that a∧(a∧x∗)∗ ≤ x∗∗

and so x¬¬ ≤ a ∧ x∗∗.
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Remark 2.4. The infinite version of the first De Morgan law, (
∨

I ai)
∗ =

∧

I a
∗
i

(for any index set I), holds in every frame. However, contrarily to what we
incorrectly wrote in [19, pg. 2270], the dual law (

∧

i∈I ai)
∗ =

∨

i∈I a
∗
i does

not hold in general for extremally disconnected frames.

As a first step towards establishing our general setting, note that conditions
2.1 and 2.3(3) that characterize normal and extremally disconnected frames
respectively are dual to each other and are formulable in any lattice and
so one may speak more generally about normal and extremally disconnected

lattices. Evidently, a lattice L is normal iff its dual lattice Lop is extremally
disconnected. Moreover, for frames the following is also obvious:

Corollary 2.5. Let L be a frame. Then:

(a) L is normal iff c(L) is normal iff o(L) is extremally disconnected.

(b) L is extremally disconnected iff c(L) is extremally disconnected iff o(L)
is normal.

We shall now consider the counterparts in the pointfree setting of some
other notions related to normality that one finds in the literature. All these
examples will be of interest later on.
We say that a frame L is mildly normal (resp. almost normal) if for any

a, b ∈ L satisfying a ∨ b = 1, with a and b (resp. a) regular, there exist
u, v ∈ L such that u ∧ v = 0 and a ∨ u = b ∨ v = 1. They are the frame
counterparts of mildly normal spaces [40] and almost normal spaces [39].

Remark 2.6. By 2.3(6) (which relies on the equivalence a ∧ b = 0 ⇔ a∗∗ ∧
b∗∗ = 0 of Proposition 1.4), the corresponding notions in the extremally
disconnected side do not give anything really weaker. The difference with
normality is that the dual equivalence a ∨ b = 1 ⇔ a∗∗ ∨ b∗∗ = 1 does not
hold in arbitrary distributive p-algebras.

Finally, we also need to introduce the following definitions:
A sublocale S is a regular Gδ sublocale in case S is a countable join of

closed sublocales c(an) whose interiors are contained in S, that is,

S =
∨

n

c(an) =
∨

n

c(an)
◦ =

∨

n

o(an
∗).

Dually, S is a regular Fσ sublocale in case

S =
∧

n

o(an) =
∧

n

o(an) =
∧

n

c(an
∗).
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An element a of L is δ-regular whenever a =
∨

n an with an ≺ a. Regarding
these notions we have:

a δ-regular⇐⇒ c(a) regular Gδ sublocale =⇒ o(a) regular Fσ sublocale.

(The equivalence is an immediate consequence of the fact that an ≺ a

iff o(an
∗) ≤ c(a): if a is δ-regular then c(a) =

∨

n c(an) ≤
∨

n c(an)
◦ =

∨

n o(an
∗) ≤ c(a) thus c(a) =

∨

n o(an
∗); the converse follows similarly. The

second implication is obvious while its converse is false by a counterexample
in [21].)
We say that a frame is δ-normal if for any a, b ∈ L satisfying a ∨ b = 1,

with a and b δ-regular, there exist δ-regular elements u, v ∈ L such that
u ∧ v = 0 and a ∨ u = b ∨ v = 1. For any topological space X, the δ-regular
elements of the frame OX of open subsets of X consist exactly of the regular
Fσ subsets of X (the complements of the usual regular Gδ subsets of X [34]),
and therefore δ-normal frames extend δ-normal spaces.

Remark 2.7. In the definition above of a δ-regular element we may assume
that each an is regular. Indeed, an ≺ a implies an

∗∗ ≺ a and hence a =
∨

n an ≤
∨

n an
∗∗ ≤ a.

3. Variants of semicontinuity

Recall from [16] that a real function f on L is:

(1) lower semicontinuous if f(r,—) is a closed sublocale for every r ∈ Q;
(2) upper semicontinuous if f(—, r) is a closed sublocale for every r ∈ Q;
(3) continuous if f(p, q) is a closed sublocale for every p, q, i.e. f(L(R)) ⊆

c(L).

We denote by

LSC(L), USC(L) and C(L)

the collections of all lower semicontinuous, upper semicontinuous, and contin-
uous members of F(L). Note that if S is a complemented sublocale of L, then
χS ∈ LSC(L) iff S is open and dually χS ∈ USC(L) iff S is closed. It is also
worth mention that, as proved in [16], after the isomorphism c : L→ c(L), the
elements of C(L) are represented by frame homomorphisms ϕ : L(R) → L,
thus coinciding with the standard continuous real functions on a frame L

(see [3]). In the sequel, we will freely refer to a continuous real function
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as both the real function f ∈ C(L) and the unique frame homomorphism
ϕ : L(R)→ L such that c · ϕ = f .

Proposition 3.1. Let f ∈ F(L). Then:

(1) f ∈ LSC(L) if and only if for each p < q in Q there exists a closed

sublocale Fp,q such that f(q,—) ≤ Fp,q ≤ f(p,—).
(2) f ∈ USC(L) if and only if for each p < q in Q there exists a closed

sublocale Fp,q such that f(—, p) ≤ Fp,q ≤ f(—, q).

Proof : (1) ⇒: This is obvious since f(p,—) is closed for each p ∈ Q.

⇐: Let p ∈ Q. Then f(p,—) =
∨

r>p f(r,—) ≤
∨

r>p Fp,r ≤ f(p,—) and thus
f(p,—) =

∨

r>p Fp,r is a closed sublocale.

(2) Similar to (1).

An element a ∈ L is said to be a cozero element if there exists an f ∈ C(L)
such that

c(a) = f((—, 0) ∨ (0,—)) =
∨

{f(p, 0)∨ f(0, q) | p < 0 < q in Q},

or, equivalently, a continuous ϕ : L(R)→ L such that a = ϕ((—, 0)∨ (0,—)).
We shall denote a by coz f .

Remarks 3.2. (1) The closed sublocales c(a) given by cozero elements a =
coz f are the zero-set sublocales of [25], complements of the cozero sublocales

o(coz f).

(2) The cozero elements can be alternatively described without reference to
the frame of reals as follows [5]: a is a cozero element iff a =

∨

n an for some
an≺≺ a, n = 1, 2, . . . (equivalently: an≺≺ an+1, n = 1, 2, . . .).

(3) For more information on the map coz: C(L)→ L we refer to [4]. As usual,
CozL will denote the cozero lattice of all cozero elements of L (which is always
a sub-σ-frame of L by (2)). Note that in any extremally disconnected frame,
each regular element a, being complemented, is a cozero element (indeed,
χo(a) ∈ C(L) and χo(a)((—, 0) ∨ (0,—)) = c(a), hence a = cozχo(a)).

(4) It is easy to see that cozero elements are δ-regular (since ϕ((—, 0) ∨
(0,—)) =

∨

n ϕ
(

− 1
n
, 1
n

)∗
for any continuous ϕ : L(R) → L). On the other

hand, in any almost normal frame, each δ-regular element belongs to CozL.
In fact, for a =

∨

n an with an ≺ a and an regular, we have an
∗ ∨ a = 1, and

so by almost normality there exist un and vn such that an
∗ ∨ un = 1 and

un
∗ ∨ a ≥ vn ∨ a = 1, which means that an ≺ un ≺ a, and thus an≺≺ a (by

Remark 2.2).
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The lower and upper regularizations of an f ∈ F(L) were introduced and
studied in [14, 16]. In general they are extended real functions [16, 6] but if
there exists g ∈ LSC(L) such that g ≤ f , the lower regularization f ◦ of f is

a real function, generated by the scale
(

f(r,—) | r ∈ Q

)

, i.e.,

f ◦(p,—) =
∨

r>p

f(r,—) and f ◦(—, q) =
∨

s<q

(

f(s,—)
)

c

.

Dually, if there exists g ∈ USC(L) such that f ≤ g, the upper regularization

f− is the real function generated by the scale
((

f(—, r)
)

c

| r ∈ Q
)

, i.e.,

f−(p,—) =
∨

r>p

(

f(—, r)
)

c

and f−(—, q) =
∨

s<q

f(—, s).

Let

Fbl(L) = {f ∈ F(L) | ∃g ∈ LSC(L) such that g ≤ f},

Fbu(L) = {f ∈ F(L) | ∃g ∈ USC(L) such that f ≤ g} and

Fb(L) = Fbl(L) ∩ Fbu(L).

The operators (·)◦ : Fbl(L) → LSC(L) and (·)− : Fbu(L) → USC(L) have the
following useful properties ([14, 16]):

Proposition 3.3. Let f, f1, f2 ∈ Fbl(L) and g, g1, g2 ∈ Fbu(L). Then:

(1) f ◦ ≤ f and g ≤ g−.

(2) f ◦◦ = f ◦ and f−− = f−.

(3) (f1 ∧ f2)
◦ = f1

◦ ∧ f2
◦ and (g1 ∨ g2)

− = g1
− ∨ g2

−.

(4) LSC(L) = {f ∈ Fbl(L) | f ◦ = f} and USC(L) = {f ∈ Fbu(L) | f− = f}.
(5) f ◦ =

∨

{g ∈ LSC(L) | g ≤ f} and f− =
∧

{g ∈ USC(L) | g ≥ f}.
(6) For each complemented sublocale S, (χS)

◦ = χS◦ and (χS)
− = χS.

Furthermore:

Lemma 3.4. Let f ∈ Fb(L). Then, for every p, q ∈ Q we have:

(1) f−◦(p,—) =
∨

r>p f(r,—)
◦ and f−◦(—, q) =

∨

s<q

(

f(—, s)
)◦

.

(2) f ◦−(p,—) =
∨

r>p

(

f(r,—)
)◦

and f ◦−(—, q) =
∨

s<q f(—, s)
◦.

Proof : (1) First note that since f ∈ Fb(L), it follows that f− ∈ Fbl(L) and so
f−◦ ∈ F(L). By definition, for each p ∈ Q,

f−◦(p,—) =
∨

r>p

f−(r,—) =
∨

r>p

∨

s>r

(

f(—, s)
)

c

.
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Let s > r > p. Then f(—, s) ≥ f(r,—)∗ and so
(

f(—, s)
)

c

≤
(

f(r,—)∗
)

c

. It

follows that
∨

s>r

(

f(—, s)
)

c

≤
(

f(r,—)∗
)

c

= f(r,—)◦ and thus

f−◦(p,—) =
∨

r>p

∨

s>r

(

f(—, s)
)

c

≤
∨

r>p

f(r,—)◦.

Conversely, let r > r′ > p. Then f(—, r) ≤ f(r,—)∗ and so

f(r,—)◦ =
(

f(r,—)∗
)

c

≤
(

f(—, r)
)

c

≤
∨

s>r′

(

f(—, s)
)

c

.

Hence f(r,—)◦ ≤
∨

s>r′

(

f(—, s)
)

c

and therefore

∨

r>p

f(r,—)◦ =
∨

r′>p

∨

r>r′
f(r,—)◦ ≤

∨

r′>p

∨

s>r′

(

f(—, s)
)

c

= f−◦(p,—).

On the other hand, for each q ∈ Q we have (again by definition)

f−◦(—, q) =
∨

s<q

(

f−(s,—)
)

c

=
∨

s<q

(

∨

r>s

(

f(—, r)
)

c

)

c

.

Let s < t < q. Then
∨

r>s

(

f(—, r)
)

c

≥
(

f(—, t)
)

c

and so

(

∨

r>s

(

f(—, r)
)

c

)

c

≤

(

(

f(—, t)
)

c

)

c

=
(

f(—, t)
)◦

.

It follows that

f−◦(—, q) =
∨

s<q

(

∨

r>s

(

f(—, r)
)

c

)

c

≤
∨

t<q

(

f(—, t)
)◦

.

Conversely, let s < q. Then f(—, s) ≤ f(—, r) for all r > s and so
(

f(—, s)
)

c

≥
∨

r>s

(

f(—, r)
)

c

.

Hence

∨

s<q

(

f(—, s)
)◦

=
∨

s<q

(

(

f(—, s)
)

c

)

c

≤
∨

s<q

(

∨

r>s

(

f(—, r)
)

c

)

c

= f−◦(—, q).
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(2) It follows immediately since f ◦− ∈ F(L) and

f ◦−(p,—) = −
(

f ◦−
)

(—,−p) = (−f)−◦ (—,−p)

=
∨

s<−p

(

(−f) (—, s)
)◦

=
∨

s<−p

(

f(−s,—)
)◦

=
∨

r>q

(

f(r,—)
)◦

and

f ◦−(—, q) = −
(

f ◦−
)

(−q,—) = (−f)−◦ (−q,—)

=
∨

r>−q
(−f) (r,—)◦ =

∨

r>−q
f(—,−r)◦ =

∨

s<q

f(—, s)◦.

In the point-set case, one finds in the literature several special notions of
lower and upper semicontinuity (see [9, 32, 33, 41]). Normal lower and upper
semicontinuous functions, introduced by Dilworth ([9]), are immediately ex-
tendable to frames: we say that an f ∈ F(L) is normal upper (resp. normal

lower) semicontinuous if (f ◦)− = f (resp. (f−)◦ = f). Note that if f is nor-
mal upper or lower semicontinuous, then f ∈ Fb(L). It follows immediately
from Lemma 3.4 that:

Corollary 3.5. Let f ∈ Fb(L). Then:

(1) f is normal lower semicontinuous if and only if f(p,—) =
∨

r>p f(r,—)
◦

for every p ∈ Q. Denoting by ap the element in L such that f(p,—) =
c(ap), then f is normal lower semicontinuous if and only if ar =

∨

r>p ar
∗∗

for every p ∈ Q.

(2) f is normal upper semicontinuous if and only if f(—, q) =
∨

s<q f(—, s)
◦

for every q ∈ Q. Denoting by bq the element in L such that f(—, q) =
c(bq), then f is normal upper semicontinuous if and only if bq =

∨

s<q bs
∗∗

for every q ∈ Q.

Now we may characterize normal semicontinuity in a similar vein to Propo-
sition 3.1, as follows:

Proposition 3.6. Let f ∈ Fb(L). Then:

(1) f is normal lower semicontinuous if and only if for each p < q in Q there

exists a regular closed sublocale Fp,q such that f(q,—) ≤ Fp,q ≤ f(p,—).
(2) f is normal upper semicontinuous if and only if for each p < q in Q there

exists a regular closed sublocale Fp,q such that f(—, p) ≤ Fp,q ≤ f(—, q).
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Proof : (1) ⇒: Let p < q. Then for each r > q, f(r,—) ≤ f(q,—) and thus

f−◦(q,—) =
∨

r>q

f(r,—)◦ ≤ f(q,—)◦.

Hence

f(q,—) = f−◦(q,—) ≤ f(q,—)◦ ≤
∨

r>p

f(r,—)◦ ≤ f−◦(p,—) = f(p,—),

with f(q,—)◦ being a regular closed sublocale.

⇐: We first note that since Fp,q is closed for each p < q, it follows from
Proposition 3.1 that f is lower semicontinuous. Hence f = f ◦ ≤ f−◦. On
the other hand, let p ∈ Q. Then for each r > p there exists a regular closed
sublocale Fp,r such that f(r,—) ≤ Fp,r ≤ f(p,—). Therefore

f(r,—)◦ ≤ Fp,r
◦ = Fp,r ≤ f(p,—)

and hence

f−◦(p,—) =
∨

r>p

f(r,—)◦ ≤
∨

r>p

Fp,r ≤ f(p,—).

It follows that f−◦ ≤ f .

(2) Similar to (1).

Let S be a closed sublocale of L. Then χS ∈ USC(L) and it is normal if
and only if S◦ = S, that is, if and only if S is a regular closed sublocale.
In case L is extremally disconnected (which means that S◦ = S◦ for every
closed S) then S is clopen. Thus every normal upper χS is continuous if and
only if L is extremally disconnected. More generally, we have:

Corollary 3.7. The following are equivalent for any frame L:

(1) L is extremally disconnected.

(2) Every normal lower semicontinuous function on L is continuous.

(3) Every normal upper semicontinuous function on L is continuous.

Proof : The implications “(2) ⇔ (3) ⇒ (1)” are obvious. Regarding (1) ⇒
(2), let L be extremally disconnected and consider f ∈ LSC(L) such that
f−◦ = f . Then, for each r < t < s in Q,

f−(—, s) ∨ f(r,—) = f−(—, s) ∨ f−◦(r,—)

≥
(
∨

q<s f(—, q)
)

∨
(
∨

p>r f(p,—)
◦
)

≥ f(t,—)∗ ∨ f(t,—)◦ = c(at
∗) ∨ c(at

∗∗) = 1.
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Consequently,

f−(—, s) ≥
∨

r<s

f(r,—)∗ ≥
∨

r<s

f(—, r) = f(—, s).

This means that f− ≤ f and therefore f = f− ∈ USC(L). Hence f is
continuous.

Other important classes of classical semicontinuous functions are the zero
ones of Stone [41] and the regular ones of Lane [33]. Regarding the former,
we say that an f ∈ F(L) is zero lower (resp. zero upper) semicontinuous
function if, for each r ∈ Q, f(r,—) = c(ar) (resp. f(—, r) = c(ar)) for some
ar ∈ CozL. Since CozL is a sub-σ-frame of L, this is equivalent to saying
that for each p < q in Q there exists a zero-set sublocale c(ap,q) such that
f(q,—) ≤ c(ap,q) ≤ f(p,—) (resp. f(—, p) ≤ c(ap,q) ≤ f(—, q)) (recall the
proof of Proposition 3.1).
On the other hand, we say that an f ∈ F(L) is regular lower (resp.

regular upper) semicontinuous if, for each r ∈ Q, f(r,—) = c(ar) (resp.
f(—, r) = c(ar)) where each ar is a δ-regular element. Again, since the δ-
regular elements form a sub-σ-frame of L, this is equivalent to saying that
for each p < q in Q there exists a regular Gδclosed sublocale c(ap,q) such that
f(q,—) ≤ c(ap,q) ≤ f(p,—) (resp. f(—, p) ≤ c(ap,q) ≤ f(—, q)).
Note that by Remark 3.2(4), in almost normal frames, regular semiconti-

nuity implies zero semicontinuity.

Finally, recall from [20] (see also [12]) that an f ∈ F(L) is lower (resp.
upper) compact-like if f(r,—) (resp. f(—, r)) is a compact sublocale of L for
every r ∈ Q. In any Hausdorff (or fit) frame, compact sublocales are closed.
In that case, therefore, any lower (resp. upper) compact-like function on L is
lower (resp. upper) semicontinuous. It should be added that if L is compact,
then any upper (resp. lower) semicontinuous function on L is upper (resp.
lower) compact-like [20].

4. A -normality and A -disconnectedness

The main idea of our approach is the following: go to the sublocale frame
S(L) and take complements inside it. More specifically, given a frame L, let
B(S(L)) denote the Boolean part of S(L) (that is, the Boolean algebra of
complemented elements of S(L)). Fix an A ⊆ B(S(L)) and let A

c denote
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the corresponding set of complements. Clearly, A
cc = A and if A is a

sublattice of B(S(L)), then A
c is also a sublattice of B(S(L)).

Definition 4.1. A frame L is A -normal if
for any A,B ∈ A such that A∨B = 1 there are U, V ∈ A

such that U ∧ V = 0 and A ∨ U = 1 = B ∨ V .

Dually, we say that L is A -disconnected if it is A
c-normal, that is, if

for any A,B ∈ A such that A∧B = 0 there are U, V ∈ A

such that U ∨ V = 1 and A ∧ U = 0 = B ∧ V .

Remark 4.2. Note that in case L is OX for some spaceX, since every comple-
mented sublocale of a space is a subspace [37], these notions are completely
formulated in terms of the space X (with no reference to sublocales) and pro-
vide a unification of several variants of normal and disconnected topological
spaces in the literature.

Examples 4.3. Our guiding examples for classes A ⊆ B(S(L)) will be

A1 = c(L), A2 = {c(a
∗) | a ∈ L}, A3 = {c(a) | a ∈ cozL},

A4 = B(S(L)), A5 = {c(a) | a is δ-regular}.

A1, A3, A4 and A5 are clearly sublattices of B(S(L)) while A2 is only closed
under finite meets. They induce the notions listed in Table 3.

A A -normal frames A -disconnected frames

A1 normal frames extremally disconnected frames
A2 mildly normal frames extremally disconnected frames
A3 frames F -frames
A4 frames frames
A5 δ-normal frames extremally δ-disconnected frames

Table 3. Examples of A -normal and A -disconnected frames

Indeed, the cases A1 and A4 are obvious. Concerning A2 we have:

• A2-normal=mildly normal: if a ∨ b = 1 (with a, b regular elements) and
there are u, v ∈ L such that u ∧ v = 0 and a ∨ u = 1 = b ∨ v, then
a ∨ u∗∗ = 1 = b ∨ v∗∗ and again u∗∗ ∧ v∗∗ = 0 (by Proposition 1.4(1)).
• A2-disconnected=extremally disconnected: Proposition 2.3(6) (cf. Re-
mark 2.6).
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For A3 (the zero-set sublocales of Remark 3.2(1)), the fact that any frame
is A3-normal is a consequence of Proposition 5 in Banaschewski ([2]) while
the fact that A3-disconnected frames are precisely the F -frames (i.e, frames
where the open quotient of each (dense) cozero element is a C∗-quotient)
follows from Proposition 8.4.10 in Ball and Walters-Wayland [1].
Finally, for A5, it is obvious that the A5-normal frames are what we named

δ-normal frames; accordingly, we call A5-disconnected frames as extremally δ-
disconnected frames. Note that by Proposition 8.4.10 of [1], in frames where
the δ-regular elements are the cozero elements, extremally δ-disconnected
frames coincide with F -frames.

5. A -continuity and A -semicontinuities

In this section we show how variants of continuous and semicontinuous
real functions can also be defined in terms of a given class of complemented
sublocales A .
Ordinary continuity and semicontinuities of an f : L(R)→ S(L) are defined

with respect to c(L) ⊆ S(L). In this case, by Proposition 3.1, f is lower (resp.
upper) semicontinuous if and only if for each p < q in Q there exists Fp,q ∈
c(L) such that f(q,—) ≤ Fp,q ≤ f(p,—) (resp. f(—, p) ≤ Fp,q ≤ f(—, q)).
This is so because c(L) is closed under joins. However, for a general class
A of complemented sublocales not necessarily closed under joins the latter
condition is weaker and we take it as the definition for semicontinuity with
respect to A .

Definitions 5.1. We say that f is:

(1) lower A -semicontinuous if for each p < q in Q there exists Fp,q ∈ A

such that f(q,—) ≤ Fp,q ≤ f(p,—).
(2) upper A -semicontinuous if for each p < q in Q there exists Fp,q ∈ A

such that f(—, p) ≤ Fp,q ≤ f(—, q).
(3) A -continuous if it is both lower and upper A -semicontinuous.

Of course, f is upper A -semicontinuous iff it is lower A
c-semicontinuous

and therefore it is A
c-continuous iff it is A -continuous. Note that for any

S ∈ A , χS is upper A -semicontinuous and χSc is lower A -semicontinuous.

Definition 5.2. (Cf. [13, Def. 3.1]) Further, we say that two sublocales S

and T of L are completely A -separated if there is an A -continuous function
f such that f(0,—) ≤ S and f(—, 1) ≤ T .
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Examples 5.3. For our guiding examples in 4.3 and

A6 = {S ∈ B(S(L)) | S is compact}

(in this case we assume that L is Hausdorff or fit so that any compact sublo-
cale is complemented) the corresponding induced notions are listed in Table 4
(recall the results of Section 3).

A lower A -semicont. upper A -semicont. A -continuous

A1 lower semicontinuous upper semicontinuous continuous
A2 normal lower

semicontinuous
normal upper
semicontinuous

normal continuous

A3 zero lower
semicontinuous

zero upper
semicontinuous

zero continuous

A4 C(B(S(L))) C(B(S(L))) C(B(S(L)))
A5 regular lower

semicontinuous
regular upper
semicontinuous

regular continuous

A6 compact-like lower
semicontinuous

compact-like upper
semicontinuous

compact-like
continuous

Table 4. Examples of A -continuous and A -semicontinuous maps

Concerning class A4, the three classes of induced maps coincide (and are all
equal to the class of frame homomorphisms L(R)→ B(S(L))) since f is lower
A4-semicontinuous iff it is upper A4-semicontinuous: if for each p < q in Q

there is some complemented sublocale Cp,q satisfying f(q,—) ≤ Cp,q ≤ f(p,—)
then take a rational r such that p < r < q; since f(r,—) ≤ Cp,r ≤ f(p,—),
then f(—, p) ≤ f(p,—)∗ ≤ Cp,r

c and, on the other hand, f(—, q) ∨ Cp,r ≥
f(—, q) ∨ f(r,—) = 1 so that Cp,r

c ≤ f(—, q).

6. Katětov relations

LetM be an arbitrary lattice. Recall that a binary relation⋐ onM is called
a Katětov relation ([27, 28, 29, 17]) if it satisfies the following conditions for
all a, b, a′, b′ ∈M :

(K1) a ⋐ b⇒ a ≤ b.
(K2) a′ ≤ a ⋐ b ≤ b′ ⇒ a′ ⋐ b′.
(K3) a ⋐ b and a′ ⋐ b⇒ (a ∨ a′) ⋐ b.
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(K4) a ⋐ b and a ⋐ b′ ⇒ a ⋐ (b ∧ b′).
(K5) a ⋐ b⇒ ∃c ∈M : a ⋐ c ⋐ b. (Interpolation Property)

Lemma 6.1 ([28, 29, 17]). Let M be a lattice, ⋐ a Katětov relation on M

and ⊳ a transitive and irreflexive relation on a countable set D. Further, let

(ad | d ∈ D) and (bd | d ∈ D) be two families of elements of M such that

d1 ⊳ d2 implies ad2 ≤ ad1, bd2 ≤ bd1 and ad2 ⋐ bd1.

Then there exists a family (cd | d ∈ D) ⊆M such that

d1 ⊳ d2 implies cd2 ⋐ cd1, ad2 ⋐ cd1 and cd2 ⋐ bd1.

Now, given a fixed A ⊆ B(S(L)), define the relation ⋐A on S(L) by

S ⋐A T ≡ ∃U ∈ A , ∃V ∈ A
c : S ≤ V ≤ U ≤ T. (⋐A )

Lemma 6.2. ⋐A is interpolative if and only if L is A -normal.

Proof : Let ⋐A satisfy the Interpolation Property and consider A,B ∈ A

satisfying A ∨ B = 1. Then Ac ∈ A c satisfies Ac ≤ B. This means that
Ac

⋐A B and by hypothesis there is a T ∈ S(L) such that Ac
⋐A T ⋐A B.

Therefore there are U1, U2 ∈ A and V1, V2 ∈ A
c such that

Ac ≤ V1 ≤ U1 ≤ T ≤ V2 ≤ U2 ≤ B.

Then, immediately, U1 ∧ V2
c = 0 and A ∨ U1 = 1 = B ∨ V2

c.
Conversely, let S ≤ V ≤ U ≤ T for S, T ∈ S(L), U ∈ A and V ∈ A

c.
Then V c ∨ U ≥ V c ∨ V = 1 thus by the A -normality of L, there exist
A,B ∈ A such that A ∧B = 0, V c ∨ A = 1 = U ∨B. This implies

S ≤ V ≤ A ≤ Bc ≤ U ≤ T

which means that S ⋐A A ⋐A T .

Clearly, for any A ⊆ B(S(L)), the relation ⋐A satisfies conditions (K1)
and (K2). We say that A is a Katětov class in L whenever ⋐A also satisfies
conditions (K3) and (K4). By Lemma 6.2, each Katětov class A in any
A -normal frame induces a Katětov relation ⋐A . The following proposition
is obvious.

Proposition 6.3. Every sublattice A of B(S(L)) is a Katětov class.
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As a consequence, guiding classes A1, A3, A4 and A5, as well as their
corresponding sets of complementsA1

c, A3
c, A4

c and A5
c, are Katětov classes

in any frame. A2 and A2
c, despite the fact that they are not sublattices of

B(S(L)), also fit in this scheme as the following results show.

Proposition 6.4. Let A be a class of complemented sublocales of L satisfying

• U1, U2 ∈ A ⇒ U1 ∨ U2 ∈ A (closed under binary joins)

• U1, U2 ∈ A , U1 ∧ U2 ≥ V ∈ A c ⇒ ∃ U ∈ A : U1 ∧ U2 ≥ U ≥ V.







(∗∧)
Then:

(1) A is a Katětov class.

(2) If L is A c-normal then A c is also a Katětov class.

Proof : (1) (K3): Let Si ≤ U ′i ≤ Ui ≤ T with U ′i ∈ A
c and Ui ∈ A (i = 1, 2).

Then

S1 ∨ S2 ≤ U ′1 ∨ U ′2 ≤ U1 ∨ U2 ≤ T,

where U1 ∨ U2 ∈ A (since A is closed under binary joins). In particular,
applying (∗∧) to the inequality (U ′1)

c ∧ (U ′2)
c ≥ (U1)

c ∧ (U2)
c ∈ A c, we get

U ∈ A such that U ′1∨U
′
2 ≤ U c ≤ U1∨U2. Hence S1∨S2 ≤ U c ≤ U1∨U2 ≤ T ,

i.e. S1 ∨ S2 ⋐A T as required.

(K4): Let S ≤ U ′i ≤ Ui ≤ Ti with U ′i ∈ A
c and Ui ∈ A (i = 1, 2). Then

S ≤ U ′1 ∧ U ′2 ≤ U1 ∧ U2 ≤ T1 ∧ T2,

where U ′1 ∧ U ′2 ∈ A
c (since A

c is closed under binary joins). In particular,
applying (∗∧) to the inequality U1 ∧ U2 ≥ U ′1 ∧ U ′2 ∈ A c, we get U ∈ A

such that U ′1 ∧ U ′2 ≤ U ≤ U1 ∧ U2. Hence S ≤ U ′1 ∧ U ′2 ≤ U ≤ T1 ∧ T2, i.e.
S ⋐A T1 ∧ T2 as required.

(2) (K3): Let Si ≤ Ui ≤ U ′i ≤ T with Ui ∈ A and U ′i ∈ A c (i = 1, 2). Then
Ui ⋐A c U ′i . By Lemma 6.2, ⋐A c is interpolative and so we have furthermore

Si ≤ Ui ≤ V ′i ≤ Vi ≤ U ′i ≤ T

for some Vi ∈ A and V ′i ∈ A
c. Thus

S1 ∨ S2 ≤ U1 ∨ U2 ≤ V ′1 ∨ V ′2 ≤ V1 ∨ V2 ≤ U ′1 ∨ U ′2 ≤ T,
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where U1 ∨ U2, V1 ∨ V2 ∈ A (since A is closed under binary joins). Then,
applying (∗∧) to the inequality (V ′1)

c ∧ (V ′2)
c ≥ (V1)

c ∧ (V2)
c ∈ A

c, we get
U ∈ A such that V ′1 ∨ V ′2 ≤ U c ≤ V1 ∨ V2. Hence

S1 ∨ S2 ≤ U1 ∨ U2 ≤ U c ≤ T,

i.e. S1 ∨ S2 ⋐A c T follows, as required.

(K4): Let S ≤ Ui ≤ U ′i ≤ Ti with Ui ∈ A and U ′i ∈ A c (i = 1, 2). Then
Ui ⋐A c U ′i . By Lemma 6.2, ⋐A c is interpolative and so we have furthermore

S ≤ Ui ≤ V ′i ≤ Vi ≤ U ′i ≤ Ti

for some Vi ∈ A and V ′i ∈ A c. Thus

S ≤ U1 ∧ U2 ≤ V ′1 ∧ V ′2 ≤ V1 ∧ V2 ≤ U ′1 ∧ U ′2 ≤ T1 ∧ T2,

where U ′1 ∧ U ′2, V
′
1 ∧ V ′2 ∈ A c (since A c is closed under binary meets). In

particular, applying (∗∧) to the inequality V1 ∧ V2 ≥ V ′1 ∧ V ′2 ∈ A c, we get
U ∈ A such that V ′1 ∧ V ′2 ≤ U ≤ V1 ∧ V2. Hence

S ≤ U ≤ U ′1 ∧ U ′2 ≤ T1 ∧ T2,

i.e. S ⋐A c T1 ∧ T2 as required.

The dual version of Proposition 6.4 follows immediately by complementa-
tion (since A satisfies (∗∨) if and only if A c satisfies (∗∧)):

Proposition 6.5. Let A be a class of complemented sublocales of L satisfying

• U1, U2 ∈ A ⇒ U1 ∧ U2 ∈ A (closed under binary meets)

• U1, U2 ∈ A , U1 ∨ U2 ≤ V ∈ A
c ⇒ ∃ U ∈ A : U1 ∨ U2 ≤ U ≤ V.







(∗∨)
Then:

(1) A c is a Katětov class.

(2) If L is A -normal then A is also a Katětov class.

Note that Proposition 6.3 is an immediate consequence of Propositions 6.4
and 6.5 since A being closed under binary meets and joins implies both
conditions (∗∧) and (∗∨).

Corollary 6.6. A2 is a Katětov class in any mildly normal frame and A2
c

is a Katětov class in any frame.
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Proof : It suffices to check that A2 satisfies condition (∗∨). A2 is certainly
closed under binary meets and, moreover, for any regular elements a1, a2 and
b in L, c(a1) ∨ c(a2) ≤ o(b) implies

c(a1) ∨ c(a2) ≤ c((a1 ∨ a2)
∗∗) ≤ o((a1 ∨ a2)

∗) ≤ o(b)

and (a1 ∨ a2)
∗∗ is regular.

7. Katětov-Tong-type insertion versus Stone-type inser-

tion

Finally, we come to the main result of the paper:

Theorem 7.1. [Relative version of Katětov-Tong insertion thr.]
Let A ⊆ B(S(L)) be a Katětov class. The following are equivalent:

(i) L is A -normal.

(ii) If f ≤ g are real functions on L such that f is upper and g is lower

A -semicontinuous, then there exists an A -continuous real function h

on L such that f ≤ h ≤ g.

(iii) Every S, T ∈ A satisfying S ∨ T = 1 are completely A -separated.

Proof : (i)⇒(ii): Let f ≤ g be two real functions on L such that f is upper
and g is lower A -semicontinuous and let ⋐A be the Katětov relation defined
in (⋐A ). Further, let ar = f(—, r)∗ and br = g(r,—) for each r ∈ Q. It follows
from Remark 1.2(2) that (ar | r ∈ Q) and (br | r ∈ Q) are scales generating
f and g, respectively. Hence, in particular,

aq ≤ ap and bq ≤ bp whenever p < q.

On the other hand, let p, r, s, q ∈ Q such that p < r < s < q. Since f is
upper and g is lower A -semicontinuous, there exist Ss,q, Tp,r ∈ A such that

f(—, s) ≤ Ss,q ≤ f(—, q) and g(r,—) ≤ Tp,r ≤ g(p,—).

Finally, since f ≤ g, it follows from Lemma 1.3 that

aq = f(—, q)∗ ≤ Ss,q
c ≤ f(—, s)∗ ≤ f(r,—) ≤ g(r,—) ≤ Tp,r ≤ g(p,—) = bp,

i.e. aq ⋐A bp.
We can now apply Lemma 6.1 with

M ≡ S(L), ⋐≡⋐A , D ≡ Q and ⊳≡< .
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Hence there exists a family (cr | r ∈ Q) of sublocales of L such that

cq ⋐A cp, aq ⋐A cp and cq ⋐A bp whenever p < q.

First note that
∨

p∈Q

cp ≥
∨

p∈Q

ap = 1 and
∨

p∈Q

cp
∗ ≥

∨

p∈Q

bp
∗ = 1.

Also, if p < q then cq ⋐A cp and so there exists U ∈ A such that cq ≤ U ≤ cp.
Since U is complemented, it follows from Remark 1.2(1) that (cr | r ∈ Q)
satisfies (S1). Hence (cr | r ∈ Q) is a scale and the generated function h

satisfies:

(1) f ≤ h, (since aq ≤ cp whenever p < q, applying Lemma 1.3).
(2) h ≤ g, (since cq ≤ bp whenever p < q, applying Lemma 1.3).
(3) h is A -continuous:

Let p < r < q, since cq ⋐A cp, it follows that there exist Tr,q, Tp,r ∈ A c

and Sr,q, Sp,r ∈ A such that cq ≤ Tr,q ≤ Sr,q ≤ cr and cr ≤ Tp,r ≤
Sp,r ≤ cp. Hence

h(q,—) =
∨

q′>q

cq′ ≤ cq ≤ Sr,q ≤ cr ≤
∨

p′>p

cp′ = h(p,—)

and

h(—, p) =
∨

p′<p

cp′
∗ ≤ cp

∗ ≤ Tp,r
c ≤ cr

∗ ≤
∨

q′<q

cq′
∗ = h(—, q).

(ii)⇒(iii): Let S, T ∈ A satisfying S ∨T = 1. Then χT is upper A -semicon-
tinuous, χSc is lower A -semicontinuous and χT ≤ χSc. Hence, by hypothesis,
there is an A -continuous real function h such that χT ≤ h ≤ χSc. But this
means that h(—, 1) ≤ χT (—, 1) = T and h(0,—) ≤ χSc(0,—) = S and thus S
and T are completely A -separated.

(iii)⇒(i): Let A,B ∈ A with A ∨B = 1. By hypothesis, there is an A -con-
tinuous f such that f(0,—) ≤ A and f(—, 1) ≤ B. Consider U, V ∈ A such
that

f
(

—, 14
)

≤ U ≤ f
(

—, 12
)

and f
(

3
4,—

)

≤ V ≤ f
(

1
2,—

)

.

Clearly, U ∧ V = 0 and A ∨ U = 1 = B ∨ V .

Now the dual result for extremal A -disconnectedness follows immediately
by complementation:

Corollary 7.2. Let A ⊆ B(S(L)) be such that A
c is a Katětov class. The

following are equivalent:
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(i) L is A -disconnected.

(ii) If g ≤ f are real functions on L such that f is upper and g is lower

A -semicontinuous, then there exists an A -continuous real function h

on L such that g ≤ h ≤ f .

(iii) Every S, T ∈ A satisfying S ∧ T = 0 are completely A -separated.

Notes 7.3. (1) When considering the excellent survey in Lane’s paper [32],
we observe that Theorem 7.1 and Corollary 7.2 cover all the cases mentioned
there where the classes of upper and lower semicontinuous functions in ques-
tion are dual to each other. More specifically:
It is clear that Theorem 7.1 applied to A = A1 provides the pointfree

version of the Katětov-Tong insertion theorem [18, 16] (as well as Urysohn’s
Lemma) while its corollary produces the pointfree counterpart of Stone in-
sertion theorem [14].
Applying Theorem 7.1 to the case A = A2 yields a new result for mildly

normal frames that extends the classical result of [31] (cf. [32]) for mildly nor-
mal spaces; on the other hand, Corollary 7.2 yields the pointfree counterpart
(for extremally disconnected frames) of a classical result of Lane [32].
The case A = A3 also produces new results for frames: the ‘normality’

assertion extends a classical result of Blatter and Seever [8] (cf. [32]) and the
‘extremal disconnectedness’ dual extends a classical result of Seever [38] (cf.
[32]).
Finally, we mention that the case A = A5 also produces new results for

frames and that we were not able to find their classical counterparts in the
literature.

(2) With Corollary 7.2 we achieved our main goal: to get the results in
the extremal disconnectedness side of the parallel for free. Compare this
with the (classical and pointfree) proofs so far where the treatment in the
extremal disconnectedness case requires extra tools such as the lower and
upper regularizations.

(3) Of course, applying Theorem 7.1 and Corollary 7.2 to the case L = OX
for a topological space (X,OX) gives the classical results mentioned above
in (1). (Recall Remark 4.2).
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8. Tietze-type extension for A -continuous functions

In this section we study Tietze-type extension results for A -continuous
real functions.
Let S be a sublocale of L. S is itself a frame with the same meets as in L,

and since the Heyting operation→ depends on the meet structure only, with
the same Heyting operation. (This implies, in particular, that any sublocale
of S is also a sublocale of L and that for any S, T ∈ S(L), if S ⊆ T then S

is also a sublocale of T .) However the joins in S and L will not necessarily
coincide:

∨S
A =

∧

{s ∈ S | s ≥
∨

A} ≥
∨

A.

It follows that 1S = 1 but in general 0S =
∧

S.
Further, there is the frame surjection cS : L→ S given by

cS(x) =
∧

{s ∈ S | s ≥ x} (8.1)

for all x ∈ L. The following is well known (denoting the closed and open
sublocales of S by c

S(a) and o
S(a), respectively) (see [10, Prop. 2.3]):

(1) For every a ∈ L, c(a) ∨ S (resp. o(a) ∨ S) is the closed (resp. open)
sublocale cS(cS(a)) (resp. o

S(cS(a))) of S.
(2) If T is a closed (resp. open) sublocale of S then T = c(a) ∨ S (resp.

T = o(a) ∨ S) for some a ∈ L.

Now, let us look to the frame S(S). As mentioned above, S(S) ⊆ S(L).
The joins in S(S) are given by intersection so they coincide with the joins in
S(L). On the other hand, for any Ri ∈ S(S) their meet in S(S) is given by
the formula

{

S
∧

A | A ⊆
⋃

i

Ri

}

=
{

L
∧

A | A ⊆
⋃

i

Ri

}

,

that is, it coincides with their meet in S(L). (This means that S(S) is not
a subframe of S(L) only because they have different zeros.) The following is
also well known and easy to prove.

Lemma 8.1. Let S be a sublocale of L. The map ϕS : S(L) → S(S) given

by ϕS(T ) = T ∨ S = T ∩ S is an onto frame homomorphism.

This means that S(S) is a sublocale of S(L) and allows us to introduce the
following definition.
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Definition 8.2. Let S be a sublocale of L and A ⊆ B(S(L)). We say that
an f : L(R)→ S(S) in F(S) has an A -continuous extension to L if there

exists an A -continuous
∼
f : L(R)→ S(L) such that the diagram

S(L)

ϕS

��

L(R)

∼

f
;;

f
// S(S)

commutes. The extension
∼
f is called an A -continuous extension of f to L.

Remarks 8.3. (1) Note that ϕS is precisely the quotient cS(S) : S(L)→ S(S)
from (8.1) since

cS(S)(T ) =
∧

{R ∈ S(S) | T ≤ R} =
{

∧

A | A ⊆
⋃

R∈S(S),R⊆T

R
}

= T ∩ S

(in the last equality, ‘⊆’ is obvious; conversely, if x ∈ T ∩ S then, since
T ∩ S ∈ S(S), A = {x} ⊆

⋃

R∈S(S),R⊆T R).

(2) For f ∈ C(S) and A = c(L) this notion coincides with the previous notion
in the Appendix to [16] because ϕS = cS(S), by (1), and by (S1) the restriction
of cS(S) to c(L) is precisely the frame homomorphism cc(S) : c(L)→ c(S) used
in [16].

Definitions 8.4. We say that a Katětov class A of a frame L is a Tietze

class whenever

(T1) A is closed under finite meets, and
(T2) A is closed under countable joins.

Given a Tietze class A and a sublocale S of L, let

AS = {S ∨ A | A ∈ A }.

Of course, AS ⊆ A whenever S ∈ A . We say that a sublocale S is CA -

embedded if every AS-continuous f ∈ F(S) has an A -continuous extension
to L. Further, S is said to be C∗

A
-embedded if every bounded AS-continuous

f ∈ F(S) has an A -continuous extension to L (recall that an f ∈ F(S) is
bounded if there exist rationals p, q such that p ≤ f ≤ q, i.e. f(—, p) =
f(q,—) = 0S(S) = S).

Examples 8.5. Each of the guiding examples A1,A3 and A5 is a Tietze
class.
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Theorem 8.6. [Relative version of Tietze’s extension theorem]
Let A be a Tietze class of L. The following are equivalent:

(i) L is A -normal.

(ii) Every S ∈ A is C∗
A
-embedded in L.

Proof : (i)⇒(ii): Let S ∈ A and let f : L(R) → S(S) be a bounded AS-
continuous map (we can assume w.l.o.g. that 0 ≤ f ≤ 1, i.e. f(—, p) =
f(q,—) = 0S(S) = S). Then, for each p < q there are Up,q, Vp,q ∈ AS such
that f(—, p) ≤ Up,q ≤ f(—, q) and f(q,—) ≤ Vp,q ≤ f(p,—). In particular,

f(—, q) =
∨

p<q

Up,q and f(p,—) =
∨

q>p

Vp,q

and thus, by (T2), f(—, q), f(p,—) ∈ A . Moreover, since f(p,—)∨ f(—, q) =
1S(S) = 1S(L) = {1} for every p < q, then

∨

r<q

Ur,q ∨
∨

s>p

Vp,s = {1} for evey p < q

from which it follows that

∧

r<q

Ur,q
c =

(

∨

r<q

Ur,q

)∗

≤
∨

s>p

Vp,s for evey p < q. (8.6)

Define an antitone (Sr | r ∈ Q) ⊆ S(L) as follows:

Sr =











1S(L) = {1} if r < 0

f(r,—) if 0 ≤ r < 1

0S(L) = L if r ≥ 1.

This is a scale that generates a g2 ∈ F(L), given by

g2(p,—) =











{1} if p < 0
∨

q>p Vp,q if 0 ≤ p < 1

L if p ≥ 1

and

g2(—, q) =











{1} if q > 1
∨

r<q f(r,—)
∗ =

∨

r<q

∧

t>r Vr,t
c if 0 < q ≤ 1

L if q ≤ 0.
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Clearly, g2 is a lower A -continuous map. Similarly,

g1(—, q) =











{1} if q > 1
∨

p<q Up,q if 0 < q ≤ 1

L if q ≤ 0

and

g1(p,—) =











{1} if p < 0
∨

s>p f(—, s)
∗ =

∨

s>p

∧

t<sUt,s
c if 0 ≤ p < 1

L if p ≥ 1

define an upper A -continuous map and by (8.6) we have g1 ≤ g2.
It then follows from Theorem 7.1 that there exists an A -continuous h ∈

F(L) such that g1 ≤ h ≤ g2. This is the desired A -continuous extension of
the given f . Indeed:

• For every p < 0, h(p,—) ≥ g1(p,—) = {1}, so (ϕS · h)(p,—) = f(p,—).
• For every p ≥ 1, h(p,—) ≤ g2(p,—) = L, so (ϕS · h)(p,—) = S = f(p,—).
• For every q > 1, h(—, q) ≥ g2(q,—) = 1, so (ϕS · h)(—, q) = f(—, q).
• For every q ≤ 0, h(—, q) ≤ g1(—, q) = 0, so (ϕS · h)(—, q) = S = f(—, q).
• For every 0 ≤ p < 1 and for each r ∈ Q such that p < r < 1 we have

f(r,—) = f(r,—) ∧ (h(p,—) ∨ h(—, r)) = (f(r,—) ∧ h(p,—)) ∨ (f(r,—) ∧ h(—, r))

≤ h(p,—) ∨ (f(r,—) ∧ g1(—, r)) = h(p,—) ∨ (f(r,—) ∧ f(—, r))

= h(p,—) ∨ 0S(S) = h(p,—) ∨ S.

Hence f(p,—) = (
∨

p<r<1 f(r,—)) ≤ h(p,—) ∨ S ≤ g2(p,—) ∨ S = f(p,—)
and so (ϕS · h)(p,—) = h(p,—) ∨ S = f(p,—).
• For every 0 < q ≤ 1 we can prove in a similar way that (ϕS · h)(—, q) =
f(—, q).

(ii)⇒(i): Conversely, suppose A ∨ B = 1S(L) = {1} with A,B ∈ A and
consider the sublocale S = A ∧ B which by (T1) also belongs to A . Define
f : L(R)→ S(S) by

f(p,—) =











1S(S) = {1} if p < 0

A if 0 ≤ p < 1

0S(S) = S if p ≥ 1
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and

f(—, q) =











1S(S) = {1} if q > 1

B if 0 < q ≤ 1

0S(S) = S if q ≤ 0.

This is a frame homomorphism. Since A,B, S, {1} ∈ AS, this is moreover
a bounded AS-continuous map. Then it has an A -continuous extension
∼
f : L(R)→ S(L). We have

∼
f (0,—) ≤ ϕS(

∼
f (0,—)) = f(0,—) = A

and
∼
f (—, 1) ≤ ϕS(

∼
f (—, 1)) = f(—, 1) = B

and so A and B are completely A -separated in L. Therefore L is A -normal
by Theorem 7.1.

Once again the dual result for extremal A -disconnectedness follows imme-
diately by complementation:

Corollary 8.7. Let A ⊆ B(S(L)) be such that A c is a Tietze class of L.

The following are equivalent:

(i) L is A -disconnected.

(ii) Every S ∈ A c is C∗
A
-embedded in L.

9. Images of A -normal and A -disconnected locales

In this final section we show how our general approach in Section 4 also
makes possible to extend to locales the Hausdorff mapping invariance type
theorems (Table 1) and to prove their relative versions with a single proof.
For that we need first to recall a few facts about localic maps from [36].
A map f : L→M between locales L and M is a localic map if it has a left

adjoint f ∗ : M → L such that f ∗(1) = 1 and f ∗(a∧ b) = f ∗(a)∧ f ∗(b). Then:

(1) f preserves arbitrary meets (in particular, f(1) = 1).
(2) If f(a) = 1 then a = 1.

For each S ∈ S(L), the image of S, f [S], is a sublocale of M . From [36] we
know that

f [−] : S(L)→ S(M)
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is a localic map. The localic map f is closed if the image of each closed
sublocale of L is closed. In that case, f [c(a)] = c(f(a)) for each a ∈ L.
Moreover:

(1) f [−] preserves arbitrary meets.
(2) f [0S(M)] = 0S(M) iff f is surjective.

On the other hand, the preimage f−1[T ] of a sublocale T of M is defined
as

f−1[T ] =
∧

{

S ∈ S(L) | S ≥ f−1[T ]
}

,

where f−1[T ] denotes the set-theoretical preimage of T (which is only closed
under meets, but not necessarily a sublocale of L). The function

f−1[−] : S(M)→ S(L)

is left adjoint to f [−], that is,

f−1[T ] ≤ S iff T ≤ f [S].

The preimage of a closed (resp. open) sublocale under a localic map is
closed (resp. open). Specifically,

f−1[c(a)] = c(f ∗(a)) and f−1[o(a)] = o(f ∗(a)) for each a ∈ L. (9.1)

Moreover:

(1) f−1[−] preserves all joins and all finite meets.
(2) f−1[−] preserves complements.

Now we require some terminology. Let (A )L (resp. (A )M) denote a subset
of the Boolean part of S(L) (resp. S(M)). We say that a localic map
f : L → M is (A )L(A )M-preserving if f [−] maps elements of (A )L into
(A )M .

Examples 9.1. (1) (A1)L(A1)M -preserving localic maps are precisely the
closed ones while (A c

1 )L(A
c

1 )M -preserving localic maps are the open ones.
Moreover, by (9.1), f−1[−] assigns elements of (A1)M into (A1)L and elements
of (A c

1 )M into (A c

1 )L.

(2) Regarding (A2)L(A2)M -preserving localic maps they are precisely the
localic maps f : L → M such that for each a ∈ L there is some b ∈ M

satisfying f [c(a∗)] = c(b∗), that is, f [↑a∗] = ↑b∗. We can say more:

Proposition. For a localic map f : L→M the following are equivalent:

(i) f is (A2)L(A2)M -preserving.
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(ii) For each a ∈ L, f [↑a∗] = ↑f(a∗) and f(a∗) is regular.
(iii) For each a ∈ L and b ∈M , f(a∗∨f ∗(b)) = f(a∗)∨b and f(a∗) is regular.

Proof : (i)⇒(ii): f [↑a∗] = ↑b∗ for some b and since f(a∗) is obviously the
minimal element in f [↑a∗], b∗ = f(a∗) and f(a∗) is regular.

(ii)⇒(iii): We have always f(a∗ ∨ f ∗(b)) ≥ f(a∗) ∨ ff ∗(b) ≥ f(a∗) ∨ b.

Moreover, f(a∗) ∨ b = f(x) for some x ≥ a∗. As f(x) ≥ b, we have x ≥
a∗ ∨ f ∗(b), and f(a∗ ∨ f ∗(b)) ≤ f(x) = f(a∗) ∨ b.

(iii)⇒(i): If x ≥ f(a∗) then x = f(a∗) ∨ x = f(a∗ ∨ f ∗(x)) ∈ f [↑a∗]. Hence
f [↑a∗] = ↑f(a∗) and we have (ii). The fact that (ii) implies (i) is obvious.

Note that any localic closed map that preserves regular elements is (A2)L(A2)M -
preserving. Further, by (9.1), f−1[−] maps elements of (A2)M into (A2)L iff
the left adjoint f ∗ preserves regular elements (these are the frame homo-
morphisms classified as of type E in ([7], Theorem 3.5)). This is true, in
particular, when h = f ∗ is nearly open, that is, such that h(a∗) = h(a)∗

(precisely the frame homomorphisms in class A of [7]). Moreover, for any
such nearly open h, f preserves regular elements; in fact, hf(a∗) ≤ a∗

implies h(f(a∗)∗∗) = (hf(a∗))∗∗ ≤ a∗∗∗ = a∗, therefore, by adjunction,
f(a∗)∗∗ ≤ f(a∗) and thus f(a∗)∗∗ = f(a∗).

(3) Regarding (A3)L(A3)M -preserving localic maps we have a similar result:

Proposition. For a localic map f : L→M the following are equivalent:

(i) f is (A3)L(A3)M -preserving.
(ii) For each a ∈ CozL, f [↑a] = ↑f(a) and f(a) ∈ CozM .
(iii) For each a ∈ CozL and b ∈M , f(a∨f ∗(b)) = f(a)∨b and f(a) ∈ CozM .

We note in addition that f−1[−] maps elements of (A3)M into (A3)L iff the
frame homomorphism f ∗ preserves cozero elements (which is always the case
for any frame homomorphism).

The pointfree counterpart of the Hausdorff mapping invariance theorem is
now a particular case of the following general result.

Theorem 9.2. [Relative version of Hausdorff mapping invari-
ance theorem] Let f : L → M be an (A )L(A )M-preserving localic map

such that f−1[−] maps elements of (A )M into (A )L. If L is (A )L-normal

and f is a surjection then M is (A )M-normal.
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Proof : Let A and B be elements of (A )M such that A ∨ B = 1S(M). Since
f−1[−] maps elements of (A )M into (A )L we have f−1[A], f−1[B] ∈ (A )L
and since f−1[−] preserves joins, we have

f−1[A] ∨ f−1[B] = f−1[A ∨ B] = f−1[1S(M)] = 1S(L).

Therefore, applying the (A )L-normality of L, we get sublocales U0 and V0 in
(A )L such that

U0 ∧ V0 = 0S(L) and f−1[A] ∨ U0 = 1S(L) = f−1[B] ∨ V0.

Since f−1[−] preserves complements we have f−1[A
c] = f−1[A]

c ≤ U0 and
f−1[B

c] = f−1[B]c ≤ V0. Let

U = f [U0] ∈ (A )M and V = f [V0] ∈ (A )M

(using the fact that f is (A )L(A )M -preserving). Since f is surjective and
f [−] preserves meets we have

U ∧ V = f [U0] ∧ f [V0] = f [U0 ∧ V0] = f [0S(L)] = 0S(M).

On the other hand, U ≥ ff−1[A
c] ≥ Ac and similarly V ≥ ff−1[B

c] ≥ Bc.
Hence

A ∨ U = 1S(M) = B ∨ V.

Again, by complementation, one gets immediately the following (observe
that, since the preimage function preserves complements, saying that f−1[−]
maps elements of (A )cM into (A )cL is the same as saying that f−1[−] maps
elements of (A )M into (A )L):

Corollary 9.3. Let f : L→M be an (A )cL(A )cM -preserving localic map such

that f−1[−] maps elements of (A )M into (A )L. If L is (A )L-disconnected
and f is a surjection then M is (A )M-disconnected.

The particular case A = A1 provides the following result, which completes
Table 2 at the Introduction.

Corollary 9.4. Let f : L→M be a surjective localic map.

(1) If f is closed and L is normal then so is M .

(2) If f is open and L is extremally disconnected then so is M .
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14. J. Gutiérrez Garćıa, T. Kubiak and J. Picado, Lower and upper regularizations of frame sem-

icontinuous real functions, Algebra Universalis 60 (2009) 169–84.
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27. M. Katětov, On real valued functions in topological spaces, Fund. Math. 38 (1951) 85–91;
Fund. Math. 40 (1953) 139–142 (Correction).

28. T. Kubiak, On Fuzzy Topologies, Ph. D. Thesis, UAM, Poznań, 1985.
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