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Abstract: We prove the convergence of weighted sums of associated random vari-
ables normalized by n1/p. The usual assumptions include finiteness of moments
somewhat larger than p. We assume the existence of moments of order closer to p
than previous results, thus getting nearer to the assumption used for the case of con-
stant weights. Besides moment conditions we assume a convenient behaviour either
on truncated covariances or on joint tail probabilities. Our results extend analogous
characterizations known for sums of independent or negatively dependent random
variables.
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1. Introduction

Sums of random variables have always attracted a lot of interest as their
asymptotic behaviour raises relevant theoretical challenges. Moreover, many
statistical procedures depend on such sums. Thus, there is a natural in-
terest in considering Tn =

∑n
i=1 an,iXi, where the variables Xi are cen-

tered, both from a theoretical and practical point of view. For constant
weights and independent and identically distributed Baum and Katz [3]
proved the Marcinkiewicz-Zygmund strong law of large numbers, that is, that
n−1/p Tn −→ 0 almost surely, p ∈ [1, 2), if and only if E(|X1|

p) < ∞. Chow [6]

and Cuzick [7] considered variables E(|X1|
β) < ∞ and weights satisfying

supn−1
∑n

i=1 a
α
n,i < ∞ where α−1 + β−1 = 1, to prove the Marcinkiewicz-

Zygmund law with p = 1. This was extended by Cheng [5] and Bai and
Cheng [2] to other values of p ∈ (1, 2). The same problem with nega-
tively dependent random variables was considered by Ko and Kim [8], Baek,
Park, Chung and Seo [1], Cai [4], Qiu and Chen [14] or Shen, Wang, Yang
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and Hu [17]. Positively associated random variables were considered by
Louhichi [9] for constant weights and Oliveira [11] for more general weights.
In this paper we extend the results in [11], relaxing the moment assumption
on the random variables, approaching the p-th order moment assumption
used by Louhichi [9] to prove the convergence for constant weights, while
strengthening the assumption on the decay rate of the covariances. We
also consider the Marcinkiewicz-Zygmund law with assumptions on the 2-
dimensional analogue of tail probabilities of the random variables relaxing in
this case the assumption on the decay rate on the covariances, but strength-
ening the moment condition.

2. Framework and preliminaries

Let Xn, n ≥ 1, be a sequence of random variables and define partial sums
Sn =

∑n
i=1Xi and weighted partial sums Tn =

∑n
i=1 an,iXi, where an,i ≥ 0,

i ≤ n, n ≥ 1. The variables Xn, n ≥ 1, are assumed to be associated,
that is, for any m ≥ 1 and any two real-valued coordinatewise nondecreasing
functions f and g,

Cov
(

f (X1, . . . , Xm) , g (X1, . . . , Xm)
)

≥ 0,

whenever this covariance exists. It is well known that the covariance structure
of associated random variables characterizes their asymptotics, so it is natural
to seek assumptions on the covariances.
In this paper we will be interested in the case where second order moments

do not exist, so we will avoid using covariances directly, using them only
through truncation. For this later argument, define, for each M > 0, the
nondecreasing function gM(u) = max(min(u,M),−M), which performs the
truncation at level M , and introduce, for each n ≥ 1, the random variables
X̄n = gM(Xn) and X̃n = Xn−X̄n. It is easily checked that both these families
of random variables are associated, as they are nondecreasing transformations
of the original ones. Define next the weighted sums of the truncated variables:
for each n ≥ 1, T̄n =

∑n
i=1 an,i(X̄i−EX̄i) and T̃n =

∑n
i=1 an,i(X̃i−EX̃i), and

the maxima T ∗
n = maxk≤n |Tk| and T̄ ∗

n = maxk≤n

∣

∣T̄k

∣

∣. To handle covariances
define, for each i, j ≥ 1, ∆i,j(x, y) = P(Xi ≥ x,Xj ≥ y)− P(Xi ≥ x)P(Xj ≥
y). Of course, Cov(Xi, Xj) =

∫

R2 ∆i,j(x, y) dxdy. Moreover,

Gi,j(M) = Cov(X̄i, X̄j) =

∫

[−M,M ]2
∆i,j(x, y) dxdy. (1)
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The control of moments of maxima of partial sums is a crucial argument
throughout. For nonweighted sums it was proved by Newman andWright [10]
that E

(

maxk≤n S2
k

)

≤ ES2
n. This maximal inequality is one of the key ingre-

dients used by Louhichi [9] to control tail probabilities of maxima of sums of
associated random variables and then prove that n−1/pSn −→ 0 a.s., where
p ∈ [1, 2) when one only has p-th order moments. For weighted sums, the
following extension of this maximal inequality was proved by Oliveira [11].

Lemma 2.1. Let Xn, n ≥ 1, be centered and associated random variables.
Assume the coefficients are such that

an,i ≥ 0, and an,i ≥ an−1,i, i ≤ n, n ≥ 1. (2)

Then E
(

maxk≤n T 2
k

)

≤ E(T 2
n).

We will need some more assumptions on the weights. Define, for each

α > 0, An,α = 1
n1/α (

∑n
i=1 |ani|

α)
1/α

. These coefficients are considered in [1, 2,
4, 7, 8, 14, 18], assuming them to be either bounded or convergent.
Finally, we recall the following extension of Lemma 1 in Louhichi [9] proved

by Oliveira [11].

Lemma 2.2. Let Xn, n ≥ 1, be centered and identically distributed associated
random variables and assume the weights satisfy (2). Then, for every α > 1,
x ∈ R and M > 0,

P(T ∗
n > x) ≤

8

x2
n1+2/αA2

n,αE
(

X2
1I|X1|≤M

)

+
8

x2
n1+2/αA2

n,αM
2P(|X1| > M)

+
16

x2
n2/αA2

n,α

∑

1≤i<j≤n

Gi,j(M) +
4

x
nAn,αE

(

|X1| I|X1|>M

)

.

(3)

3. Some Marcinkiewicz-Zygmund strong laws

We now prove the almost sure convergence of n−1/pTn based on the Borel-
Cantelli Lemma. Instead of considering Tn directly, we replace it by the larger
T ∗
n , which is an increasing sequence. For this increasing sequence T ∗

n , the
use of the Borel-Cantelli Lemma may be reduced to proving

∑

n n
−1P(T ∗

n >

εn1/p) < ∞.

Theorem 3.1. Let Xn, n ≥ 1, be centered and identically distributed associ-
ated random variables. Assume the weights satisfy (2) and supn≥1 An,α < ∞.
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Further, assume that p ∈ (1, 2), α > 2p
2−p

and E
(

|X1|
p α−2
α−2p

)

< ∞. If

∑

1≤i<j<∞

∫ ∞

j(α−2p)/(αp)

v−2 α−p
α−2p−1Gi,j(v) dv < ∞, (4)

then n−1/p Tn −→ 0 almost surely.

Proof : The proof follows similar arguments as in Theorem 4.1 in Oliveira [11].
Taking into account (3), with M = n1/q, where q is to be specified later, we
find that

1

n
P(T ∗

n > εn1/p) ≤
8n2/α−2/p

ε2
A2

n,αE
(

X2
1I|X1|≤n1/q

)

+
8n2/α−2/p+2/q

ε2
A2

n,αP(|X1| > n1/q)

+
16n2/α−2/p−1

ε2
A2

n,α

∑

1≤i<j≤n

Gi,j(n
1/q)

+4n−1/p

ε An,αE
(

|X1| I|X1|>n1/q

)

.

The remaining argument is to prove that this upper bound defines a conver-
gent series. Taking into account that An,α is bounded, we may drop these
terms. Notice that α > 2p

2−p is equivalent to 2
α − 2

p < −1. Using Fubini’s
Theorem we easily find that:

∞
∑

n=1

n2/α−2/pE
(

X2
1I|X1|

p
≤n

)

= E



X2
∞
∑

n=|X |
q

n2/α−2/p



 ≤ c1E
(

|X1|
q(1+2/α−2/p)+2

)

,

∞
∑

n=1

n2/α−2/p+2/qE
(

I|X1|
q
>n

)

= E





|X |q
∑

n=1

n2/α−2/p+2/q



 ≤ c2E
(

|X1|
q(1+2/α−2/p)+2

)

,

∞
∑

n=1

n−1/pE
(

|X1| I|X1|
q
>n

)

≤ c3E
(

|X1|
q(1−1/p)+1

)

.

(5)
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The constants c1, c2 and c3 used above only depend on p, q and α. As
1 + 2

α − 2
p < 0, in order to consider the lowest moment assumption possible

on the variables, the first two terms above imply that we want to choose q

as large as possible. On the other hand, as 1 − 1
p > 0, the last term implies

that we should choose q as small as possible. It is clear that for small values

of q we have q
(

1− 1
p

)

+ 1 < q
(

1 + 2
α − 2

p

)

+ 2, so we choose q such that

these two expressions coincide, that is, q = αp
α−2p

. Notice that α > 2p
2−p

, with

p ∈ (1, 2), implies that α > 2p, so the above choice for q is positive. It
is now straightforward to verify that the moments considered above are of
order p α−2

α−2p, thus finite.
Finally we control the term depending on the covariances. Again, using

Fubini’s Theorem we may write
∞
∑

n=1

n2/α−2/p−1
∑

1≤i<j≤n

Gi,j(n
1/q)

=
∑

1≤i<j<∞

∫ ∫

∑

n>j

n2/α−2/p−1
In>max(|x|q,|y|q,j)∆i,j(x, y) dxdy

≤ c4
∑

1≤i<j<∞

∫ ∫

(

max(|x|q , |y|q , j)
)2/α−2/p

∆i,j(x, y) dxdy

= c4
∑

1≤i<j<∞

∫ ∫ ∫ j2/α−2/p

0

I
|x|≤u

−
αp

2q(α−p)
I
|y|≤u

−
αp

2q(α−p)
du∆i,j(x, y) dxdy

=
2q(α− p)c4

αp

∑

1≤i<j<∞

∫ ∞

j1/q
v−2q α−p

αp −1Gi,j(v) dv < ∞, (6)

taking into account (4), where c4 depends only on p and α, so the proof is
concluded.

Remark 3.2. Notice that α > 2p
2−p, as assumed in Theorem 3.1, implies that

p α−2
α−2p < 2, thus we are still not assuming second order moments.

Remark 3.3. In Theorem 4.1 in Oliveira [11] the moment considered was
pα+2

α . It is easily seen that α > 2p
2−p implies that pα+2

α > p α−2
α−2p, thus we are

improving somewhat the moment assumption. As what regards the integrabil-
ity assumption (4), in [11] the exponent of the polynom in the integrand was
−3+ 2 p

α > −2 α−p
α−2p − 1, thus the present integrability is a little stronger. The
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difference between these exponents is equal to 4p p−α
α(α−2p). So, when α −→ +∞

this difference converges to 0.

Remark 3.4. To compare this result with Louhichi’s [9] conditions for non-
weighted sums, notice that allowing α −→ ∞ in the assumptions of Theo-
rem 3.1 we are lead to assume the existence of p-th order moments and the
exponent in the integrability condition converges to −3, that is, we find the
assumptions of Theorem 1 in [9].

The above statement assumes a moment condition and adjusts the inte-
grability condition on the truncated covariances to get the convergence. One
may be interested in doing the opposite, that is, assume an integrability
condition on the truncated variables and describe which moments should be
required. Assume that for some β > 0 and a suitable q > 0 we have

∑

1≤i<j<∞

∫ ∞

j1/q
v−β Gi,j(v) dv < ∞. (7)

We now choose q conveniently. Comparing with (6) we need that 2qα−p
αp

+1 ≥

β or, equivalently, q ≥ pα(β−1)
2(α−p) . Assume that α > 2p

2−p, which is equivalent to
2
α − 2

p < −1 and implies that α > 2p. So, if β ∈ [0, 1] the above condition is
verified for every choice of q > 0, thus, as seen in the proof of Theorem 3.1, the
choice q∗ = αp

α−2p optimizes the moment assumption, requiring the existence of

the absolute moment of order p∗ = p α−2
α−2p. Because of the integration region

in (7) we need to assume that q ≥ q∗. If β > 1, we look at αp
α−2p −

pα(β−1)
2(α−p) .

As we assumed that α > 2p it is easily seen that the sign of this difference
is equal to the sign of (3− β)α− 2p(2− β). If β ∈ (1, 2] this means that the

sign is positive if α > 2p2−β
3−β = 2p

(

1− 1
3−β

)

which always holds. Thus the

optimization of the moments is achieved by the choice q∗ = αp
α−2p. If β ∈ (2, 3]

the above difference is always nonnegative, so we choose again q∗ = αp
α−2p .

Now, if β > 3, αp
α−2p

− pα(β−1)
2(α−p)

≥ 0 is equivalent to α ≤ 2pβ−2
β−3

= 2p
(

1 + 1
β−3

)

.

So, when β > 3, if 2p < α ≤ 2p
(

1 + 1
β−3

)

we should also choose q∗ = αp
α−2p .

Finally, when β > 3 and α > 2p
(

1 + 1
β−3

)

we must assume the finiteness of

the largest of the moments appearing in (5), where q∗ is taken to be pα(β−1)
2(α−p)

.

Thus we have proved the following statement.
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Theorem 3.5. Let Xn, n ≥ 1, be centered and identically distributed associ-
ated random variables. Assume the weights satisfy (2) and supn≥1 An,α < ∞.

Further, assume that p ∈ (1, 2) and α > 2p
2−p are satisfied. Define q∗ and p∗

as

• if β ≤ 3 or if β > 3 and α ∈
(

2p, 2p
(

1 + 1
β−3

)]

, q∗ = αp
α−2p and

p∗ = p α−2
α−2p,

• if β > 3 and α > 2p
(

1 + 1
β−3

)

, q∗ = pα(β−1)
2(α−p)

and p∗ = 1 + α(β−1)(p−1)
2(α−p)

.

If (7) is satisfied with q ≥ q∗ and E |X1|
p∗

< ∞ then n−1/p Tn −→ 0 almost
surely.

We will now look for assumptions on the functions ∆i,j rather than on the
truncated covariances. Remark that the ∆i,j may also be interpreted as co-
variances: ∆i,j = Cov

(

I[x,+∞)(Xi), I[x,+∞)(Xj)
)

. It follows from Sadikova [15]
that, if the random variables have bounded density and covariances do ex-
ist that ∆i,j(x, y) ≤ cCov1/3(Xi, Xj), where c > 0 is a constant depending
only on the density function. This made natural to seek for assumptions
on the ∆i,j while studying the asymptotics of empirical processes based on
associated random variables, as in Yu [19], Shao and Yu [16] or Oliveira and
Suquet [12, 13]. Moreover, the ∆i,j(x, y) play, in dimension two, the role of
the tail probabilities usually considered in the one dimensional framework.
So, we will now consider the following assumption on the limit behaviour of
∆i,j:

sup
i,j≥1

∆i,j(x, y) = O
(

max(|x| , |y|)−a
)

, as max(|x| , |y|) −→ +∞. (8)

Thus, outside of some [−j0, j0]
2 we may assume that all the ∆i,j are, up to the

multiplication by some constant c0, that does not depend on i or j, bounded
above by max(|x| , |y|)−a. Thus

Gi,j(v) ≤ 4j20 + 4c0

∫ ∞

j1/q

∫ x

−x

x−a dx = 4j20 +
4c0
2− a

(

v2−a − j2−a
0

)

. (9)

Remember that Cov(Xi, Xj) = Gi,j(+∞). Looking at the expression above,
if we allow v −→ +∞ we have convergence to a finite limit whenever a ≥ 2.
Thus, the most interesting case for us corresponds to 0 < a < 2, so that we
do not have finite covariances between the random variables.
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Theorem 3.6. Let Xn, n ≥ 1, be centered and identically distributed associ-
ated random variables. Assume the weights satisfy (2) and supn≥1 An,α < ∞.

Let p ∈ (1, 2) and α > 2p
2−p. Assume that (8) is satisfied for some a ∈ (0, 2)

and (7) holds for some q > 0 and β > 3 − a + 2q. If E |X1|
p∗

< ∞, where

p∗ = max
(

q
(

1 + 2
α − 2

p

)

+ 2, q
(

1− 1
p

)

+ 1
)

then n−1/p Tn −→ 0 almost

surely.

Proof : Using (9) to compute the integral in (7), one easily finds that, as
β > 3− a+ 2q > 3− a,

∫ ∞

j1/q
v−βGi,j(v) dv ≤ c′0j

(1−β)/q + j3−(β+a)q,

where c′0 does not depend on i or j. Thus inserting this upper bound in (7)
and taking into account the summation, we have a convergent series if both

1 + 1−β
q < −1 and 1 + 3−(β+a)

q < −1. But these two inequalities follow from

β > 3 − a + 2q. As the summations in (5) are finite due to our moment
assumptions, the proof is concluded.

Remark 3.7. The above statement allows to consider β < 3 in (7). This was
out of reach in Theorem 3.1. However, the moment assumed to be finite is of

order p∗ = max
(

q
(

1 + 2
α − 2

p

)

+ 2, q
(

1− 1
p

)

+ 1
)

. It is easily seen that if

q > αp
α−2p

, then p∗ = q
(

1− 1
p

)

+1. The difference between this order and the

one considered in Theorem 3.1 has the same sign as (α− 2p)q − pα ≥ 0 for
the range of values for q where this applies. Likewise, if q < αp

α−2p then the

difference of order moments has the same sign as (p−2)α2+2pα(3−p)−2p2 >
0 for the range of values for q considered. Thus, the moment condition
assumed in Theorem 3.6 is always stronger than the one in Theorem 3.1.
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