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Abstract: In this paper a non linear mathematical model to describe absorption
phenomena in polymers is proposed. The model is established assuming that the
diffusing penetrant causes a deformation which induces a viscoelastic stress respon-
sible for a convective field. This convective field is defined to represent an opposition
of the polymer to the Fickian diffusion. Several numerical examples show the effec-
tiveness of the model.
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1. Introduction

In the diffusion process of a penetrant through a viscoelastic material, as
for example a polymer, two main phenomena must be considered: the rate of
diffusion of the fluid and the change in the internal structure of the material.
If the rate of penetrant diffusion is much smaller or much bigger than the
rate of relaxation of the polymer-solvent system, the transport is properly
described by Fick’s law. On the contrary, if the rate of penetrant diffusion
is of the same order of the relaxation process, Fick’s law does not represent
an accurate description of the phenomenon [19, 20, 21]. The explanation lies
in the fact that the diffusing penetrant causes a deformation which induces
a stress that interacts with the Brownian motion of the fluid molecules. Ac-
cording to this explanation several authors proposed diffusion models based
on a modified flux resulting from the sum of a Fickian flux JF and a non
Fickian flux JNF , that is

∂C

∂t
= −div(JF (C) + JNF (σ)) , (1)

whereC stands for the concentration of the penetrant, JF (C) = −(D(C)∇C),
JNF (σ) = −(Dv(C)∇σ) and σ represents the stress.The functions D(C)and
Dv(C) represent respectively the Fickian diffusion coefficient and the so
called viscoelastic diffusion coefficient. Equation (1) is used for example
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in [2, 3, 6, 7, 8, 12, 14, 17] just to name a few. It is coupled with an evolution
equation for the stress which introduces in the problem the strain ǫ as a third
variable. In the previous works a constitutive relationship of type [1]

∂σ

∂t
+ βσ = αǫ+ γ

∂ǫ

∂t
, (2)

has been considered. The parameters α and γ are assumed to be constant
and the parameter β, which represents the inverse of the relaxation time, is
considered constant in [16, 17] and in [3, 7, 8] concentration dependent.
One of our main concerns in this paper is to properly understand the

meaning of the non-Fickian flux JNF . In [16, 17] the authors consider that the
stress related to the viscoelastic behavior of the material leads to a negative
convex flux, consequently considering that the strain in (2) is linearly related
with the penetrant concentration ǫ = ηC, a model of type

∂C

∂t
= D∆C +DvηγCxx +Dvη(α− γβ)

∫ t

0

eβ(s−t)Cxx(x, s)ds (3)

is proposed in [16], where D and Dv are assumed constant, and Dv is con-
sidered negative.
An analogous model has been studied in [9] while describing the permeation

of a fluid trough a membrane. The authors established that when Dv < 0 the
steady flux accounts for the existence of a convective negative flux related to
the viscoelastic properties of the membrane. Also analogous models where
used in [3, 6, 7]. However in these works the viscoelastic behavior is not
considered responsible for a negative convective flux and consequently Dv is
assumed positive.
As a result of the previous arguments it seems that different interpretations

exist in the literature concerning the meaning of JNF and its mathematical
description. In this paper we present a mathematical deduction of JNF that
incorporates parameters which can be obtained from rheological experiments.
The following aspects will be addressed:

(i) To account for a typical response to a strain ǫ several relaxation times
will be introduced using Boltzman type integrals relating σ and C;

(ii) Two different approaches to obtain functional relations for the stress
driven diffusion coefficient Dv in function of C will be established;

(iii) A non linear functional relation between ǫ and C will be presented;
(iv) Linear functional relations for the Young modulus in function of C will

be established.
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In Section 2 the model is established. In Section 2.1 a generalized Maxwell-
Wiechert model is presented. In Section 2.2 functional relations for Dv are
introduced following two different approaches. A non linear expression for the
strain is deduced in Section 2.3. A linear relation between the Young mod-
ulus of the spring elements associated to the generalized Maxwell-Wiechert
model and C is introduced in Section 2.4. The complete non linear model
is established in Section 2.5. In Section 3 several numerical experiments are
exhibited, evidencing a sound physical behavior. Finally in Section 4 some
closing remarks are presented.

2.Mathematical model

2.1. Preliminary considerations. Let us consider a polymeric sample
Ω ⊂ R

3 initially void, with boundary ∂Ω = Γin ∪ Γout.
We model in what follows the sorption by Ω of a penetrant solvent. The

solvent of concentration C penetrates the matrix at Γin, diffuses through
the device and at Γout the solvent flux is zero (impermeable wall condition).
From (1) we have

∂C

∂t
= ∇ · (D(C)∇C) +∇ · (Dv(C)∇σ) in Ω× (0, T ] . (4)

To define the stress σ we use a Maxwell-Wiechert model [1, 18] with n+ 1
arms in parallel, where n of them are Maxwell fluid elements and one of them
is a free spring as in figure 1. When the solvent penetrates the polymeric
sample Ω a strain occurs and the corresponding stress is then given by

σ(t) = −E0(C)ǫ−
n
∑

i=1

Ei(C)

∫ t

0

e
− 1

µi

∫ t

s
Ei(C(r))dr ∂ǫ

∂s
(s)ds . (5)

where Ei(C), for i = 1, 2, ..., n, are the Young modulus of the spring elements
associated to each of the nMaxwell fluid arms, µi, for i = 1, 2, .., n, represents
the viscosity and E0(C) stands for the Young modulus of the free spring.
Equation (5) is the solution of the constitutive equation of the Maxwell-
Wiechert model assuming that σ(0) = 0 and that the Young modulus of the
spring elements are concentration dependent. We note that in (5) the strain
ǫ caused by the penetrant induces a viscoelastic stress response with opposite
sign.
Implicitly, (5) assumes that the viscoelastic behavior of the material (pene-

trant plus polymer) can be properly described by a linear viscoelastic model.
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Indeed, only in this hypothesis the total, local, stress in the material can be
computed as the sum of the stresses competing to each Maxwell-Wiechert
arm (see (5)). Physically speaking, this implies that the chosen relation be-
tween stress and deformation works for not so important deformations that
slowly develop in time. This is also the reason why fixed boundary conditions
have been considered in the model presented in this paper.

Figure 1. Maxwell-Wiechert model

Replacing (5) in (4) we have

∂C

∂t
= ∇ · (D(C)∇C −Dv(C)∇ · (E0(C)ǫ))

−∇ ·

(

Dv(C)∇ ·

(

n
∑

i=1

Ei(C)

∫ t

0

eαi(s)
∂ǫ

∂s
(s)ds

))

, (6)

where αi(s) = − 1
µi

∫ t

s
Ei(C(r))dr, for all i = 1, 2, .., n.

Equation (6) is completed with the initial condition

C(x, 0) = C0, x ∈ Ω , (7)

and the boundary conditions

C = Cin on int(Γin)× (0, T ] , (8)

J(C) · η = 0 on int(Γout)× (0, T ] , (9)

where η represents the unit outer normal and the flux J is defined by
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J(C) = −D(C)∇C +Dv(C)∇ ·

(

n
∑

i=1

Ei(C)

∫ t

0

eαi(s)
∂ǫ

∂s
(s)ds

)

+Dv(C)∇ · (E0(C)ǫ) . (10)

Conditions (8) and (9) represent a source of constant concentration at Γin

and an impermeable wall at Γout respectively.
A Fujita-type [11] exponential dependence for D(C) is assumed with

D(C) = Deqexp(−κ(1−
C

Cin

)) , (11)

where Deq is the diffusion coefficient of the liquid agent in the fully swollen
sample.
In equation (6) several concentration dependent parameters are considered.

The functional relations that characterize this dependence will be established
in what follows.

2.2. The viscoelastic diffusion coefficient Dv. In (6) whereas the diffu-
sion coefficient has a well known physical meaning the viscoelastic diffusion
coefficient Dv(C) has not been clearly studied so far. In fact even its sign is
not clear in the literature. As mentioned in Section 1 some authors [9, 16, 17]
consider Dv constant and negative while in the works [2, 3, 6, 7, 8, 12] Dv

is considered to be a positive parameter. In what follows we analyze the
meaning of Dv and we establish concentration dependent expressions for Dv.
As we assume the existence of a stress gradient ∇σ, this implies the exis-

tence of a velocity field ν. Then the non-Fickian flux JNF can be interpreted
as a convective field of form

JNF = νC . (12)

We present in what follows two different approaches to compute Dv. The
first one is based on Darcy’s law and the second one on the Hagen-Poiseuille
equation.
Let us consider that the polymeric sample is a porous media. Then by

Darcy’s law [22] we have

ν = −K∇p , (13)
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where p is the hydrostatic pressure and K is the hydraulic conductivity. The
parameter K can be computed using the Kozeny-Carman equation

K =
r2fα

3

4Gµ(1− α)2
, (14)

where rf is the fiber radius, α is the concentration dependent porosity, µ is
the pure solvent shear viscosity and G is the Kozeny constant. The porosity
α is defined by α = C/ρS where ρS represents the pure penetrant density.
Theoretical work [22] indicates that the Kozeny constant G develops a steep
gradient. In fact it slowly increases from 5 to 7 in the range 0 < α ≤ 0.82
and, then, rapidly grows up to 49 for α = 0.99.
As the convective field is induced by the stress we have

−Dv(C)∇σ = νC ,

and by identifying the stress σ with the pressure p we conclude that

Dv(C) = KC . (15)

We present now a second functional relation for Dv(C). The main differ-
ence of this approach is that the velocity is now computed using the Hagen-
Poiseuille equation. We have

ν = −
R2

8µ
∇p , (16)

where R stands for the radius of a virtual cross section of the polymeric
sample available for the convective flux, p is the pressure drop and µ repre-
sents the viscosity of a polymer-solvent solution characterized by a polymer
concentration equal to C (local solvent concentration). Thus from (12), (16)
and identifying again the pressure p with the viscoelastic stress σ we conclude
that

Dv(C) =
R2C

8µ
. (17)

Let us study now the evolution in time of R. Let mS and VS represent the
mass and volume of the solvent respectively. If ρS represents its density then
mS = ρSVS and C = mS

V0+VS
, where V0 is the volume of the polymeric matrix

in the dry state. We conclude then

Vs =
C

ρS − C
V0 ,
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and as V0 = ∆x0S, we have

VS

∆x0
=

C

ρS − C
S . (18)

The first member in (18) can be interpreted as a virtual cross section Sv

available for convective flow. As Sv = πR2 and S = πR2
0 where R0 is the

radius of the dry sample, we deduce

R2 =
C

ρS − C
R2

0 . (19)

From (17) and (19) we finally have

Dv(C) =
C2

ρS − C

R2
0

8µ
. (20)

We note that from both approaches, (15) and (20), we can conclude that:

• Dv(C) is positive, thus the non-Fickian flux JNF represents a contri-
bution to the mass flux which develops from high stress to low stress.

• Dv(C) is an increasing function of C.
• Dv(0) = 0 which accounts for the fact that no stress gradient con-
tributes to the mass flux when C = 0.

Although the Darcy approach takes its origin from the study of fluid motion
in a porous medium while the Hagen-Poiseuille approach is strictly connected
to the flux of an homogeneous fluid, both of them lead to qualitatively similar
behaviors for the Dv dependence on local solvent concentration C (Figure
2). The shear viscosity considered is that of the pure solvent (0.001 Pas for
water) in the Darcy case and that of the polymer-solvent system (105 Pas)
in the Hagen-Poiseuille case. The plots in Figure 2 evidence that the Darcy
approach leads to smaller values for Dv which reflects a smaller importance of
the polymer-solvent viscoelastic properties on penetrant uptake. In the sim-
ulation of Dv, computed from the Hagen-Poiseuille approach, we considered
R0 = 0.005 m.

2.3. Relation between deformation and local solvent concentration.

In order to relate the strain ǫ and the concentration C let us consider, for a
sake of simplicity, a cylindrical dry polymeric sample with cross section S and
volume V0 in the dry state. We assume that the deformation ǫ occurs only
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Figure 2. Quantitative comparison of the two approaches for Dv

in a direction orthogonal to S. If its thickness in the dry state is represented
by ∆x0 then

∆x0 =
V0

S
.

After swelling the thickness of the sample can be defined as

∆x =
V0 + VS

S
,

where VS is the volume of solvent absorbed by the sample up to time t. As

ǫ =
∆x−∆x0

∆x0
,

we have

ǫ =
V0+VS

S
−

V0

S
V0

S

,

which leads to

ǫ =
VS

V0
.

Let mS and ρS represent the solvent mass and density respectively. We use

the fact that VS =
mS

ρS
, to obtain

ǫ =
mS

ρSV0
. (21)
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We note that equation (21) holds under the reasonable hypothesis that
the mixing of the polymer and the solvent occurs in an ideal manner that
is the final volume of the swelling element is V0 + VS. Considering that the

concentration C is defined by C =
mS

V0 + VS

, then from (21) we easily deduce

that ǫ = f(C) with

f(C) =
C

ρS − C
. (22)

From (6) after integrating by parts we obtain

∂C

∂t
= ∇ ·

(

D(C)∇C −Dv(C)∇ · (

n
∑

i=0

Ei(C)f(C))

+f(0)

n
∑

i=1

Ei(C)e
− 1

µi

∫ t

0
Ei(C(r))dr

)

+∇ ·

(

Dv(C)∇ ·

(

n
∑

i=1

Ei(C)

µi

∫ t

0

Ei(C(s))eαi(s)f(C(s))ds

))

.

(23)

2.4. Behavior of Young modulus. We begin by assuming that we have
a purely elastic material with initial Young modulus E0, which represents
the Young modulus of the sample in the dry estate. The bounds that link
polymer chains, known as cross-links, have a significant role in the mechanical
properties of materials. Let us define the cross-link density in the dry estate
of the sample as

ρ0x =
ξ0

V0
, (24)

where ξ0 represents the number of moles of cross-links per unit of volume in
the dry estate. In the swollen state the cross-link density becomes

ρx =
ξ0

V0 + VS

, (25)

and thus we have from (24) and (25)

ρx
ρ0x

=
V0

V0 + VS

. (26)
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As C = mS

V0+VS
and ρ = mS

VS
we deduce from (26)

ρx
ρ0x

=
ρS − C

ρS
. (27)

As the Young modulus of a polymer is related to the cross-link density by
E = 3ρxRT [13] where R is the universal gas constant and T is the absolute
temperature, then ρx

ρ0x
= E

E0 . Therefore we conclude from (27) that

E(C) = E0ρS − C

ρS
. (28)

Equation (28) holds for purely elastic materials. In the case of viscoelastic
materials we will assume that the elastic contributions in each Maxwell arm
satisfy (28).

2.5. Complete non linear model. Let Eini
i for i = 0, 1, 2, ..., n denote

the Young modulus of each spring element in the dry state. Taking into
consideration (28) for each Maxwell arm and the free spring, after integrating
by parts we rewrite (23) as

∂C

∂t
= ∇ ·

(

D(C)∇C −
Dv(C)

ρS

(

n
∑

i=0

Eini
i

)

∇C

+
f(0)Dv(C)

ρS

n
∑

i=1

Eini
i ∇ ·

(

(ρS − C) eαi(0)
)

)

+∇ ·

(

Dv(C)

ρ2S
∇ ·

(

n
∑

i=1

(Eini
i )2

µi

(ρS − C)

∫ t

0

eαi(s)C(s)ds

))

,

(29)

where D(C), f(C) and Dv(C) are given by (11), (22) and (15) respectively.
The complete non linear model (CNLM) is given by equation (29), initial

condition (7) and boundary conditions (8),(9). The flux J is given by
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J(C) = −D(C)∇C +
Dv(C)

ρS

(

n
∑

i=0

Eini
i

)

∇C

−
f(0)Dv(C)

ρS

n
∑

i=1

Eini
i ∇ ·

(

(ρS − C) eαi(0)
)

−
Dv(C)

ρ2S
∇ ·

(

n
∑

i=1

(Eini
i )2

µi

(ρS − C)

∫ t

0

eαi(s)C(s)ds

)

.

(30)

3. Numerical Results

In order to have a better understanding of the influence of the parameters
in the model, we will recast CNLM in dimensionless form. Let us consider
the one-dimensional case where Ω = [0, b]. Then we define

C+ =
C

Cin

, x+ =
x

b
, t+ =

tDeq

b2
, ρ+S =

ρS
Cin

, f+(C+) =
C+

ρ+S − C+
,

α+
i (s) = −

1

Deiρ
+
S

∫ t+

s

(ρ+S − C+(r))dr, D+(C+) = exp(−β(1− C+)) .

The diffusion coefficient Dv from Darcy’s law (15) and Hagen-Poiseuille
(20) are defined by

D+
v (C

+) =
K

Deq

C+ , (31)

D+
v (C

+) =
(C+)2

(ρ+S − C+)8
∑n

i=1E
ini
i Dei

, (32)

respectively. The Deborah numbers Dei are defined as

Dei =
τiDeq

b2
,

with τi =
µi

Eini
i

for all i = 1, 2, ..., n.
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We rewrite CNLM in dimensionless form as

∂C+

∂t+
= ∇ ·

(

D+(C+)∇C+ −
D+

v (C
+)

ρ+S

(

n
∑

i=0

Eini
i

)

∇C+

+
f+(0)D+

v (C
+)

ρ+S

n
∑

i=1

Eini
i ∇ ·

(

(

ρ+S − C+
)

eα
+

i (0)
)

)

+∇ ·

(

D+
v (C

+)

(ρ+S )
2

∇ ·

(

n
∑

i=1

(Eini
i )

Dei
(ρ+S − C+)

∫ t+

0

eα
+

i (s)C+(s)ds

))

,

(33)

with the initial condition

C+(x+, 0) = C0/Cin, x+ ∈ [0, 1] , (34)

and the boundary conditions

C+(1, t+) = 1 in (0, T+] , (35)

J+(C+(0, t+)) = 0 in (0, T+] , (36)

where

J+(C+) = −D+(C+)∇C+ +
D+

v (C
+)

ρ+S

(

n
∑

i=0

Eini
i

)

∇C+

−
f+(0)D+

v (C
+)

ρ+S

n
∑

i=1

Eini
i ∇ ·

(

(

ρ+S − C+
)

eα
+

i (0)
)

−
D+

v (C
+)

(ρ+S )
2

∇ ·

(

n
∑

i=1

(Eini
i )

Dei
(ρ+S − C+)

∫ t+

0

eα
+

i (s)C+(s)ds

)

,

(37)

In what follows we fix n = 1, that is we consider one Maxwell fluid ele-
ment in parallel with a free spring. We consider the following values for the
parameters and initial conditions ρS = 1000 kg/m3, C0 = 20 Kg/m3, Cin =
350 Kg/m3, rf = 2× 10−9 m, G = 5, κ = 0.5 and Deq = 3, 74× 10−9 m2/s.
The porosity α is given by α = C

ρS
. We define Mt+ as the total mass inside

the matrix at time t+ as

Mt+ =

∫ 1

0

C+(x, t+)dx .
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In Figure 3 we plotted the non-Fickian part of the flux JNF , considering the
definition of Dv established from Darcy’s law (31) and the definition of Dv

deduced from Hagen-Poiseuille equation (32) respectively, with De1 = 0.1,
Eini

0 = 1 × 105 Pa and Eini
1 = 2 × 105 Pa. When Dv is given by (32), since

JNF is negative, a higher opposition to the diffusion is observed, in agrement
with what we observed in Figure 2. In Figure 4 we plotted a comparison
of the complete flux J when Dv is given by (31) and (32) respectively. In
accordance with the behavior observed in Figure 3 when Dv is given by (32)
the model predicts a slower sorption of the solvent into the polymeric sample.
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Figure 3. Non-Fickian
flux JNF for x+ = 0.5
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Figure 4. Total flux J+

for x+ = 0.5

In Figures 5 and 6 we exhibit plots of J+ as a function of De1 with Dv as
in (31) and (32) respectively. In the case of Figure 5 we observe an accurate
physical behavior since as expected J+ is a decreasing function of De1. In
Figure 6 we observe that J+ is not a monotone function of De1.
In Figures 7 and 8 we plotted Mt+ as a function of Eini

0 with Dv given by
(31) and (32) respectively. In both cases we observe that Mt+ is a decreasing
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Figure 5. J+ for x+ = 0.5 as a function of De1 withDv deduced
from Darcy’s law (31), Eini

0 = 1× 105 Pa and Eini
1 = 2× 105 Pa
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Figure 6. J+ for x+ = 0.5 as a function of De1 with Dv de-
duced from Hagen-Poiseuille equation (32), Eini

0 = 1 × 105 Pa
and Eini

1 = 2× 105 Pa

function of Eini
0 . This is a physically sound behavior since as E0 increases

the solvent will encounter more resistance to diffuse into the polymer.
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Figure 7. Mt+ as a function of Eini
0 with Dv given by (31),
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1 = 2× 105 Pa and De1 = 1

0.232 0.234 0.236 0.238 0.24 0.242 0.244 0.246

0.525

0.53

0.535

0.54

0.545

t+

M
t+

 

 

E
0
ini=0

E
0
ini=100000

E
0
ini=200000

Figure 8. Mt+ as a function of Eini
0 with Dv given by (32),

Eini
1 = 2× 105 Pa and De1 = 1

If we consider that the elastic contributions Ei are constant, for i =
0, 1, ..., n, then from (6) we get

∂C+

∂t+
= ∇ ·

(

D+(C+)∇C+
−D+

v (C
+)

(

n
∑

i=0

Ei

)

∇

(

C+

ρ+S − C+

)

+∇ ·

(

D+
v (C

+)∇ ·

(

n
∑

i=1

(Eini
i )

Dei

∫ t+

0

e
− s−t

Dei

C+(s)

ρ+S − C+(s)
ds

))

,

(38)
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with the flux given by

J+ = −D+(C+)∇C+ +D+
v (C

+)

(

n
∑

i=0

Ei

)

∇

(

C+

ρ+S − C+

)

−D+
v (C

+)∇

(

n
∑

i=1

(Eini
i )

Dei

∫ t+

0

e
− s−t

Dei

C+(s)

ρ+S − C+(s)
ds

)

. (39)

In Figure 9 and 10 we used (38) to plot Mt+ as a function of E0 and J+

as a function of De1 respectively, with D+
v defined as in (32). As in Figure 8

M+
t is a decreasing function of the parameters showing an accurate physical

behavior. Comparing the plots in Figures 5 and 6 with the plot in Figure 10
we observe a significant sensitivity of the flux as a function of the Deborah
numberDe1. The model is more sensible to changes in the parameters because
when we consider the E ′

is to be constant the non-Fickian part of (38) is more
significant.
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E
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E
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Figure 9. Mt+ as a function of E0 for Eini
1 = 2 × 105 Pa and

De1 = 0.1

Finally it is worth mentioning that as we can observe in Figures 5 and 10
even for the simple case of one Maxwell element in parallel with a free spring
we do not obtain unrealistic oscillations.

4. Conclusions

A non linear non-Fickian model for sorption of a solvent into a polymeric
sample is proposed. The main idea is a new interpretation of the non-Fickian
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Figure 10. J+ for x+ = 0.5 as a function of De1 with Eini
0 =

1× 105 Pa and Eini
1 = 2× 105

flux which lead to the establishment of a non linear functional relations for
the strain ǫ, the viscoelastic diffusion coefficient Dv and the Young modulus
Ei, for i = 0, 1, ..., n.
The great advantage of this model consists in the possibility of easily and

directly incorporating experimental rheological information about polymer-
solvent system (knowledge of Ei and µi). Indeed, the Maxwell-Wiechert
model (also called generalized Maxwell model by rheologists) can be used
for the viscoelastic characterization of the polymer-solvent system. Due to
several reasons [15] the rheological characterization employs shear stresses-
deformations to deduce the viscoelastic properties. The typical test (fre-
quency sweep test) consists in applying to the sample a small sinusoidal
shear stress (falling into the linear viscoelastic range) of constant maximum
value and decreasing pulsation (ω = 2πf , f = stress frequency). Thus, it is
possible measuring the elastic and viscous properties of the sample through
the determination of the dependence of the elastic (G′) and the viscous (G′′)
moduli on ω. These experimental trends can be simultaneously fitted by the
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theoretical G′ and G′′ trends descending from the solution of the Maxwell-
Wiechert model:

G′ = G0 +

m
∑

i=1

Gi

(τiω)
2

1 + (τi + ω)2
, Gi = ηi/τi ; (40)

G′′ =
m
∑

i=1

Gi

τiω

1 + (τi + ω)2
, (41)

where Gi, µi and τi represent, respectively, the spring constant, the dashpot
viscosity and the relaxation time of the ith Maxwell-Wiechert element. As,
usually [15], equations (40) and (41) fitting is performed assuming that the
relaxation times (τi) are scaled by a factor 10. Model fitting parameters are
(m + 2) (i.e. G0, the G′

is and µ1 or τ1). The exact number m of Maxwell-
Wiechert elements is obtained by minimizing the product χ2(2 +m), where
χ2 is the sum of the squared errors [5].
Assuming to be in the linear viscoelastic range and assuming to deal with

an incompressible material (this is typical for polymer based matrices), it is
easy to demonstrate that Ei = 3Gi for every i, being the relaxation times,
τi, the same [15]. Thus, in (6), the parameters connected to the system
stress-deformation state can be experimentally determined. Furthermore, the
determination of G′ and G′′ corresponding to different solvent concentrations
C, can provide the C dependence of G0, Gi and τ1. In other words, all the
parameters in the model can be measured or theoretically deduced on the
basis of physical considerations. Thus, the model can be used for data fitting
but also for predicting the swelling behavior of polymeric matrices.
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