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A MERIT FUNCTION APPROACH FOR DIRECT SEARCH

S. GRATTON AND L. N. VICENTE

Abstract: In this paper it is proposed to equip direct-search methods with a
general procedure to minimize an objective function, possibly non-smooth, without
using derivatives and subject to constraints on the variables.

One aims at considering constraints, most likely nonlinear or non-smooth, for
which the derivatives of the corresponding functions are also unavailable. The nov-
elty of this contribution relies mostly on how relaxable constraints are handled. Such
constraints, which can be relaxed during the course of the optimization, are taken
care by a merit function and, if necessary, by a restoration procedure. Constraints
that are unrelaxable, when present, are treated by an extreme barrier approach.

One is able to show that the resulting merit function direct-search algorithm
exhibits global convergence properties for first-order stationary constraints. As in
the progressive barrier method [2], we provide a mechanism to indicate the transfer
of constraints from the relaxable set to the unrelaxable one.
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1. Introduction
Consider the problem

min f(x)

s.t. x ∈ Ω = Ωr ∩ Ωnr.
(1)

The feasible region of this problem is defined by relaxable and/or unrelaxable
constraints. The non-relaxable constraints correspond to Ωnr ⊆ Rn. Such
constraints have to be satisfied at all iterations in an algorithmic framework
for which the objective function is evaluated. Typically they are bounds or
linear constraints but they can also include hidden constraints (constraints
which are not part of the problem specification/formulation and their man-
ifestation comes in the form of some indication that the objective function
could not be evaluated). In contrast, relaxable constraints need only to be
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satisfied approximately or asymptotically. In our notation Ωr is the set of
relaxable constraints, which is assumed to take the form

Ωr = {x ∈ Rn : ci(x) ≤ 0, ∀i ∈ I} .

Other authors refer to relaxable and unrelaxable constraints as soft and
hard constraints, or as open and closed constraints, respectively. Finally,
the objective function f : Rn → R is only assumed to be locally Lipschitz
continuous. Most of the globally convergent derivative-free approaches for
handling nonlinear constrained problems have been of direct search or line
search type 1.
Feasible methods may be the only option when all the constraints are

unrelaxable (Ωr = Rn). In addition they generate a sequence of feasible
points, thus allowing the iterative process to be terminated prematurely with
a guarantee of feasibility for the best point tested so far. One way of designing
feasible methods is by means of the extreme barrier function

fΩnr
(x) =

{
f(x) if x ∈ Ωnr,
+∞ otherwise.

It is not necessary to evaluate f at infeasible points and the value of the
extreme barrier function is set to +∞ at such points. Direct-search methods
take action solely based on function values comparisons and are thus appro-
priate to use in conjunction with an extreme barrier function. In the context
of direct-search methods of directional type using such functions, there are
two known ways of designing globally convergent algorithms. In any of the
cases, one must use sets of directions whose union (after normalization if
needed) is asymptotically dense in the unit sphere of Rn, even if the objec-
tive function is smooth. The first approach requires only a simple decrease
to accept new iterates but imposes integer requirements throughout the algo-
rithm (and in particular in the generation of the directions). This approach
is known as mesh adaptive direct-search (MADS) and has been developed
by Audet and Dennis [1]. One can, however, relax such integer lattice re-
quirements and freely generate the directions densely in the unit sphere at
the (negligible) price of imposing a sufficient condition on the acceptance
of new iterates (see Vicente and Custódio [20]). An alternative to extreme

1On the model-based trust-region side of optimization without derivatives, nonlinear constraints
have been considered mostly in implementations (see [3, 4, 6, 7, 19]), and as far as we know no
convergence theory has yet been developed.
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barrier when designing feasible methods is the use of projections onto the fea-
sible set, although this might require the knowledge of the derivatives of the
constraints and be expensive or unpractical in many instances (see Lucidi,
Sciandrone, and Tseng [16] for such an approach).
In the case where there are no unrelaxable constraints, one can use a

penalty term by adding to the objective function a measure of infeasibility
multiplied by a penalty parameter, and thus allowing to start infeasible with
respect to the relaxable constraints. In this vein, Lewis and Torczon [13] (see
also [12]) suggested an approach based on an augmented Lagrangian method,
considering the solution of a sequence of subproblems where the augmented
Lagrangian function takes into account only the nonlinear constraints and is
minimized subject to the remaining constraints (bounds on the variables or
more general linear constraints). Each problem can then be approximately
solved using an appropriate directional direct-search method. This applica-
tion of augmented Lagrangian methods yields global convergence results to
first-order stationary points of the same type of those obtained under the
presence of derivatives. Diniz-Ehrhardt, Mart́ınez, and Pedroso [10] studied
a more general augmented Lagrangian setting where the problem constraints
imposed as subproblem constraints are not necessarily of linear type. In
turn, Liuzzi and Lucidi [14] and Liuzzi, Lucidi, and Sciandrone [15] devel-
oped and analyzed algorithms for inequality constrained problems, based on
nonsmooth and smooth, respectively, penalty functions. They imposed suffi-
cient decrease and handled bound and linear constraints separately, proving
that a subset of the set of limit points of the sequence of iterates satisfy
the first-order necessary conditions of the original problem. Mart́ınez and
Sobral [17] proposed an algorithm for problems with ‘thin’ constraints based
on relaxing feasibility and performing a subproblem restoration procedure.
Filter methods can also be appropriate to handle relaxable constraints. The
filter approach of Coope [9] guarantees global convergence to a first-order
stationary point by means of an envelope around the filter as means of mea-
suring sufficient decrease.
The first general approach to consider both relaxable and unrelaxable con-

straints is called progressive barrier and has been suggested by Audet and
Dennis [2], exhibiting some global convergence properties. It allows the han-
dling of both types of constraints, by combining mesh adaptive direct search
for unrelaxable constraints with non-dominance filter type concepts for the
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relaxable constraints. An interesting feature is that a constraint can be con-
sidered relaxable until it becomes feasible whereupon it is transferred to the
set of unrelaxable constraints.
In this paper, we develop an alternative approach to progressive barrier [2],

handling the relaxable constraints by means of a merit function instead of a
filter. For such a purpose, we consider a constraint violation function of the
type

g(x) =
∑
i∈I

max(ci(x), 0) (2)

and the merit function

M(x;µ) = f(x) + µg(x), (3)

where µ is a positive penalty parameter. The merit function and the cor-
responding penalty parameter are only used in the evaluation of an already
computed step, to decide whether it will be accepted or not.
Our treatment of the non-relaxable constraints will implicitly consider the

use of extreme barrier functions of the type

hΩnr
(x) =

{
h(x) if x ∈ Ωnr,
+∞ otherwise,

where h : Rn → R. In practice what we optimize is fΩnr
. Typically, the non-

relaxable constraints restrict only the evaluation of the objective function f .
The evaluation of the functions ci, i ∈ I, can be made outside Ωnr. For
generality, one considers here that Ωnr also constrains the evaluation of the
relaxable constraints, and thus implicitly consider gΩnr

instead of g in our
proposed algorithm. Due to the presence of these type of constraints and/or
of the non-smoothness of the objective function, the directions used in the
algorithm must be generated densely in the unit sphere of Rn.
Our merit function approach has been designed in a simple and modular

way. A successful iteration is defined by a sufficient decrease in the infea-
sibility measure (2) or a sufficient decrease in the merit function (3) for an
appropriate value of the penalty parameter. Whenever a sufficient decrease
in the infeasibility measure (2) occurs at the expense of a significant increase
in the objective function, a restoration of feasibility mode is entered with the
single purpose of decreasing (2).
The paper is organized as follows. We start by describing the merit function

algorithm in Section 2. The convergence theory of the proposed approach
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is then divided in four sections: Section 3 for the behavior of the step size
parameter; Section 4 for the case where restoration is only entered a finite
number of times; Section 5 for the case where restoration is entered but
never left; Section 6 for the case where restoration is entered an infinite
number of times. In Section 7 we discuss how the theory particularizes in
the presence of smoothness. In Section 8 we show a few runs of the algorithm
as a proof of concept. Finally, Section 9 contains some concluding remarks
and Appendix A summarizes a few notions of Clarke non-smooth calculus
needed in the paper.

2. A merit function algorithm
In our algorithm framework an iteration is considered successful in two

situations. To describe them in some detail let us assume a given iterate xk
and a step size αk > 0. Each iteration is divided in a search and a poll step,
but the latter is the one responsible for the convergence properties of the
algorithm (and thus we ignore the search step in this discussion). Let also d
be a direction considered in the poll step and ρ(α) a forcing function, i.e., a
positive and non-decreasing function verifying lim

α↓0
ρ(α)/α = 0.

The first possibility of success is that a certain sufficient decrease in the
measure of infeasibility g is attained (g(xk + αkd) < g(xk) − ρ(αk)) and
one is relatively away from the feasible region g(xk) > Cρ(αk), for some
constant C > 1. However, this will only be the case when the merit function
decreases (M(xk + αkd; µ̄) < M(xk; µ̄)) for a sufficient large value µ̄ of the
penalty parameter (otherwise a restoration phase is entered; this is explained
better below, right after Algorithm 2.1).
The other situation where success is declared is when the merit function is

sufficiently decreased (M(xk + αkdk;µk) < M(xk;µk) − ρ(αk)) for a certain
choice of the penalty parameter µk. The update of the penalty parameter
follows the classic lines [18, Formula (18.33)] since what we use in (4) below
is essentially the formula

f(xk+αkdk)−f(xk)
αk

ρ(αk)
αk

,

where the nominator corresponds to ∇f(xk)
⊤dk and the denominator re-

places the value of g(xk) (and we will observe later that when ρ(αk)/αk goes
to zero so does in principle g(xk), see Theorems 4.1, 5.1-ii, and 6.1).
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Our merit function approach is described below in Algorithm 2.1. All
directions in the sets Dk for all k are considered normalized.

Algorithm 2.1 (A merit function algorithm (Main)).
Initialization
Choose x0 ∈ Ωnr, α0, µ̄ > 0, C > 1, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

(1) Search step: Try to compute a point x satisfying the conditions
that make the poll step below successful by evaluating the func-
tions f and g at a finite number of points. (In particular, one
might enter Restoration in the search step.) If such a point is
found, then set xk+1 = x, declare the iteration and the search
step successful, and skip the poll step.

(2) Poll step: Select a finite subset of directions Dk. If xk + αkd /∈
Ωnr for all d ∈ Dk, the iteration is declared unsuccessful. Other-
wise, remove from Dk all directions d such that xk + αkd /∈ Ωnr.
If for any d ∈ Dk

g(xk + αkd) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

and

M(xk + αkd; µ̄) ≥ M(xk; µ̄),

then enter Restoration (with kr = k).
Otherwise, declare the iteration successful if there exists a dk ∈
Dk such that

g(xk + αkdk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

or, if that is false, if

M(xk + αkdk;µk) < M(xk;µk)− ρ(αk),

where

µk = max

{
µ̄,

f(xk + αkdk)− f(xk)

Cρ(αk)

}
. (4)

In such a case, set xk+1 = xk + αkdk.
Otherwise, declare the iteration unsuccessful and set xk+1 = xk.
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(3) Step size parameter update: If the iteration was success-
ful, then maintain or increase the step size parameter: αk+1 ∈
[αk, γαk]. Otherwise, decrease the step size parameter: αk+1 ∈
[β1αk, β2αk].

One can see that it makes sense to enter Restoration when g(xk + αkd) <
g(xk)− ρ(αk) and M(xk + αkd; µ̄) ≥ M(xk; µ̄), since this implies

f(xk + αkd)− f(xk) ≥ µ̄[g(xk)− g(xk + αkd)] > µ̄ρ(αk),

in other words, g is sufficiently reduced but f has considerably increased. In
such a case we need to focus totally on a reduction of the constraint violation,
and such procedure is described below in Algorithm 2.2. Restoration is left
when progress cannot be achieved and such a considerable increase in f is
no longer observed (we will later see in Section 5 the appropriateness of such
a leaving criterion).

Algorithm 2.2 (A merit function algorithm (Restoration)).
Initialization
Start from xkr ∈ Ωnr given from the Main algorithm and consider the
same parameters as in there.

For k = kr, kr + 1, kr + 2, . . .

(1) Search step: Try to compute a point x satisfying the conditions
that make the poll step below successful by evaluating the func-
tion g at a finite number of points. If such a point is found, then
set xk+1 = x, declare the iteration and the search step successful,
and skip the poll step.

(2) Poll step: Select a finite subset of directions Dk. If xk + αkd /∈
Ωnr for all d ∈ Dk, the iteration is declared unsuccessful. Other-
wise, remove from Dk all directions d such that xk + αkd /∈ Ωnr.
Declare the iteration successful if there exists a dk ∈ Dk such that

g(xk + αkdk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

In such a case, set xk+1 = xk + αkdk.
Otherwise, declare the iteration unsuccessful and set xk+1 = xk.
Leave Restoration and return to the Main algorithm (starting at
a new (k+ 1)-th iteration using xk+1 and αk+1) if the iteration is
unsuccessful and M(xk + αkd; µ̄) < M(xk; µ̄) for some d ∈ Dk.
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(3) Step size parameter update: As in the Main algorithm.

3. Step size behavior
As it is classic in direct-search methods or other techniques for derivative-

free optimization, we start our analysis of global convergence by showing that
the step size parameter approaches zero. We will do this under the condition
that Restoration is not entered an infinite number of times (and postpone to
Section 6 the analysis of this situation).

Theorem 3.1. Assume that f is bounded below. Assume that Restoration is
not entered after a certain order.
Then,

lim inf
k→+∞

αk = 0.

Proof : Suppose ∃k̄ ∈ N, ᾱ > 0 such that αk ≥ ᾱ and k is a Main iteration
∀k ≥ k̄.
Let us assume now that there exists an infinite subsequence J1 of successful

iterations after k̄. We thus know that xk ∈ Ωnr ∀k ∈ J1. In the derivation
below we will omit the unsuccessful iterations, since at those iterations the
iterates do not move.
If g(xk+1) < g(xk) − ρ(αk), g(xk) > Cρ(αk) is true for sufficiently large

k ∈ J1, then

g(xk+1) < g(xk)− ρ(αk) ≤ g(xk)− ρ(ᾱ)

for sufficiently large k ∈ J1, which renders a contradiction since g is bounded
below by 0.
Thus, there must exists an infinite subsequence J2 ⊆ J1 of iterates for

which M(xk+1;µk) < M(xk;µk)− ρ(αk). Here we consider two possibilities.
In the first case, all these iterates are such that µk = µ̄. In such an

occurrence one has that

M(xk+1; µ̄) < M(xk; µ̄)− ρ(αk) ≤ M(xk; µ̄)− ρ(ᾱ) ∀k ∈ J.

However, in the successful iterations where g(xk+1) < g(xk)− ρ(αk), g(xk) >

Cρ(αk), since Restoration was not entered (¯̄k is considered sufficiently large
for this purpose), one knows that M(xk+1; µ̄) < M(xk; µ̄). Thus, M(xk; µ̄)
tends to −∞ which is a contradiction given the boundedness from below of
both f and g.
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In the second possibility, there is an infinite number of iterations in J2 such
that

µk =
f(xk+1)− f(xk)

Cρ(αk)
.

Let us choose just one of these iterations. For such an iteration k, either
g(xk+1) ≥ g(xk)− ρ(αk) or g(xk) ≤ Cρ(αk). Thus, either

f(xk+1)− f(xk) = µkCρ(αk) ≥ µk[g(xk)− g(xk+1)]

(since C > 1) or

f(xk+1)− f(xk) = µkCρ(αk) ≥ µkg(xk) ≥ µk[g(xk)− g(xk+1)],

both leading to M(xk+1;µk) ≥ M(xk;µk) which contradicts M(xk+1;µk) <
M(xk;µk)− ρ(αk).
We have proved under the assumption of contradiction that one cannot

have an infinity of successful iterations. But if all iterations are unsuccessful
after a certain order that also contradicts the assumption of contradiction.

The following corollary organizes for the purposes of the analysis to come
the relevant information regarding unsuccess and step size behaviors.

Corollary 3.1. Assume that f is bounded below. Assume that Restoration
is not entered after a certain order.
Then, there exists at least one refining subsequence of Main iterations (i.e.,

a subsequence K made of unsuccessful Main iterations for which αk → 0 for
k ∈ K).

Proof : The proof can be found for instance in [8] but it is given here for
completeness. From Theorem 3.1 we conclude that there must exist a subse-
quence J of unsuccessful iterations (or unsuccessful poll steps). Thus, from
the way we update the step size parameter, there must exist a subsequence
of unsuccessful iterations K ⊂ J such that αk+1 → 0 for k ∈ K. Since,
αk ≤ (1/β1)αk+1 for k ∈ K, we obtain αk → 0 for k ∈ K.

4. Convergence assuming restoration is never entered af-
ter a certain order
The analysis of global convergence of Algorithm 2.1 is made by inspecting

the sign of appropriate directional derivatives of Clarke type. Let h (e.g.,
h = f, g) be Lipschitz continuous near x∗ and restricted to Ωnr ⊆ Rn. We
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will use the following definition of the Clarke generalized derivative of h at
x∗ along d

h◦(x∗; d) = lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t
,

where d must be in the hypertangent TH
Ωnr

(x∗) cone to Ωnr at x∗ (i.e., d must

be in the interior of the tangent cone TCl
Ωnr

(x∗) to Ωnr at x∗). In the Appendix
of this paper we provide the rigorous definitions of these derivatives as well
as the definitions of tangent and hypertangent cones. We assume throughout
this paper that the hypertangent TH

Ωnr
(x∗) is nonempty.

The sign of the Clarke derivatives is then analyzed at limit points of refin-
ing subsequences along refining directions. As we said before, by a refining
subsequence [1] we mean a subsequence of unsuccessful Main iterates for
which the step-size parameter converges to zero. By a refining direction [1]
in TH

Ωnr
(x∗) associated with a refining subsequence K, one means a limit point

of {dk} where k ∈ K is taken sufficiently large such that xk + αkdk ∈ Ωnr.
Given that our working directions in the sets Dk’s are normalized so are the
refining directions.
We start by considering the determination of feasibility. (Note that since

Ωnr is not necessarily by assumption a closed set, one must assume below
that the limit point of a refining subsequence verifies the non-relaxable con-
straints.)

Theorem 4.1. Assume that f is bounded below. Assume that Restoration is
not entered after a certain order.
Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr and let d ∈

TH
Ωnr

(x∗) be a corresponding refining direction. Assume that g is Lipschitz
continuous near x∗. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus
x∗ ∈ Ω) or g◦(x∗, d) ≥ 0.

Proof : By assumption there exists a subsequence K1 ⊆ K and a correspond-
ing subsequence {dk}k∈K1

of polling directions such that {dk} converges to
d ∈ TH

Ωnr
(x∗) in K1 and αk goes to zero in K1. Thus, one must necessarily

have that xk + αkdk ∈ Ωnr for k sufficiently large in K1.
Since the iteration k ∈ K1 is unsuccessful, g(xk +αkdk) ≥ g(xk)− ρ(αk) or

g(xk) ≤ Cρ(αk), and then either there exists an infinite number of the first
or of the second. In the latter case, it is then trivial to obtain g(x∗) = 0 from
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the fact that αk → 0 in K1 and the continuity of g. In the former case, there
exists a subsequence K2 ⊆ K1 such that

g(xk + αkdk)− g(xk)

αk
≥ −ρ(αk)

αk
∀k ∈ K2.

On the other hand, from the definitions of lim sup and K2,

lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≥ lim sup

k∈K2

g(xk + αkd)− g(xk)

αk
.

Since g is Lipschitz continuous near x∗ (with constant Lg),

g(xk + αkdk)− g(xk)

αk
− Lg∥dk − d∥ ≤ g(xk + αkd)− g(xk)

αk
.

One then obtains g◦(x∗, d) ≥ 0 since both ∥dk−d∥ and ρ(αk)/αk tend to zero
in K2.

We now move to an intermediate optimality result. One does not explicitly
use x∗ ∈ Ωr in the proof, but one notes that g◦(x∗, d) ≤ 0 only describes
the cone of first order linearized directions under the feasibility assumption
x∗ ∈ Ωr.

Theorem 4.2. Assume that f is bounded below. Assume that Restoration is
not entered after a certain order.
Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that f

and g are Lipschitz continuous near x∗. Let d ∈ TH
Ωnr

(x∗) be a corresponding
refining direction such that g◦(x∗, d) ≤ 0. Then f ◦(x∗, d) ≥ 0.

Proof : By assumption there exists a subsequence K1 ⊆ K and a correspond-
ing subsequence {dk}k∈K1

of polling directions such that {dk} converges to
d ∈ TH

Ωnr
(x∗) in K1 and αk goes to zero in K1. Thus, one must necessarily

have that xk + αkdk ∈ Ωnr for k sufficiently large in K1.
Since the iteration k ∈ K1 is unsuccessful, one is sure that µk is updated

according to (4).
If µk = [f(xk +αkdk)− f(xk)]/[Cρ(αk)], then it is because [f(xk +αkdk)−

f(xk)]/[Cρ(αk)] ≥ µ̄, and thus

f(xk + αkdk)− f(xk)

αk
≥ Cµ̄

ρ(αk)

αk
. (5)
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If not, then M(xk + αkdk; µ̄) ≥ M(xk; µ̄)− ρ(αk), and thus

f(xk + αkdk)− f(xk)

αk
≥ µ̄

g(xk)− g(xk + αkdk)

αk
− ρ(αk)

αk
. (6)

On the other hand, from the definition of lim sup and the assumption
g◦(x∗, d) ≤ 0,

lim sup
k∈K1

g(xk + αkd)− g(xk)

αk
≤ lim sup

x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≤ 0.

Since g is Lipschitz continuous near x∗ and the fact that dk → d (and using
an argument already seen in the proof of Theorem 4.1),

lim sup
k∈K1

g(xk + αkdk)− g(xk)

αk
= lim sup

k∈K1

g(xk + αkd)− g(xk)

αk
≤ 0.

Thus, one can say that there exists {ϵk}, with ϵk → 0, such that

g(xk + αkdk)− g(xk)

αk
≤ ϵk ∀k ∈ K1,

which then implies from (6)

f(xk + αkdk)− f(xk)

αk
≥ −µ̄ϵk −

ρ(αk)

αk
. (7)

Now we know already that

lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

f(x+ td)− f(x)

t
≥ lim sup

k∈K1

f(xk + αkd)− f(xk)

αk

= lim sup
k∈K1

f(xk + αkdk)− f(xk)

αk
.

The proof is completed since the right-hand-sides of (5) and (7) tend to zero
in K1.

Finally, we make use of the density of the refining directions in the set
T (x∗) below to derive the complete optimality result.

Theorem 4.3. Assume that f is bounded below. Assume that Restoration is
not entered after a certain order.
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Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that f
and g are Lipschitz continuous near x∗.
Assume that the set

T (x∗) = TH
Ωnr

(x∗) ∩ {d ∈ Rn : ∥d∥ = 1, g◦(x∗, d) ≤ 0} (8)

has a non-empty interior.
Let the set of refining directions be dense in T (x∗). Then f ◦(x∗, v) ≥ 0 for

all v ∈ TCl
Ωnr

(x∗) such that g◦(x∗, v) ≤ 0, and x∗ is a stationary point of (1).

Proof : Let v be such that v ∈ TCl
Ωnr

(x∗), g
◦(x∗, v) ≤ 0, and ∥v∥ = 1. Then v

is the limit of a sequence D of refining directions d such that d ∈ TH
Ωnr

(x∗)
and g◦(x∗, d) ≤ 0. For each such d one can apply Theorem 4.2 and obtain
f ◦(x∗, d) ≥ 0. Thus, f ◦(x∗; v) = limd∈TH

Ωnr
(x∗),d∈D f ◦(x∗; d) ≥ 0. The result

then holds for non-normalized v’s given that TCl
Ωnr

(x∗) is a cone and the Clarke
derivatives are homogeneous in their second arguments.

5. Never leaving restoration
The analysis of an infinite run of consecutive Restoration steps shows that

such a behavior would lead to feasibility and optimality results similar as in
the previous case. By a refining subsequence below, we now mean a subse-
quence of unsuccessful Restoration iterates for which the step-size parameter
converges to zero. The definition of refining direction is the same as before.
(Again, since Ωnr is not necessarily by assumption a closed set, one must
assume below that x∗ belongs to Ωnr.)

Theorem 5.1. Assume that f is bounded below. Assume that Restoration is
entered and never left.
(i) Then there exists a refining subsequence.
(ii) Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr and let

d ∈ TH
Ωnr

(x∗) be a corresponding refining direction. Assume that g is Lipschitz
continuous near x∗. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus
x∗ ∈ Ω) or g◦(x∗, d) ≥ 0.
(iii) Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω and let

d ∈ TH
Ωnr

(x∗) be a corresponding refining direction such that g◦(x∗, d) ≤ 0.
Assume that f is also Lipschitz continuous near x∗. Then f ◦(x∗, d) ≥ 0.
(iv) Assume further that the interior of the set T (x∗) given in (8) is non-

empty. Let the set of refining directions be dense in T (x∗). Then f ◦(x∗, v) ≥ 0
for all v ∈ TCl

Ωnr
(x∗) such that g◦(x∗, v) ≤ 0, and x∗ is a stationary point of (1).
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Proof : (i) There must exist a refining subsequence K within this call of the
Restoration (this is essentially the argument of the third paragraph of the
proof of Theorem 3.1). By assumption there exists a subsequence K1 ⊆ K
and a corresponding subsequence {dk}k∈K1

of polling directions such that
{dk} converges to d ∈ TH

Ωnr
(x∗) in K1 and αk goes to zero in K1. Thus, one

must necessarily have that xk + αkdk ∈ Ωnr for k sufficiently large in K1.
(ii) Since the iteration k ∈ K1 is unsuccessful in the Restoration, g(xk +

αkdk) ≥ g(xk)−ρ(αk) or g(xk) ≤ Cρ(αk), and the proof follows an argument
already seen (in the second paragraph of the proof of Theorem 4.1).
(iii) Since at the unsuccessful iteration k ∈ K1, Restoration is not left, it

must be because M(xk + αkdk; µ̄) ≥ M(xk; µ̄) for all k ∈ K1, and the proof
follows an argument also already seen (see the fourth paragraph of the proof
of Theorem 4.2).
(iv) The proof of this statement is exactly the one given for Theorem 4.3.

6. Entering and leaving restoration an infinite number
of times
It remains to analyze the case when one enters (and thus leave) Restoration

an infinite number of times. In this case the conditions under which the global
convergence results are derived are not the ideal ones since we will have the
need to assume that no search steps are performed and that the step size is
not increased (or not increased as frequently as it is decreased).

Theorem 6.1. Assume that f is bounded below. Assume that Restoration is
entered and left an infinite number of times.
Assume that αk is never increased, that the search step is empty in the

Main algorithm, and that {xk} converges to x∗.
Let d be a direction which is the limit point of {dk} for both the sequences

where Restoration is entered and left.
Assume that f and g are Lipschitz continuous near x∗. Then x∗ ∈ Ωnr

and either g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or g◦(x∗, d) ≥ 0.
Furthermore, f ◦(x∗, d) ≥ 0 if g◦(x∗, d) ≤ 0.

Proof : Let J1 and J2 be two subsequences of iterations where Restoration is
entered and left respectively.
Since for k ∈ J2 one knows that αk is reduced and the step parameter is

never increased, one obtains αk → 0.
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Also, by assumption there exists a subsequence J3 ⊆ J2 and a correspond-
ing subsequence {dk}k∈J3 of polling directions such that {dk} converges to
d ∈ TH

Ωnr
(x∗) in J3 and αk goes to zero in J3. Thus, one must necessar-

ily have that xk + αkdk ∈ Ωnr for k sufficiently large in J3. Thus, from
g(xk + αkdk) ≥ g(xk) − ρ(αk) or g(xk) ≤ Cρ(αk), for all k ∈ J3, one con-
cludes that g◦(x∗, d) ≥ 0 or g(x∗) = 0.
Now, for k ∈ J1, M(xk + αkdk; µ̄) ≥ M(xk; µ̄), and from this we conclude

that f ◦(x∗, d) ≥ 0 if g◦(x∗, d) ≤ 0.

To derive a result of the form of Theorem 4.3, one would need to impose
that the directions used when entering Restoration are dense in the set (8).
An alternative to this result is to consider a certain maximum number N of

Restoration calls, after which one decides to ‘close’ the relaxable constraints.
In this approach, at the (N + 1)-th call to Restoration, one enters a slightly
different Restoration algorithm with the single purpose of minimizing g (i.e.,
Algorithm 2.2 without the condition of leaving Restoration). After such
a call, if one arrives at a point where g is zero, one redefines Ωnr as the
intersection of the originals Ωnr and Ωr, and start from there an approach
strictly based on the minimization of the extreme barrier function fΩnr

. This
procedure can be applied to the relaxable constraints ci(x) ≤ 0, i ∈ I,
individually.

7. Particularization to smoother settings
When f is strict differentiable at x∗ in the sense of Clarke [5], there exists

∇f(x∗) such that f ◦(x∗; d) = ⟨∇f(x∗), d⟩ for all d. Furthermore, if the ci’s
are smoother (for instance continuously differentiable at x∗), then g in (2) is
regular [5], and its Clarke directional derivatives coincide with the traditional
ones, i.e., g◦(x∗; d) = g′(x∗; d). Thus, under these smoother assumptions,
the results would read like: (i) g′(x∗; d) ≥ 0 (in the relaxable constraints
criticality result of Theorem 4.1); (ii) the projection of ∇f(x∗) is zero onto
the set of directions v such that v ∈ TCl

Ωnr
(x∗) and g′(x∗; v) ≤ 0 (in the

optimality result of Theorem 4.3).
When f and ci, i ∈ I, are continuously differentiable and Ωnr = Rn, there

is no need to use sets of polling directions dense in the unit sphere. The
algorithms (Main and Restoration) can then consider in this smooth setting,
in their poll steps, directions belonging to positive spanning sets Dk. To
better extend the result of Theorem 4.1 to such a setting one would have to
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consider a continuously differentiable version for g, such as

g(x) =
∑
i∈I

[max(ci(x), 0)]
2. (9)

Theorem 7.1. Assume that f is bounded below. Assume that Restoration is
not entered after a certain order.
Let {xk}k∈K be a refined subsequence converging to x∗. Suppose that Dk

converges in K to a positive spanning set D∗. Assume that Ωnr = Rn, that
ci, i ∈ I, are continuously differentiable at x∗, and that g is given by (9).
Then either g(x∗) = 0 (and thus x∗ ∈ Ω) or ∇g(x∗) = 0.

Proof : Since the iteration k ∈ K is unsuccessful, g(xk+αkdk) ≥ g(xk)−ρ(αk)
for all d ∈ Dk or g(xk) ≤ Cρ(αk), and then either there exists an infinite
number of the first or of the second. In the latter case, it is then trivial to
obtain g(x∗) = 0 from the fact that αk → 0 in K and the continuity of g. In
the former case, there exists a subsequence K1 ⊆ K such that

g(xk + αkd)− g(xk)

αk
≥ −ρ(αk)

αk
∀d ∈ Dk, ∀k ∈ K1.

Applying the mean value theorem, for some tdk ∈ (0, 1),

⟨∇g(xk + tdkαkd), d⟩ ≥ −ρ(αk)

αk
∀d ∈ Dk, ∀k ∈ K1,

which then implies ⟨∇g(x∗), d⟩ ≥ 0 for all d ∈ D∗, and thus ∇g(x∗) = 0.

Theorem 4.2 can also be adapted to the continuously differentiable case.

Theorem 7.2. Assume that f is bounded below. Assume that Restoration is
not entered after a certain order.
Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that

Ωnr = Rn and that f , ci, i ∈ I, are continuously differentiable at x∗. Let
g be given by (2) or (9). Suppose that Dk converges to a set D∗ containing
positive generators for

G(x∗) = {v ∈ Rn : g′(x∗; v) ≤ 0}
= {v ∈ Rn : ⟨∇ci(x∗), v⟩ ≤ 0 when ci(x∗) = 0}. (10)

Then the projection of ∇f(x∗) onto G(x∗) is zero.

Proof : The proof of Theorem 4.2 shows that for all limit points d of polling
directions, if d ∈ G(x∗), then ⟨∇f(x∗), d⟩ ≥ 0. Thus, for all positive genera-
tors of G(x∗) in D∗, ⟨∇f(x∗), d⟩ ≥ 0, and this implies the result.
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8. Numerical illustration
We illustrate the performance of the merit function algorithm on two test

problems, which were also tested in [2] to assess the progressive barrier
method. In the first problem [1], one minimizes a linear function in a convex
domain:

min
n∑

i=1

xi

s.t.
n∑

i=1

x2i ≤ 3n.

(11)

Two starting points are considered, one feasible (0, . . . , 0)⊤ and the other
infeasible (3, . . . , 3)⊤. There is a single (global) solution (−

√
3, . . . ,−

√
3)⊤,

with optimal value −
√
3n. In the second problem [1], the objective is still

linear but the feasible region is non-convex:

min xn

s.t.
n∑

i=1

(xi − 1)2 ≤ n2 ≤
n∑

i=1

(xi + 1)2.
(12)

Two starting points are also considered, one feasible (n, 0, . . . , 0)⊤ and the
other infeasible (n, 0, . . . , 0,−n)⊤. There is a single (global) solution (1, . . . , 1,
1− n)⊤, with optimal value 1− n.
A simple implementation of Algorithm 2.1 was made in MATLAB with-

out any parameter tuning. The step size updating parameters were set to
α0 = 1, β1 = β2 = 0.5, and γ = 2. The forcing function was set chosen
as ρ(α) = min{10−5, 10−5α2

k}. For the update of the penalty parameter we
picked µ̄ = 1000 and C = 100. No search step was attempted. The measure
of infeasibility was the smoother one given in (9). As for the polling direc-
tions, those were randomly generated each step with norm one. We show
results for |Dk| = n/2, n + 1, 2n. There is no guarantee, even in the cases
|Dk| = n+1, 2n, of having computed a positive spanning set, but one knows
that that is not required in the convergence theory. A study of random
positive spanning sets is out of the scope of this paper.
The results for problems (11)–(12) are depicted in Figures 1–2 for the case

n = 50. One can see that convergence is attained in all the cases and that
the results must be considered good when compared to those reported in [2].
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When starting infeasible, one observes non-monotonicity in the value of the
objective function, while reaching feasibility or within the compromise pro-
moted by the merit function. This effect is even visible while approaching the
minimizer (which lies at the boundary) for problem (11). One also observes
that most of the progress is made within the first 5000 function evaluations,
especially for |Dk| = n/2, which is quite reasonable given the size of the prob-
lem and the lack of modeling. In addition, the number of iterations is much
lower (most of the cases below 500 and never exceeding 2000 for the chosen
budget size) meaning that the parallelization of the algorithm would bring
significant gains in the overall computational time. In all the runs for these
two problems, Restoration was only entered a negligible number of times.
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(b) Starting infeasible.

Figure 1. Two runs of Algorithm 2.1 on problem (11) when
n = 50 (and a budget of 600n is given). The optimal value
is approximately 86.6025. On the left (resp. on the right) the
starting point is feasible (resp. infeasible).

9. Concluding remarks
We have introduced a globalization procedure to include relaxable con-

straints in direct-search methods, allowing starting infeasible with respect
to these constraints. The procedure introduced requires the evaluation of a
merit function for the purposes of measuring success of an iteration. The
penalty parameter present in the merit function does not, thus, play any
explicit role in the computation of the step. It is also important to stress
that no type of boundedness of the penalty parameter was assumed to derive
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(a) Starting feasible.
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(b) Starting infeasible.

Figure 2. Two runs of Algorithm 2.1 on problem (12) when
n = 50 (and a budget of 600n is given). The optimal value is
−49. On the left (resp. on the right) the starting point is feasible
(resp. infeasible).

the global convergence results. We included a scheme to restore feasibil-
ity associated with these constraints (or just to significantly reduce such an
infeasibility) as it seemed to us as a potentially useful tool and helped us
organizing the theory better.
A number of issues remain to be better investigated, in particular how

our approach would rank in a comprehensive numerical comparison of the
existing direct-search type methods for nonlinear constrained derivative-free
optimization. The few numerical tests made until now are relatively promis-
ing and indicated the need to a better understanding of the use of random
directions and random positive spanning sets in direct search, a study which
we are currently undertaking.

Appendix A.Cones and derivatives in the constrained
case

A vector is said tangent to Ωnr at x if it satisfies the following definition.

Definition A.1. A vector d ∈ Rn is said to be a Clarke tangent vector to
the set Ωnr ⊆ Rn at the point x in the closure of Ωnr if for every sequence
{yk} of elements of Ωnr that converges to x and for every sequence of positive
real numbers {tk} converging to zero, there exists a sequence of vectors {wk}
converging to d such that yk + tkwk ∈ Ωnr.
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The Clarke tangent cone to Ωnr at x, denoted by TCl
Ωnr

(x), is then defined
as the set of all Clarke tangent vectors to Ωnr at x. The Clarke tangent cone
generalizes the tangent cone in Nonlinear Programming [18], but one can
think about the latter one for gaining the necessary geometric motivation.
Given x∗ ∈ Ωnr and d ∈ TCl

Ωnr
(x), one is not sure that x + td ∈ Ωnr for

x ∈ Ωnr arbitrarily close to x∗. Thus, for this purpose, one needs to consider
directions in the interior of the Clarke tangent cone. The hypertangent cone
appears then as the interior of the Clarke tangent cone (when such interior
is nonempty, as we assume in this paper).

Definition A.2. A vector d ∈ Rn is said to be a hypertangent vector to the
set Ωnr ⊆ Rn at the point x in Ωnr if there exists a scalar ϵ > 0 such that

y + tw ∈ Ωnr, ∀y ∈ Ωnr ∩B(x; ϵ), w ∈ B(d; ϵ), and 0 < t < ϵ.

The hypertangent cone to Ωnr at x, denoted by TH
Ωnr

(x), is then the set of
all hypertangent vectors to Ωnr at x. The closure of the hypertangent cone
is the Clarke tangent one (when the former is nonempty).
If we assume that h is Lipschitz continuous near x∗, we can define the

Clarke-Jahn generalized derivative along directions d in the hypertangent
cone to Ωnr at x∗,

h◦(x∗; d) = lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t

= lim
ϵ↓0

sup
x ∈ B(x∗; ϵ) ∩ Ωnr

t ∈ (0, ϵ), x+ td ∈ Ωnr

{
h(x+ td)− h(x)

t

}
.

These derivatives are essentially the Clarke generalized directional deriva-
tives [5], generalized by Jahn [11] to the constrained setting. Given a di-
rection v in the tangent cone, one can consider the Clarke-Jahn general-
ized derivative to Ωnr at x∗ as the limit h◦(x∗; v) = limd∈TH

Ωnr
(x∗),d→v h

◦(x∗; d)

(see [1]).
The point x∗ is considered stationary for problem (1) when Ω = Ωnr if

f ◦(x∗; v) ≥ 0, ∀v ∈ TCl
Ωnr

(x∗).
When Ωr ̸= Rn, then the point x∗ is considered stationary for problem (1)

if f ◦(x∗; v) ≥ 0, ∀v ∈ TCl
Ωnr

(x∗) ∩ {d ∈ Rn : g◦(x∗, d) ≤ 0}.
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