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ABSTRACT: Using an analogue of the Robinson-Schensted-Knuth algorithm for
semi-skyline augmented fillings, due to Sarah Mason, we exhibit expansions of non-
symmetric Cauchy kernels []; 5, (1 — z;y;)"*, where the product is over all cell-
coordinates (i,7) of the stair-type partition shape 7, consisting of the cells in a
NW-SE diagonal of a rectangle diagram and below it, containing the biggest stair
shape. In the spirit of the classical Cauchy kernel expansion for rectangle shapes,
this RSK variation provides an interpretation of the kernel for stair-type shapes as
a family of pairs of semi-skyline augmented fillings whose key tableaux, determined
by their shapes, lead to expansions as a sum of products of two families of key
polynomials, the basis of Demazure characters of type A, and the Demazure atoms.
A previous expansion of the Cauchy kernel in type A, for the stair shape was given
by Alain Lascoux, based on double crystal graphs, and by Amy M. Fu and Alain
Lascoux, relying on Demazure operators, which was also used to recover expansions
for Ferrers shapes.
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1. Introduction

Given the general Lie algebra gl,(C), and its quantum group U,(gl,,), finite-dimensional
representations of U,(gl,) are also classified by the highest weight. Let A be a dominant
integral weight (that is, a partition) and V(A) the integrable representation with highest
weight A and u), the highest weight vector. For a given permutation w in the symmetric group
S,,, minimum for the Bruhat order in the class modulo the stabilizer of A, the Demazure
module is defined to be V,,(\) := U,(g)”°.uy», and the Demazure character is the character
of V,(A). Kashiwara (1991) has associated with A a crystal graph 9B ,, which can be realised
as a coloured directed graph whose vertices are all semi-standard Young tableaux (SSYTs)
of shape A in the alphabet [n], and the edges are coloured with a colour i, for each pair of
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crystal operators f;, e;, such that there exists a coloured i-arrow from the vertex P to P’
if and only if f;(P) = P’, equivalently, ¢;(P') = P, for 1 < i < n — 1. Littelmann (1995)
conjectured and Kashiwara (1993) proved that the intersection of a crystal basis of V) with
Vw(A) is a crystal basis for V,,(A). The resulting subset B,y C B, is called Demazure
crystal, and the Demazure character corresponding to A and w, is the sum of the monomial
weights of SSYTs in the Demazure crystal 9B,,,. Demazure characters (or key polynomials)
are also defined through Demazure operators (or isobaric divided differences). They were
introduced by Demazure (1974) for all Weyl groups and were studied combinatorially, in
the case of &,,, by Lascoux and Schiitzenberger (1990) who produce a crystal structure.
The simple transpositions s; of &,, act on vectors v € N" by s;0 := (v1, ..., Vip1, V- .y V),
for 1 <7 <mn—1, and induce an action of S,, on Z[xy,...,x,| by considering vectors v as
V1 U9

exponents of monomials z¥ := z]*x5? - - - 2¥». Two families of Demazure operators m;, 7; on

Zlzy,...,x,] are defined by m;f = Hx_f—;im and 7, f =mf — f,for1 <i<mn-—1. For
the partition A and w = s;, - - 5;,5;, a reduced decomposition in &,,, one defines the type
A key polynomials indexed by w), kux(7) = Ty -+ T, 2 and Kyr(T) = Ty - - Tip iy T,
the latter consisting of all monomials in k,, which do not appear in k., for any ¢ < w in
the Bruhat order. Thereby key polynomials can be decomposed into non intersecting pieces
Kox(T) = Y, <, Fua(z), where the ordering on permutations is the Bruhat order in &,,.
In Lascoux and Schiitzenberger (1990) they are called standard basis and in Mason (2009)
Demagzure atoms. The Demazure character corresponding to w and A can be expressed in
terms of the Demazure operator and is equivalent to the key polynomial x,,. Lascoux and
Schiitzenberger (1990) have given a combinatorial interpretation for Demazure operators
in terms of crystal operators to produce a crystal graph structure. Let P be a SSYT of
shape A and define the set fs (P) = {f"(P) : m > 0} \ {0}. If P is the head of an
i-string of the crystal graph B, m;(z) is the sum of the monomial weights of all SSYTs
in f;,(P). In particular, when Y is the Yamanouchi tableau of shape A, the set f,(Y) :=
{fiem . fi(Y) s my > 03\ {0} constitutes the vertices of the Demazure crystal B,,, and
Kwy 18 the sum of all monomial weights over the Demazure crystal. The top of this crystal
graph B,x 1= By \ U, <y, Bor defines the Demazure atom &y,x () which is combinatorially
characterised by Lascoux and Schiitzenberger (1990) as the sum of the monomial weights of
all SSYTs whose right key is key(w). As the sum of the monomial weights over all crystal
graph 28, gives the Schur polynomial s), each SSYT of shape A appears in precisely one such
polynomial, henceforth, the Demazure atoms form a decomposition of Schur polynomials.
Specialising the combinatorial formula for nonsymmetric Macdonald polynomials E. (z; ¢;t),
given in Haglund et al. (2008), by setting ¢ = ¢ = 0, implies that E. (z;0;0) is the sum of the
monomial weights of all semi-skyline augmented fillings (SSAF) of shape v which are fillings
of composition diagrams with positive integers, weakly decreasing upwards along columns,
and the rows satisfy an inversion condition. These polynomials are also a decomposition
of the Schur polynomial sy, with v© = \. Semi-skyline augmented fillings are in bijection
with semi-standard Young tableaux of the same content whose right key is the unique
key with content the shape of the SSAF, Mason (2006/08). Therefore, Demazure atoms
Fuwx(z) and B,z (x;0;0) are equal, Mason (2009). Semi-skyline augmented fillings also satisfy
a variation of the Robinson-Schensted-Knuth algorithm which commutes with the usual
RSK and retains its symmetry. We are, therefore, endowed with a machinery to exploit



NON-SYMMETRIC CAUCHY KERNELS 3
expansions of non-symmetric Cauchy kernels [ (i.d)en (1—x;y;)~*, where the product is over
all cell-coordinates (i,7) of the diagram 7 in the French convention. Our main Theorem
4.2 exhibits a bijection between biwords in lexicographic order, whose biletters are cell-
coordinates in a NW-SE diagonal of a rectangle and below it, containing the biggest stair
shape, and pairs of SSAFs whose shapes satisfy an inequality in the Bruhat order. This
allows to apply this variation of RSK for SSAF's to provide expansions for the green diagram
n=m""" "t m—-1,....n—k+1), 1<m,k<n, n+1<m-+k, depicted below. The
formulas are explicit in the tableaux generating them.

[ L

| B

m

The paper is organised as follows. In Section 2, we recall the tableau criterion for the Bruhat
order in G,,, and its extension to weak compositions. In Section 3, we review the necessary
theory of SSAFs, the variation of Schensted insertion and RSK for SSAFs. In Section 4, we
give our main result, Theorem 4.2, and, in the last section, we apply it to the expand the
Cauchy kernel for stair-type shapes.

2. Key tableaux a criterion for the Bruhat order in G,,

Let N denote the set of non-negative integers. Fix a positive integer n, and define [n| the

set {1,...,n}. A weak composition v = (y1...,7,) is a vector in N". If v; = -+ = 7,441,
for some k > 1, then we also write v = (V1 ..., %i-1, V5, Yisk - - -, Tn). A partition is a weak
composition whose entries are in weakly decreasing order, that is, 74 > .-+ > ~,. Every

composition 7 determines a unique partition y* obtained by arranging the entries of v in
weakly decreasing order. A partition A = (\q,...,\,) is identified with its Young diagram
dg(\) in French convention, an array of left-justified cells with A; cells in row i from the
bottom, for 1 < i < n. The cells are located in the diagram dg(\) by their row and column
indices (i, 7), where 1 <i <nand 1 <j < \;. A filling of shape A is a map T : dg(\) — [n].
A semi-standard Young tableau (SSYT) of shape A is a filling of dg(\) weakly increasing in
each row from left to right and strictly increasing up in each column. The content or weight
of SSYT T is the weak composition ¢(T") = (s, ..., a,) such that T has «; cells with entry
i. A key is a SSYT such that the set of entries in the (5 + 1) column is a subset of the
set of entries in the j* column, for all j. There is a bijection in Reiner and Shimozono
(1995) between weak compositions in N” and keys in the alphabet [n] given by v — key(y),
where key(7) is the key such that for all j, the first 7, columns contain the letter j. Any
key tableau is of the form key(v) with v its content and v* the shape. Suppose u and v are
two rearrangements of a partition A. We write u < v in the (strong) Bruhat order whenever
key(u) < key(v) for the entrywise comparison. If o and / are in &,,, ¢ < 8 in the Bruhat
order if and only if o(n,n —1,...,1) < B(n,n —1,...,1) as weak compositions.
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3. Semi-skyline augmented fillings

3.1. Definitions and properties. We follow most of the time the conventions and ter-
minology in Haglund et al. (2005, 2008) and Mason (2006/08, 2009). A weak composition
¥ = (M,...,7) is visualised as a diagram consisting of n columns, with ~; boxes in column
j. Formally, the column diagram of v is the set dg'(v) = {(i,7) e N?: 1 < j <n,1 <i<~;}
where the coordinates are in French convention, the abscissa ¢ indexing the rows, and the
ordinate j indexing the columns. (The prime reminds that the components of v are the
columns.) The number of cells in a column is called the height of that column and a cell
a in a column diagram is denoted a = (i, 5), where 7 is the row index and j is the column
index. The augmented diagram of -, @(V) =dg' (v) U{(0,7) : 1 < j <mn},is the column
diagram with n extra cells adjoined in row 0. This adjoined row is called the basemenL and
it always contains the numbers 1 through n in strictly increasing order. The shape of dg(~)
is defined to be . For example, the column diagram dg’(y) and the augmented diagram

dg( ) for v = (1,0,3,0,1,2,0) are respectively,

nHA  abf

1234567

An augmented filling F of an augmented diagram @(’y) is a map F : @('y) — [n], which
can be pictured as an assignment of positive integer entries to the non-basement cells of
dg(7). Let F (i) denote the entry in the i*" cell of the augmented diagram encountered when
F' is read across rows from left to right, beginning at the highest row and working down
to the bottom row. This ordering of the cells is called the reading order. A cell a = (i, 7)
precedes a cell b = (7', j') in the reading order if either i < i or i =i and j' > j. The reading
word of I is obtained by recording the non-basement entries in reading order. The content
of an augmented filling F is the weak composition ¢(F) = (aq,...,q,) where «; is the
number of non-basement cells in F* with entry ¢, and n is the number of basement elements.
The standardization of F' is the unique augmented filling that one obtains by sending the 4"

occurrence of j in the reading order to i—l—Zin_:ll am. Let a, b, c € @(7) three cells situated as

[]
follows, where a and c are in the same row, possibly the first row, possibly with cells
between them, and the height of the column containing a and b is greater than or equal to
the height of the column containing c. Then the triple a, b, ¢ is an inversion triple of type 1 if
and only if after standardization the ordering from smallest to largest of the entries in cells

a, b, c induces a counterclockwise orientation. Similarly, consider three cells a,b,c € @(7)

situated as follows, [} - -[<] where a and ¢ are in the same row (possibly the basement) and
the column containing b and ¢ has strictly greater height than the column containing a. The
triple a, b, ¢ is an inversion triple of type 2 if and only if after standardization ordering from
smallest to largest of the entries in cells a, b, ¢ induces a clockv/vi\se orientation. Define a
semi-skyline augmented filling (SSAF) of an augmented diagram dg(vy) to be an augmented
filling F' such that every triple is an inversion triple and columns are weakly decreasing
from bottom to top. The shape of the semi-skyline augmented filling is v and denoted
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by sh(F'). The picture below is an example of a semi-skyline augmented filling with shape
(1,0,3,2,0,1), reading word 1321346 and content (2,1,2,1,0,1).

1]

312
nlonlio
1 2 3 4 5 6

The entry of a cell in the first row of a SSAF is equal to the basement element where it
sits and, thus, in the first row the cell entries increase from left to the right. For any weak
composition v in N”, there is at least one SSAF with shape v, by putting ~; cells with entries
i in the top of the basement element i. In Mason (2006/08) a sequence of lemmas provide
several conditions on triples of cells in a SSAF. We recall a property regarding an inversion
triple of type 2 which will be used in the proof of our main theorem. Given a cell a in SSAF
F define F'(a) to be the entry in a.

Remark 3.1. 1. If {a,b,c} is a type 2 inversion triple in F' then F(a) < F(b) < F(c).

3.2. An analogue of Schensted insertion and RSK for SSAF.. The fundamental
operation of the Robinson-Schensted-Knuth (1970) (RSK) algorithm is Schensted insertion
which is a procedure for inserting a positive integer k& into a SSYT 7. Mason (2006/08)
defines a similar procedure for inserting a positive integer k into a SSAF F', which is used to
describe an analogue of the RSK algorithm. If F'is a SSAF of shape 7, we set ' := (F(j)),
where F(j) is the entry in the j cell in reading order, with the cells in the basement
included, and j goes from 1 ton+ 3 . ;7. If 7 is the cell immediately above j and the cell
is empty, set F (5) = 0. The operation k — F) for k < n, is defined as follows.

Procedure. The insertion k£ — F"

1. Set i :=1, set x; := k, set po = (), and set j := 1.

2. If F(j) <z or F (j) > x;, then increase j by 1 and repeat this step. Otherwise, set
Tip1 = F(j) and set F(j) := x;. Set p; = (b4 1,a), where (b,a) is the j7 cell in reading
order. (This means that the entry x; "bumps” the entry z;,; from the cell p;.)

3. If ;11 # 0 then increase ¢ by 1, increase j by 1, and repeat step 2.

4. Set t equal to p;, which is the termination cell, and terminate the algorithm.

The procedure terminates in finitely many steps and the result is a SSAF. Based on
this Schensted insertion analogue, it is given a weight preserving and a shape rearranging
bijection ¥ between SSYT and SSAF over the alphabet [n]. The bijection V¥ is defined to
be the insertion, from right to left, of the column word which consists of the entries of each
column, read top to bottom from columns left to rigth, of a SSYT into the empty SSAF
with basement [n]. The bijection together with the shape of W(T') provides the right key of
T, K(T), a notion due to Lascoux and Schiitzenberger (1990). It should be also observed
that Willis (2011) gives another way to calculate the right key of a SSYT.

Theorem 3.1. [Mason (2009)] Given an arbitrary SSYT T, let v be the shape of V(T).
Then K. (T) = key(7).

Given the alphabet [n], the RSK algorithm is a bijection between biwords in lexicographic
order and pairs of SSYT of the same shape over [n]. Equipped with the Schensted insertion
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anlogue Mason (2006/08) applies the same procedure to find an analogue ® of the RSK
for SSAF. This bijection has an advantage over the classical RSK because it comes along

Ju J2

or i, = 41 & jp < Jpy1, 1 < 4,5 < 1 —1, with 4., j. € [n], is called a biword in
lexicographic order over the alphabet [n]. The map ® defines a bijection between the set A
of all biwords w in lexicographic order in the alphabet [n], and pairs of SSAFs whose shapes
are rearrangements of the same partition in N” and the contents are respectively those of
the second and first rows of w. Let SSATF be the set of all SSAFs with basement [n].
Procedure. The map ® : A — SSAF x SSAF. Let w € A.

1. Set r := [, where [ is the number of biletters in w. Let F = () = G, where ) is the
empty SSAF.

2. Set F' := (j, — F). Let h, be the height of the column in (j, — F) at which the
insertion procedure (j, — F') terminates.

3. Place 7, on top of the leftmost column of height A, —1 in GG such that doing so preserves
the decreasing property of columns from bottom to top. Set G equal to the resulting figure.

4. If r — 1 # 0, repeat step 2 for r := r — 1. Else terminate the algorithm.

with the extra pair of right keys. The two line array w = ( otz ) s e < lpgq,

Remark 3.2. 1. The entries in the top row of the biword are weakly increasing when read
from left to right. Henceforth, if h, > 1, placing v, on top of the leftmost column of height
h, — 1 in G preserves the decreasing property of columns. If h, = 1, the it" column of G
does not contain an entry from a previous step. It means that number i, sits on the top of
basement 1,.

2. Let h be the height of the column in ' at which the insertion procedure (j — F') terminates.
Remark 3.1, implies that there is no column of height h + 1 in F' to the right.

Corollary 3.2. [Mason (2006/08, 2009)] The RSK algorithm commutes with the above ana-
logue ®. That is, if (P, Q) is the pair of SSYT produced by RSK algorithm applied to biword
w, then (U(P), W(Q)) = B(w), and K+ (P) = key(sh(¥(P))), K+(Q) = key(sh(¥(Q)).

This result is summarised in the following scheme from which, in particular, it is clear the
RSK analogue ® also shares the symmetry of RSK.

o(P) = e(Q) = o(F) = e(G),
()" = sh(G)* = sh(P) = sh(Q),
K.(P) = key(sh(F)), K+(Q) = key(sh(G)).

(P,Q)

Y

4. Main Theorem

We give a bijection between biwords, in lexicographic order, whose biletters are cell-
coordinates in a NW-SE diagonal of a rectangle diagram, and below it, containing the
biggest stair shape, and pairs of SSAFs whose shapes satisfy an inequality in the Bruhat
order.

Lemma 4.1. Let a = (aq,q9,...,ap) and § = (B1, B2, ..., Bn) be two weak compositions
in N™ rearrangements of each other, with key(8) < key(a). Giwen k € {1,...,n}, let
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kK € {1,...,n} be such that By is the left most entry of 5 satisfying o = Brr. Then if & =

(1,000, .. o+ 1, o) and B = (b1, Bas-- -, B +1,...,By), it holds key(B) < key(a).

Proof: Let k, k' € {1,...,n} as in the lemma, and put oy = fr = m > 1. (The proof for
m = 0 is left to the reader. The case of interest for our problem is m > 0 which is related
with the procedure of map ®.) This means that k appears exactly in the first m columns
of key(«), and k' is the smallest number that does not appear in column m + 1 of key(53)
but appears exactly in the first m columns. Let ¢ be the row index of the cell with entry &’
in column m of key(B). Every entry less than £’ in column m of key(/3) appears in column
m + 1 as well, and since in a key tableau each column is contained in the previous one, this
imply that the first ¢ rows of columns m and m + 1 of key(3) are equal. The only difference
between key(5) and key(S3) is in columns m + 1, from row ¢ to the top. Similarly if z is the
row index of the cell with entry & in column m + 1 of key(a), the only difference between
key(a) and key(«) is in columns m + 1 from row z to the top. To obtain column m + 1 of
key(B), shift in the column m + 1 of key(B) all the cells with entries > &’ one row up, and
add to the position left vacant (of row index t) a new cell with entry &’. The column m + 1
of key(a) is obtained similarly, by shifting one row up in the column m + 1 of key(a) all
the cells with entries > £ and adding a new cell with entry £ in the vacant position. Put
p = min{¢, z} and ¢ = max{t, z}. We divide the columns m + 1 in each pair key(3), key(5)
and key(a), key(a) into three parts: the first, from row one to row p — 1; the second, from
row p to row ¢; and the third, from row ¢ + 1 to the top row. The first parts of column
m + 1 of key(B) and key(B) are the same, equivalently, for key(a) and key(a). The third
part of column m + 1 of key(/3) consists of row ¢ plus the third part of key(3), equivalently,
for key(a) and key(a). As columns m + 1 of key(f) and key(«) are entrywise comparable,
the same happens to the third parts of columns m + 1 in key(@) and key(&). It remains to
analyse the second parts of the pair key(8), key(@) which we split into two cases according
to the relative magnitude of p and q.

Case 1. p =t <q =2z Letk <b < --- <b,qyandd; < --- < d,_1 < k be
respectively the cell entries of the second parts of columns m + 1 in the pair key(@), key(a).
By construction &’ < by < d; < dt+1, b; < bi+1 < di+17 t<i1<z-—2, and b, < d,_1 < k,
and, therefore, the second parts are also comparable.

Case 2. p =z < g =t. In this case, the assumption on k" implies that the first ¢ rows of
columns m and m + 1 of key(() are equal. On the other hand, since column m of key(53)
is less or equal than column m of key(«), which is equal to the column m of key(&) and in
turn is less or equal to column m + 1 of key(a), forces by transitivity that the second part

of column m + 1 of key(5) is less or equal than the corresponding part of key(a). |

We illustrate the lemma with 3 = (3,2%,1,0% 1), a = (2,0,3,0,1,2,1), 8 = (3,2%,0%1),
and & = (2,0,3,0,22 1),

7 7 7 7
4 6 - |4]4 - _|6]6
ey(B) =131 < kev(a) =r=15 key(B) =513] < kev@) =513
2|2 3]3 2] 2 3]3
1]1]1] 1]1]3] 1]1]1] 1]1]3]
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Theorem 4.2. Let w be a biword in lexicographic order in the alphabet [n], and let ®(w) =
(F,G). For each biletter ( ;) in w one has i +j < n+ 1 if and only if key(sh(G)) <

key(wsh(F)), where w is the longest permutation of &,,. Moreover, if the first [respectively
the second | row of w is a word in the alphabet [m|, with 1 < m < n, the shape of G
[respectively F| has the last n — m entries equal to zero.

Proof: 7Only if part”. We prove by induction on the number of biletters of w. If w is
the empty word then F' and G are the empty semi-skyline and there is nothing to prove.

Let w' = [ " 77 ") b a biword in lexicographic order such that p > 0 and
Jp+1 Jp 0 1

oo
F' := (jp+1 — F) and h the height of the column in F’ at which the insertion procedure
terminates. There are two possibilities for A which the third step of the algorithm procedure
of ® requires to consider.

e i = 1. It means j,4, is sited on the top of the basement element j,;; in F' and therefore
ip+1 goes to the top of the basement element 4,1 in G. Let G’ be the semi-skyline obtained
after placing 7,+1 in G. As ip41 < 4, for all ¢, 7,1 is the bottom entry of the first column
in key(sh(G')) whose remain entries constitute the first column of key(sh(G). Suppose
n+1— jy1 is added to the row z of the first column in key(wsh(F')) by shifting one row
up all the entries above it. Let 4,11 < a1 < - <a, < a,41 < - <@ and by <by <--- <
n+1—jp41 <b, <--- < be respectively the cell entries of the first columns in the pair
key(sh(G")), key(wsh(F")), where a; < -+ < a, < -+ <agand by < -+ < b, < --- <Y
are respectively the cell entries of the first columns in the pair key(sh(G)), key(wsh(F)). If
z=1 as 0,41 <n+1—jy,41 and a; < b; for all 1 < i <, then key(sh(G")) < key(wsh(F")).
If z > 1, as ’ip+1 <a; <b < bz, we have ip+1 < b; and a1 < bs. Slmllarly a; < b; < bi+1,
and a; < bjyq, for all 2 < 7 < 2z — 2. Moreover a,1 < b,_y < n+ 1 — j,41, therefore,
a,—1 <n+1—jpp1. Also a; < b; for all z <i <. Hence. key(sh(G")) < key(wsh(F")).

e i > 1. Place i,y on the top of the leftmost column of height 4 — 1. This means by
Lemma 4.1 key(sh(G")) < key(wsh(F")).

i+ <n+1lforalll <t<p+1,and w = ( ol ) such that ®(w) = (F,G). Let

"If part’”. We prove the contrapositive statement. If there exists a biletter ( ; ) in
w such that i + j > n + 1, then at least one entry of key(sh(G)) is strictly bigger than

e .;.1 be a biword in lexicographic
ey

the corresponding entry of key(wsh(F)). Let w =

order on the alphabet [n], and ( ;.t ) the first biletter in w, from right to left, with ;+j; >
t

n+ 1. Set Fy = Gy := 0, and for d > 1, let (Fy,G4) be the pair of SSAFs obtained by the

procedure of map ® applied to < ;.d and (Fy_1,Gq_1). First apply the map ® to the
d

biword ;.t_l B .;.1 to obtain the pair (F;_1,Gy_1) of SSAFs whose right keys satisfy, by
AR

the ”only if part” of the theorem, key(sh(Gi—1)) < key(wsh(F;_1)). Now insert j; to F;_;.
Asip+gpe <n+1for 1 <k <t—1,ig+jr <n+1<i+jrand iy <idg, 1 <k <t—1, then
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J¢ > Jk, 1 <k <t—1 and since w is in lexicographic order it implies ¢; < #;_;. Therefore
J¢ sits on the top of the basement element j; in F;_; and i; sits on the top of the basement
element i; in G;_;. It means that n + 1 — j; is added to the first row and first column of
key(wsh(F;_1)) and all entries in this column are shifted one row up. Similarly é; is added to
the first row and first column of key(sh(G;_1)) and all the entries in this column are shifted
one row up. As i, > n + 1 — j; then the first columns of key(sh(G)) and key(wsh(F}))
respectively, are not entrywise comparable, and we say that we have a ”problem” in the
key-pair (key(sh(Gy)), key(wsh(F;))). From now on ” problem” means i; > n+1— j; in some
row of a pair of columns in the key-pair (key(sh(Gg)), key(wsh(Fy))), with d > t. Let d >t
and denote by J the column with basement j; in Fj, and by I the column with basement
iy in Gg4. Let |J] and |I| denote respectively the height of J and I, and let r; and k; denote
the number of columns of height > i > 1, respectively, to the right of J and to the left of I.

Classification of the “problem” For any d > t, either there exists s > 1 such that
|J|,|I| > s, s = ks > 0;0r 1 <|J| <|I|, and there exists 1 < f < |J|, such that k; > r;, for
1<i<f,and k; =r; =0, for i > f. In the first case, one has a ”problem” in the (r, + 1)
rows of the s columns in the key-pair (key(sh(Gy)), key(wsh(Fy))). In the second case,
one has a problem in the bottom of the |J|" columns.

The proof of this classification is mainly based on the Remark 3.2 which says that no
insertion can terminate, to the left of J, on the top of a column of height |J| —1 or h — 1
such that r, > rpy1, and, on the fact, that an insertion terminating to the right of J or on
the top of J will contribute with a cell to the left or to the top of I. Therefore the original
"problem” in the key-pair (key(sh(Gy)), key(wsh(F;))) will appear in another row or column
in (key(sh(Ga)), key(wsh(Fy))) but will never disappear with new insertions. Finally, if the
second row of w is over the alphabet [m], there is no cell on the top of the basement of F'
greater than m. Therefore, the shape of F' has the last n — m entries equal to zero. The
other case is similar. [ |

Remark 4.1. In the previous theorem if the rows of w are swapped, one obtains the biword
w such that ®(w) = (G, F) with key(sh(F) < key(wsh(G)). Moreover, given v € N"* and
B < wv, there exists always a pair (F,G) of SSAFs with shapes v and [ respectively.

Two examples are now given to illustrate Theorem 4.2.

(1) Given w = i 613 g I ) , P(w) and the key-pair key(sh(G)) < key(wsh(F)) are
calculated.

[l , [7]. [i12] , [6]7]
1234567 1234567 1234567 1234567
sh(F1) = (1,09 sh(G1) = (0%,1) sh(Fy) = (1,1,0°)  sh(Gs) = (0°,1,1)

key(sh(G1)) = 7 = key(wsh(F1)) key(sh(G2)) = 67 = key(wsh(F2))

1] 6] [ 6]
1]2] , 617]. [112] [4] , [4] [6]7]
1234567 1234567 1234567 1234567
sh(F3) = (2,1,0°)  sh(G3) = (0%,2,1) sh(F1) = (2,1,0,1,0°)sh(Gs) = (0°,1,0,2,1)
key(sh(Gs) = | o < ¢ = hey(wsh(Fy))
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1 2 3 3 5 6 . .
(2) Let w = 63 92 4 3 1),W1thn—6, i =5 > 6+1—3. We calculate ®(w)
whose key-pair key(sh(G)), key(wsh(F')) is not entrywise comparable.
[1] : [6] . [&] [3] , [5]6]
123456 123456 123456 123456
sh(F1) = (1,0%) sh(G1) = (0°,1) sh(Fz) = (1,0,1,0%)  sh(G2) = (0*,1,1)
key(sh(G1)) = 6 = key(wsh(FL)) hey(sh(G2) = o £ =hey(wsh(Fy))
m o oof Am
[1] [3]4 7 31 [516] . [1] [3]4] ’ 3] [5]6
123456 123456 123456 123456
sh(F3) = (1,0,1,1,0%) sh(G3) = (02,1,0,1,1) sh(F1) = (1,0,2,1,0%) sh(G4) = (0%,2,0,1,1)
6 6
key(sh(G3)) = 5 £ 4 = key(wsh(Fs)) 6 6
3 3 key(sh(G4)) = 5 £ 4 = key(wsh(Fy))
33 3 4
3]2 2] 3]2 2]
[1] [3]4 , 3] [516] . [x] [314] [e],[a] [3] [5T6]
123456 123456 123456 123456
sh(Fs) = (1,0,2,2,0%) sh(Gs) = (02,2,0,2,1) sh(Fs) = (1,0,2%,0,1) sh(Gs) = (1,0,2,0,2,1)
6 6
6 6
key(sh(Gs))= 5 5 £ 4 4 =key(wsh(F5)) -
3 3 3 3 key(sh(Gs)) = ; 5 £ ;l 4 = key(wsh(Fs))
13 13

5. Expansions of Cauchy kernels in stair-type shapes
The well-known Cauchy identity expresses the product [, [T/2, (1 — 2iy;)~" as a sum

of products of Schur functions in x = (z1,29,...,2,) and y = (Y1, Y2, - - -, Ym),
H (1— xiyj>71 = H H(l - xiyj)il = Z sx(w)sa(y), (1)
(4.4)€(m™) i=1j=1 A

over all partitions A of length < min{n, m}. Using either the RSK correspondence or the ¢
correspondence, the Cauchy formula (1) can be interpreted as a bijection between monomials
on the left hand side and pairs of SSYTs or SSAFs on the right. Now we replace in the
Cauchy kernel the rectangle (m™) by the stair-type shape A = (m™™™" ! m—1,... . n—k+1),
with 1 < m,k < n,and n+ 1 < m+ k. In particular, when m = n = k, one has the stair-
partition A = (n,n — 1,...,1), that is, the cells (i, 7) in the NW-SE diagonal of the square
diagram (n™) and below it. Thus (¢,5) € A if and only if i + j < n + 1. Lascoux (2003)
has given the following expansion for the non-symmetric Cauchy kernel in the stair shape,

using double crystal graphs, and also Fu and Lascoux (2009), based on algebraic properties
of Demazure operators,

H (1 - xz‘yj)_l = Z /’%u<x>’€wu(y)7 (2)

i+j<n+1 veNn
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where k and & are the two families of key polynomials, and w is the longest permutation of
S,,. Theorem 4.2 allows us to give an expansion of the non-symmetric Cauchy kernel for
A= (m" ™ m—1,m-2,...,1), for 1 <m < n, and its conjugate \, which includes, in
particular, the stair case shape (2),

H (1 - xiyj)_l = Z k\y(y)ﬁwu(w)v (3)

(i.9) €A veN®
V=(V1,0,Vm, , 0" )

IT 0=z = > B (@) K (1). (4)
i,j >\ veN”?
()€ v=V1,....Um,0"""™)
Write [T jyex(1=2iy;) ™ = 2 s0 ¥y -+ @Y., where (i, i) € A, i+ <n+1, 1 <i <n,
1 <j<m, 1<1<c Each monomial z;y;, - --;y;. is in correspondence with the biword
(%), whose image by @ is the pair (F,G) of SSAFs. That is, z;,y;, - - - 2.y, = y" 2,

Je - 1
where sh(F') has the last n —m entries equal zero, and sh(G) < wsh(F'). Therefore,

H (1—zy;) ' = Z Z yFa¢

(3.3)EX veNm (F,G)ESSAF
v=(1,--¥m,0" ™)  sh(F)=v
sh(G)<wv
veN" FeSSAF GeSSAF

v=V1,...,Vm,0""™) sh(F)=v sh(G)<wv

= Yoo e Y a9

veN™ PeSSYT QeSSYT
v=(V1,...sVm, 0" ™) sh(P)=vT sh(Q)=v+
Ky (P)=key(v) K4 (Q)=key(B)
B<wr
= > Ko (Y) K (2). (5)

veN”

The Cauchy kernel expansion (4) for the conjugate shape A = (n,n —1,...,n —m + 1),
with 1 < m < n, is a consequence of (3), since (i,j) € X if and only if (j,7) € A, and the
symmetry of ®. When n = m, A = (n,n—1,...,1) = ), and the symmetry of ® means
the two identities (2) and (3) are equivalent. Finally, as a refinement of (5), we obtain the
expansion for the shape A = (m™"™™" m —1,....n—k+ 1), where 1 < m < k < n, and
n+1<m+k,

[I Q=) = > > v > Z z¢

(i,5)EX veN™ sh(F)=v BeN"
v=(V1,0,Vm,0" ") B=(B1,---sBk,0" " k)
B<wy
= Z R (Y72 K (2), (6)
veN”

V=Vt 07
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where W;;Hwy is the polynomial weight of the crystal subgraph defined by the colours
1,...,k — 1, in the Demazure crystal graph B,,. It means we are considering all the
tableaux in the 8., with entries less or equal than k, and so all the tableaux in B, with
right key such that the entries are less or equal than k. It is equivalent to all SSAFs with
content in N* and shape rearrangement of wy with zeros in the n — k last entries. For

\ = (mP™ m —1,...,n—k+1), where 1 <k <m <mn,and n+1 < m+k, one has
from (6),

H (1—ay;) ' = H (1—zy;) ' = Z R ()05 o (1),

(i,)EX (4,5)EX vEN™

v=1,...,,0"F)

where 72} K, (y) is defined similarly as above, swapping &k with m. All these identities are
equivalent to those obtained by Lascoux (2003) regarding the shapes discussed here.
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