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ABSTRACT: In this paper, we investigate the use of DC (Difference of Convex func-
tions) models and algorithms in the solution of nonlinear optimization problems by
trust-region methods. We consider DC local models for the quadratic model of the
objective function used to compute the trust-region step, and apply a primal-dual
subgradient method to the solution of the corresponding trust-region subproblems.

One is able to prove that the resulting scheme is globally convergent for first-order
stationary points. The theory requires the use of exact second-order derivatives but,
in turn, requires a minimum from the solution of the trust-region subproblems for
problems where projecting onto the feasible region is computationally affordable.
In fact, only one projection onto the feasible region is required in the computation
of the trust-region step which seems in general less expensive than the calculation
of the generalized Cauchy point.

The numerical efficiency and robustness of the proposed new scheme when ap-
plied to bound-constrained problems is measured by comparing its performance
against some of the current state-of-the-art nonlinear programming solvers on a
vast collection of test problems.

KEYWORDS: Trust-region methods, DC algorithm, global convergence, bound con-
straints.
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1. Introduction

Consider the constrained nonlinear programming problem
min f(z) subject to x € C, (1)

where C' C IR" is a nonempty closed convex set and f : IR" — IR is a twice
continuously differentiable function. We have in mind a constraint set C'
over which projections are computationally affordable (like a set defined by
bounds on the variables or other simpler settings such as the one considered
in [9]). However, the algorithms and theory proposed in this paper apply to
any closed convex set C'.
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Trust-region methods are widely acknowledged to be among the most
efficient and robust methods for solving nonlinear optimization problems
(see [8, 27]). A trust-region step results from the approximate solution of
the trust-region subproblem, where a quadratic model of f is minimized over
a trust-region ball of pre-specified size, possibly intersected with the feasible
region C' in the constrained case. When constraints of the form x € C are
of polyhedral type, they can be naturally added to the trust-region subprob-
lem (which would then consist of a quadratic program if the norm used in
the trust-region ball is the ¢, one). Most trust-region methods compute the
trust-region step in a way that the decrease produced in the quadratic model
is a fraction of what is obtained by the so-called generalized Cauchy point,
computed by determining the gradient-projected path (see [8, Chapter 12]).

The purpose of this paper is to integrate the DC Algorithm (DCA) [19, 20,
21, 22] in a trust-region framework for the solution of problem (1). DCA is a
primal-dual subgradient method designed for solving a general DC program,
i.e., an optimization problem where one minimizes the difference of convex
functions on the whole space. We apply DCA to the approximate solution
of the trust-region subproblems, exploring specific DC decompositions of the
quadratic models. The overall approach is shown to be globally convergent
to first-order critical points (when the second-order information used in the
quadratic model DC decompositions is exact). We will see that the theory
requires only one DCA iteration to solve the trust-region subproblem, which
amounts to only one projection onto the feasible region and seems in general
less expensive than the computation of the generalized Cauchy point.

Our numerical experiments are focused entirely on the solution of bound-
constrained problems. The numerical tests reported in this paper showed us
that a few (cheap) DCA steps suffice to compute decently accurate trust-
region steps, resulting in an efficient and reasonably robust algorithm. The
minimization of a nonlinear function subject to bounds on the variables has
been the subject of intense previous work, along many possible avenues. Ma-
jor classes of algorithms for bound-constrained problems include the ones
based on: active or e-active set methods (see, e.g., [1, 12, 31| and more re-
cently [17] for a short review on active set methods); trust-region methods
(see, e.g., [6, 7, 13, 23, 25]); interior-point methods (see, e.g., [5, 10, 18]); line-
search projected gradient methods (see, e.g., [2] and the references therein;
see also [3, 26, 34] for a limited memory BFGS method); and filter type
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methods (see [30]). The approach proposed and analyzed in this paper be-
longs to the trust-region class but also shares the flavor of projected gradient
methods.

We organize our contribution in the following way. In Section 2 we provide
some background on the DC Algorithm. Our DC trust-region method is
introduced and analyzed in Section 3. The two following sections are devoted
to present our numerical findings. First we provide in Section 4 practical
details of the implementation of the DC trust-region method, as well as
information on how the numerical experiments were done and compared.
The numerical results are then presented and commented on in Section 5.
Some final conclusions are reported in Section 6.

2. DC programming, algorithm, and models

Let us start by recalling some basic notions from Convex Analysis and
Nonsmooth Calculus which will be needed afterwards (see [4, 28, 29]). In
the sequel, the space IR" is equipped with the Euclidean inner product (-, -).
The closed ball with center z € IR™ and radius € > 0 is denoted by B(z,¢).

For a proper convex function g : IR" — IR U {+00}, the subdifferential
0g(z) of g at a point z in its effective domain ({z € IR" : ¢(z) < +o0}) is
defined by

Jg(z) = {welR": (w,d) <g(z+d)—g(z), VdeIR"}

(by convention dg(z) = @ if z is not in the effective domain of g).

We denote by xco(x) the indicator function of C, that is, yo(z) = 0 if
x € C, otherwise y¢o(x) = +00. For a nonempty closed subset C' of IR", the
normal cone of C' at x € C is denoted by N(C,x) and defined by

N(C,z) = Ixc(r) = {uelR": (u,y—z) <0, YyeC}.

The normal cone is the polar of the tangent cone.
Next, we briefly review the underlying principles of DC Programming and
of the DC Algorithm. A DC program is of the form

inf {g(2) — h(z) : z € R"}, (2)

where g and h are lower semicontinuous proper convex functions in IR". The
dual of this DC program is defined as

inf {h*(w) — ¢*(w) : w € IR, (3)
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where ¢* is the conjugate function of g,

g (w) = sup{(z,w) —g(z): z € IR"}.

The DC Algorithm (DCA) is based on local optimality and DC duality, and
has been introduced by Pham Dinh Tao in 1986 and extensively developed
by Le Thi Hoai An and Pham Dinh Tao since 1994 (see [19, 20, 21, 22],
and the references therein), being successfully applied to a number of classes
of problems, including large-scale instances. DCA constructs two sequences
{z!} and {w'} (candidates for being primal and dual solutions, respectively)
which are improved at each iteration (and thus the sequences {g(z') — h(w')}
and {h*(w') — g*(w')} are decreasing), in an appropriate way such that their
corresponding limit points 2* and w™ satisfy local optimality conditions.

Algorithm 2.1 (DC Algorithm (DCA)).
Initialization Choose z' € IR".

For [=0,1,...
(1) Compute w! € Oh(2").
(2) Compute 21 € 9g*(w'), i.e., 2! is a solution of the convex
program

min{g(z) — (z,w") : z € R"}.

If some stopping criterion is met, then stop, otherwise go to Step
1.
Output Return z/*! and g(2"*!) — h(2"*!) as the best known approxi-
mate solution and objective function value, respectively.

The type of algorithms for solving problem (1) of interest to us in this
paper are based on the iterative minimization of quadratic models on the
intersection of C' with a trust region, and for this purpose we want to use
DC programming. Note that when the set C is defined by bounds on the
variables and we choose the /,.-norm for the trust region, the resulting trust-
region subproblems will consist of minimizing a quadratic function subject
to box constraints.

Given x € IR", we form a Taylor quadratic model of f around this point

me+p,a) = f(2) +(V()) + 5o VA0
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Note that when V?2f is Lipschitz continuous with constant £ > 0 on B(z, A),
one has

|f(z+p) —m(z+px) < LAY (4)
for all p € B(0,A).
The DC decomposition of m(z + p, x) of most interest to us is
m(z +p,z) = my(z +p,z) — mp(x + p, ),

where

Pa Pa
myla+p.a) = ZlplApp) ad maatpr) = Zlpl-mle+p.a),

pr = |[V*m(z + p,2)|| = |[V2f(2)]|, and D = (C — {z}) N B(0,A) is the
intersection of C' (shifted by z) with the trust region B(0, A).

3. The DC trust-region method

At the iteration k, a step pi is computed by approximately solving the
trust-region subproblem

min m(xy + p, ;) subject to p € Dy = (C —{x}) N BO0,A;), (5)
using the DCA (Algorithm 2.1) and the DC decomposition

Px Px
mi@e+p.a) = (ZEIpI?+ Xo,0) = (BEIpI2 = mlwe+p.20))

with p,, = |[V2f(zr)| + €, where € is a small positive quantity added to
guarantee that p,, stays uniformly bounded away from zero.

The following algorithm summarizes our trust-region method using DCA
for the trust-region subproblem minimization. The notation Py (z) denotes
the projection of z onto W, when well defined.

Algorithm 3.1 (DC trust-region algorithm).

Step O (initialization):

Choose an initial point xy € C' and an initial trust-region radius Ay > 0.
Select a positive integer ly. Choose constants ny, v1, 72 € (0,1). Start with
k=0 and set p_1 = 0.

Step 1 (step calculation using DCA for subproblem):
Obtain py, with ||pr|]| < Ag, by using DCA to approximately solve the trust-
region subproblem (5), as follows:
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Set pp = Pp, (Pk-1)-
Forl=0,1,...,[p—1
(1) Compute ¢.. = py,pl. — Vm(zy + pl, z1).
(2) Set pgjl = PDk<qll§/pIk)'
Set p. = péf.
Step 2 (acceptance of trial point):
Compute f(xy + pir) and define

flon) — flar + pr)

m(xy, x) — m(x, + pr, Tk)

T —

If 7. > m, then xy11 = ) + pr. Otherwise define xyp 1 = x.

Step 3 (trust-region radius update):
If T, > m then Agyq € [Ag, +00), otherwise Apiq € [y1 Ak, V2 A].

Increment k by 1 and go to Step 1.

Note that the minimal effort per iteration in this algorithm (when Iy = 1)
amounts to one projection, and this seems to be less expensive than the
computation of a generalized Cauchy point (see [8, Algorithm 12.2.2]) for
trust-region methods when applied to general convex constrained problems.

Algorithm 3.1 (when p} = 0 and [y = 1) becomes closer to DCA (when
this latter one is applied to a smooth problem of the form (1)), since we have
Vm(zy, xr) = Vf(xr) and thus we are essentially using something closer to
a global DC decomposition for the original problem (1) rather than for the
trust-region subproblem (5). However note that in such a decomposition the
choice for p,, would be local (as it is in our case), and thus not rendering a
true global DC decomposition.

We are now in a position to show global convergence to first-order station-
ary point.

Theorem 3.1. Let {x}} be a sequence generated by Algorithm 3.1 applied to
a twice continuously differentiable function f for which NV?f is Lipschitz con-
tinuous on C'. Then the sequence { f(xy)} is decreasing and imy_,+~ ||Tp11 —
xi|| = 0. Moreover, every limit point o of the sequence {xy} is a first-
order critical point of problem (1), that is, 0 € Vf(xx) + N(C,2), where
N(C,x) stands for the normal cone of the convex set C' at the point ..
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Proof: Consider first the convex quadratic function in p € IR™ given by

mp(xp + p,xK) = ’%Hpﬂ2 — m(zr + p,xx). Hence, for every k and | =
0,1,...,lp— 1, one has

(g pe = o) < mnar + ) — ma(en + p, ), (6)
where ¢t = Vmy,(z), + 0L, 2x) = pa,pl — Vm(zy + pl, 7). On the other hand,
since péjl Dk(Q]lf/pIk)7

pu (k) ey — PR D — PETY <0,

which is equivalent to

p p p
(g Pk — D) S%HPZHQ xkllpl“Hz kapk PP, (7)

From inequalities (6) and (7), one then obtains

+1

0
m(xy + pl, xr) — m(xy, + pi ) > kapk P

and therefore
() — m(ze+prar) = S (e + phan) — man + pi )]

> 30 o —p P = gl

(8)
Now denote by x the Lipschitz constant of V2f on C. By the definition of
Tk, one has

‘Tk: _ 1‘ _ m(xk +p/€7xk) — f(xk +p/€) < (H/6)Hpk”3 _ Klo H ”
m(Tp, Tk) — m(zk +pr,2k) | T padlpel?/2l0 3pa,
Thus, since p,, > € and ||pg|| < Ay, if
Ak S 3<1 _771)67
/Ql()

then the iteration is successful. Omne can conclude that there is an infin-
ity of successful iterations. Moreover, from the trust-region update of the
algorithm, one has that

1 —
AL > Apin = 3( M)y for all k.

Klo

Therefore, 7. > 1, when k is sufficiently large, and ignoring the unsuccessful

iterations where there is no displacement one obtains

Pz,
21y

f(xzr) = f(xr1) = 7 [m(zr, 2r) — m(@gpy, 2)] > @, — T [”. (9)
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Consequently, f(z)) is a monotonically decreasing sequence. Since f is
bounded from below, f(xj) converges. As aresult one has that limy_, o ||€541
—.%'k” = 0.

Let x be a limit point of the sequence {xz\}, say, lim; , o xp, = T for
some subsequence {xy,} of {z}}. For all i = 1,2,... there exists an index
J; = 1 such that

Lk = Thi+1 = 70 = Thitji-1 # Lhitji-
One knows from (9) that lim;_, |\p§§i+ji_1|\ = ||pk,+j,—1l| = 0, and by using
this and taking limits in (8), we obtain lim; ;o [|p}. ;|| = 0. Since

Thytji—1 T p}%ﬂ-i_l
€ PenBles sy 180151 @hitii1 = Vi (@htg1) /o
—V2f($ki)]9/1ﬁ+ji—1/ﬂxki) 3
we have
(=Y F @)/ o, = V2 F @ )Pk g1/ Py = Phytji-15 T = Ty = Phygjo1) < 0

for all © € C N B(xy,, Ay, +j,—1). By taking limits and recalling that Ay >
Apmin > 0 for all k, one obtains the desired conclusion —V f(zs) € N(C, 2).

|
Interestingly, it is possible to replace 7. by
21 —

P || Px][2
and obtain a similar result.

Theorem 3.2. Let {x1} be a sequence generated by Algorithm 3.1, under the
modification (10), applied to a twice continuously differentiable function f
for which V2 f is Lipschitz continuous on C. Then the sequence {f(xy)} is
decreasing and limy_, o ||Tp11 — x| = 0. Moreover, every limit point o
of the sequence {xy} is a first-order critical point of problem (P), that is,
0 € Vf(re)+ N(C,2s), where N(C,xo) stands for the normal cone of the
conver set C' at the point x.

Proof: From (8) one obtains that 7' > n implies 7, > 7. Thus, if an
iteration is successful for Algorithm 3.1 so it is for the modified version of the
algorithm. The rest of the proof is exactly as in the one of Theorem 3.1. =
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The search direction p; could have also been computed by solving approx-
imately the trust-region subproblem (5) using the DCA (Algorithm 2.1) and
the DC decomposition

Px Pz
ma+pon) = (m(an+p) + 541l + Ao, () = (5511p1?)

with p,, = max{—Anw(V2f(z1)),0} + €, where Ay (+) denotes the smallest
eigenvalue of a matrix. We would have also obtained the same convergent
result for this decomposition as the one described in Theorem 3.1. However,
each internal iteration of DCA would have then required the solution of an
auxiliary problem of the form

min m(z, +p,ae) + SEpl* = (p.af)  subject to p € Dy,

which would have been more expensive when compared to what happens in
Algorithm 3.1.

4. Implementation issues, test problems, and profiles

4.1. Implementation issues. To provide an assessment of the proposed
methodology we developed an implementation for Algorithm 3.1, called TRDC
(Trust Region Difference of Convex). As already mentioned in the intro-
duction, our implementation only addresses bound-constrained problems,
i.e., problems of the form (1) where C = {z € IR" : ¢ < z < u}, with
¢ € (IRU{—-00})" and u € (IR U{+o0})". To make projections onto
(C —A{xr}) N B(0,Ay) fast, see (5), we considered B(0,Ay) defined using
the /.,-norm.

While Algorithm 3.1 requests a positive integer [y (the number of internal
DCA iterations), performing more internal iterations than needed to solve
the trust-region subproblem (5) will lead to inefficiency. Also, considering
pz, = |[V2f(2p)|| + € may also lead to a high number of DCA internal iter-
ations. Therefore, we stop the internal DCA iterations as soon as possible
and consider an adaptive strategy for updating p,,, making it also dependent
on the DCA internal loop counter [. Thus, p,, will be hereafter denoted by
pl. . We start with a smaller value p? (set to 275 (||V2f(zx)|| +€) in our
implementation), and multiply it by a factor of pseetor = 2 in each inner
iteration [, whenever a decrease in the quadratic model objective function is
not achieved and until ||V?f(x;)|| + € is not reached. Since DCA computes a
monotonous decreasing sequence of iterates for the quadratic model, we stop
the approximate solution (5) before [y is achieved (in our implementation
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lo = 300 was considered) if a decrease in the quadratic model is not observed
and pl, has already reached its maximum value of ||V2f(x)|| + € (recall that
theory guarantees a decrease in the DCA quadratic model at iteration [ when
pl. = ||V?f(z)|| + €). We used € = 0.1 in our implementation.

Since problem (1) is considered now of the bound-constrained type, we
stop the external iterations whenever the scaled projected gradient is small
enough, i.e., when

o= Poulp = Vinlox 20 2)lly -, (11)
0.01 max (100, “Vm(xwp»wk)nl) =

or when p is a very small search direction (||p|| < €1, setting ey = 1078).
A run of TRDC is stopped unsuccessfully if it exceeds a maximum num-
ber of external iterations (maxiter), a maximum of total internal DCA it-
erations (maxiter DC'A), or a maximum of objective function evaluations
(maz feval), with maziter DCA = 107, maz feval = 1000, and maxiter =
1000.

To improve numerical performance, we considered instead a scaled objec-
tive function f*, given by f*(z) = (f(z), with

. 100
C‘”mnOWVﬂmm>’

where x is the projection onto the feasible region of the user provided initial
guess (e.g., given by CUTEr [14]). The scaling parameter ( is computed
at the algorithm initialization and kept fixed for the remaining procedure.
When z is not provided, we compute a feasible initial guess in the following
componentwise fashion: the middle value of the bounds when both are finite,
the finite bound when one of the bounds is finite, or 0 whenever the variable
is free.

A final implementation issue is related to the update of the trust-region
radius Ay, described in Step 3 of Algorithm 3.1. We provide the details of
the updating scheme for Ay in the following algorithm.

Trust-region radius update
o If 7, > ns,

— then increase the trust-region radius by setting Ay = min(y3Ag,
1000),
— otherwise, if 7, < n;
* then set Api1 = 1 Ag
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x otherwise if 7, < 19,
- then set Ar 1 = %A,
- otherwise set Ay 1 = Ay.

By taking 0 < <y <m3 <land 0 <7 <7, <1, 73 > 1, this scheme
satisfies the conditions required in Step 3 of Algorithm 3.1. In practice, we
started with Ay = 1 and used n; = 1073, 1y = 0.25, n3 = 0.75, 71 = 0.5,
Yo = 0.5, and 3 = 2.

4.2. Test problems. In order to insure a proper comparison of the im-
plemented solver with state-of-the-art optimization solvers, we decided to
consider the CUTEr [14] test problems collection. From the complete test
set there available, we selected all the unconstrained and bound-constrained
problems, resulting in the 271 test problems reported in Table 1.

4.3. Profiles. Using a large number of test problems demands for an ag-
gregated way to show the numerical results. For a better visualization and
brevity in the presentation of the numerical results, we are providing perfor-
mance profiles obtained by using the procedure described in [11]. We consider
also the modification made in [32] for the case where the metric used for per-
formance does not always return a strictly positive value, as required in the
original performance profiles. The major advantage of performance profiles is
that they can be presented in one figure, by plotting, for the different solvers,
a cumulative distribution function v(7) representing a performance ratio.

The performance ratio is defined by setting r,, = m, p € P,
s € §, where P is the test set, S is the set of solvers, and ¢, is a measure
of performance of the application of solver s on test problem p. Then, one
defines vy(m) = ﬁsize{p € P:rys <7}, where |P| is the number of test
problems. The value of v4(1) is then the percentage of times that the solver s
wins over the remaining ones (or ties the best solver). If we are only interested
in determining which solver is the best (in the sense that wins the most), we
compare the values of v,(1) for all the solvers. At the other end, vs(7m) for
large values of 7 indicates the percentage of problems solved successfully by
solver s, and thus serves as a measure of robustness.

Clearly, when for a certain problem p € P one has min{¢,, : z € S} <0,
the value r, ; becomes meaningless or undefined for all s € S. We consid-
ered two possibilities to overcome this problem in our numerical results. One
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Problem n  Problem n  Problem n Problem n  Problem n
BQP1VAR 1 KOEBHELB 3 PALMERS5A 8 EXPLIN 1200 SBRYBND 5000
AKIVA 2 MEYER3 3 PALMERSD 8 EXPLIN2 1200 SCHMVETT 5000
BEALE 2 PFITILS 3 PALMERSE 8 EXPQUAD 1200 SCOSINE 5000
BRKMCC 2 PFIT2LS 3 PALMER6C 8 LINVERSE 1999 SINQUAD 5000
BROWNBS 2 PFIT3LS 3 PALMER6E 8 EDENSCH 2000 SPARSINE 5000
CAMEL6 2 PFIT4LS 3 PALMER7C 8 RAYBENDL 2050 SROSENBR 5000
CLIFF 2 WEEDS 3 PALMERT7E 8 RAYBENDS 2050 TESTQUAD 5000
CUBE 2 YFIT 3 PALMERSC 8 DIXMAANA 3000 TOINTGSS 5000
DENSCHNA 2 YFITU 3 PALMERSE 8 DIXMAANB 3000 TQUARTIC 5000
DENSCHNB 2 ALLINIT 4 S368 8 DIXMAANC 3000 TRIDIA 5000
DENSCHNC 2 ALLINITU 4 VIBRBEAM 8 DIXMAAND 3000 SCONDiLS 5002
DENSCHNF 2 BROWNDEN 4 PALMERSB 9 DIXMAANE 3000 BRATU1D 5003
DJTL 2 HATFLDA 4 SPARSQUR 9 DIXMAANF 3000 CLPLATEA 5041
EXPFIT 2 HATFLDB 4 SPECAN 9 DIXMAANG 3000 CLPLATEB 5041
HAIRY 2 HIMMELBF 4 HILBERTB 10 DIXMAANH 3000 CLPLATEC 5041
HILBERTA 2 HS38 4 HS110 10 DIXMAANI 3000 0DC 5184
HIMMELBB 2 KOWOSB 4 (QSCIPATH 10 DIXMAANJ 3000 SSC 5184
HIMMELBG 2 PALMER1 4 (0SBORNEB 11 DIXMAANL 3000 MINSURFO 5306
HIMMELBH 2 PALMERIB 4 WATSON 12 CHAINWOO 4000 NOBNDTOR 5476
HIMMELP1 2 PALMER2 4 DIXMAANK 15 WO0O0DS 4000 TORSION1 5476
HS1 2 PALMER2B 4 HATFLDC 25 DRCAVILQ 4489 TORSION2 5476
HS2 2 PALMER3 4 3PK 30 DRCAV2LQ 4489 TORSION3 5476
HS3 2 PALMER3B 4 BQPGABIM 50 DRCAV3LQ 4489 TORSION4 5476
HS3MOD 2 PALMER4 4 BQPGASIM 50 SPMSRTLS 4999 TORSION5 5476
HS4 2 PALMER4B 4 CHNROSNB 50 ARWHEAD 5000 TORSION6 5476
HS5 2 PSPDOC 4 ERRINROS 50 BDEXP 5000 TORSIONA 5476
HUMPS 2 HS45 5 TOINTGOR 50 BDQRTIC 5000 TORSIONB 5476
JENSMP 2 O0SBORNEA 5 TOINTPSP 50 BIGGSB1 5000 TORSIONC 5476
LOGHAIRY 2 BIGGS3 6 TOINTQOR 50 BROYDN7D 5000 TORSIOND 5476
LOGROS 2 BIGGS5 6 VAREIGVL 50 BRYBND 5000 TORSIONE 5476
MARATOSB 2 BIGGS6 6 DECONVB 61 CHENHARK 5000 TORSIONF 5476
MDHOLE 2 HART6 6 DECONVU 61 CRAGGLVY 5000 FMINSRF2 5625
MEXHAT 2 HEART6LS 6 MINSURF 64 DQDRTIC 5000 LMINSURF 5625
ROSENBR 2 PALMER1A 6 HYDC20LS 99 DQRTIC 5000 NLMSURF 5625
S308 2 PALMER2A 6 CHEBYQAD 100 ENGVAL1 5000 GRIDGENA 6218
SIM2BQP 2 PALMER3A 6 MANCINO 100 FLETCBV2 5000 COSINE 10000
SIMBQP 2 PALMER4A 6 SENSORS 100 FLETCBV3 5000 CURLY10 10000
SINEVAL 2 PALMERSC 6 ARGLINA 200 FLETCHBV 5000 CURLY20 10000
SISSER 2 PALMER6A 6 ARGLINB 200 FREUROTH 5000 CVXBQP1 10000
SNAIL 2 PALMER7A 6 ARGLINC 200 GENHUMPS 5000 DIXON3DQ 10000
ZANGWIL2 2 PALMERBA 6 BROWNAL 200 INDEF 5000 JNLBRNG1 10000
BARD 3 PALMERID 7 PENALTY2 200 LIARWHD 5000 JNLBRNG2 10000
BOX2 3 AIRCRFTB 8 VARDIM 200 MCCORMCK 5000 JNLBRNGA 10000
BOX3 3 HEART8LS 8 HADAMALS 400 MOREBV 5000 JNLBRNGB 10000
DENSCHND 3 MAXLIKA 8 GENROSE 500 NONCVXU2 5000 NCVXBQP1 10000
DENSCHNE 3 O0OSLBQP 8 PROBPENL 500 NONCVXUN 5000 NCVXBQP2 10000
EG1 3 PALMERIC 8 QR3DLS 610 NONDIA 5000 NCVXBQP3 10000
ENGVAL2 3 PALMERIE 8 EG2 1000 NONDQUAR 5000 OBSTCLAE 10000
GROWTHLS 3 PALMER2C 8 EXTROSNB 1000 NONSCOMP 5000 OBSTCLAL 10000
GULF 3 PALMER2E 8 FLETCHCR 1000 PENTDI 5000 OBSTCLBL 10000
HATFLDD 3 PALMER3C 8 PENALTY1 1000 POWELLSG 5000 OBSTCLBM 10000
HATFLDE 3 PALMER3E 8 SINEALI 1000 QRTQUAD 5000 OBSTCLBU 10000
HATFLDFL 3 PALMER4C 8 MSQRTALS 1024 QUARTC 5000 SCURLY10 10000
HELIX 3 PALMER4E 8 MSQRTBLS 1024 QUDLIN 5000 SCURLY20 10000
HS25 3

TABLE 1. CUTEr test problems used in the numerical results.
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is to simply exclude all problems where such a situation happens, reduc-
ing the number of test problems to be included and then using the original
performance profiles [11]. The second one is to keep all problems and to
choose a way to deal with problems where ¢,, < 0 happens for at least
one solver s. We considered 7,5 = t,s + 1 — min{t,, : 2 € S} whenever
min{t, . : z € S} < 0.0001 to overcome the possibility of 7, s being meaning-
less or undefined (see [32] for further details).

5. Numerical results

Since our proposed method uses second order derivatives we decided to
compare it against TRON [24, 25], IPOPT [33], and Lancelot B [15] (available
under the GALAHAD library [16]), which represent well the state-of-the-art
optimization solvers where second order derivatives are used. TRON was spe-
cially developed to address bound-constrained optimization problems, while
IPOPT and Lancelot B can handle more general constrained optimization
problems.

Since the computational effort taken per iteration of TRON, IPOPT, Lancelot
B, and TRDC is substantial different, we chose to compare the overall CPU
time taken by the solvers. TRON and Lancelot B require as a stopping criteria
the norm of the projected gradient (the numerator in (11)) to be smaller than
€to1, While TPOPT uses the maximum between a scaled norm of the gradient of
the Lagrangian and the complementarity residual. Since all stopping criteria
used by the considered solvers are similar, one can consider their successful
exit flags as an indication of whether a problem has been solved (up to a
requested accuracy).

The numerical experiments were made in an Intel(R) Core(TM) Duo CPU
computer, running at 2.66GHz, under a Linux operating system, using re-
cent versions for all the solvers (TRON version 1.2, IPOPT version 3.10.1, and
GALAHAD version dated of February 2011). The same exact CUTEr collec-
tion (version date CUTEr: Mon Jan 8 15:36:20 EST 2007) was used by
the four solvers, and for each problem the same CUTEr initial point was
considered. For each problem, a maximum running time of 3600 seconds was
imposed to all solvers (i.e., a failure is declared for a solver on a problem if
it is unable to provide an answer in less than 3600 seconds). The consid-
ered CPU time corresponds to the CPU time taken by the solver (excluding
the CUTEr setup time) measured in seconds with two decimal places. Due
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Problems with n<2000
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FIGURE 1. Performance profiles [32] for CPU time used by TRON,
IPOPT, Lancelot B, and TRDC. Problems with n < 2000.

to this limitation in measuring the solver CPU time, one can easily obtain
tp.s = 0 for many ‘easy’ problems.

A first set of performance profiles is provided in Figures 1 and 2, where all
the test problems were considered and then the performance profiles from [32]
were used. For a matter of visibility around vs(1) and along v4(m) for large
values of 7, we considered two subfigures in each figure. These profiles were
depicted trusting the exit flag produced by each solver in order to check if
success was attained on solving a given problem. From these performance
profiles one can conclude that the TRDC solver is competitive in both efficiency
and robustness, when compared to the other solvers, specially for problems
with less than 2000 variables.

A closer look at these numerical results reveals that for problems FLETCBV3,
FLETCHBV, INDEF, QRTQUAD, SCURLY10, and SCURLY20 all the solvers were un-
able to converge. These problems seem to have an unbounded objective
function and therefore were removed in the next round of profiles. Addition-
ally, we list, on Table 2, the problems where a solver reported an unsuccessful
exitflag, but the final objective function value is close to the one reported
by the other solvers. For these problems we will now consider the run to
be successful and use the corresponding CPU time. We point out that TRON
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All problems
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FIGURE 2. Performance profiles [32] for CPU time used by TRON,
IPOPT, Lancelot B, and TRDC. All problems.

IPOpt Lancelot B TRDC

0DC ARGLINB CURLY10

OSCIPATH ARGLINC CURLY20

PALMERSA DJTL NONCVXU2

SPARSQUR 0OSCIPATH NONCVXUN
PALMERSA

TABLE 2. Test problems considered as successfully solved despite
an unsuccessful exit flag.

always reports a successful exit flag (equal to zero), i.e., the only unsuccessful
cases are due to exceeding the 3600 seconds running time limit.

The new performance profiles for the restricted test set are depicted in
Figures 3 and 4. The relative position of each solver is similar, but these
new profiles reassure the robustness of the TRDC solver, as it was able to
solve more than 90% of the problems. Such a robustness is further confirmed
as for problems DIXON3DQ, LOGHAIRY, PALMER6C, PALMERSE, PENALTY1, and
SCOND1LS, the TRDC solver reported a failure, but the norm of the scaled
projected gradient (11) is close to zero (lower than 107%), indicating the
proximity of the final obtained point to the problem solution.



16 LE THI HOAI AN, HUYNH VAN NGAI, PHAM DINH TAO, A. I. F. VAZ AND L. N. VICENTE

Problems with n<2000 (restricted test set)
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FIGURE 3. Performance profiles [32] for CPU time used by
IPOPT, Lancelot B, and TRDC. Restricted test set, problems with

n < 2000.
All problems (restricted test set)
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FIGURE 4. Performance profiles [32] for CPU time used by
IPOPT, Lancelot B, and TRDC. All problems in the restricted test
set.
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We have also built other performance profiles, namely for the cases where
the considered problems had dimensions n < 10, 50, 100, 500, 1000, 3000, 5000.
We also plotted the performance profiles for each type of constraints avail-
able in the problems: unconstrained problems (¢ = (—o0)" and u = (400)"),
bound-constrained problems with at least one finite bound and one infinite
bound, and bound-constrained problems with ¢ € IR"™ and v € IR"™. Since
we observed no major differences between these performance profiles and the
ones reported before, we decided not to present them here for sake of brevity.

For a matter of completeness we also report our numerical findings using the
original performance profiles [11]. In order to be able to plot these profiles we
exclude from the test set all ‘easy’ problems for which min{t,,: 2z € S} =0
(i.e., all problems where at least one solver terminated using ¢, ; = 0). This
technique is the same as the one used in [17], where numerical results were
restricted to problems with a running time of the fastest solver exceeding .01
seconds. These new performance profiles (for the restricted test set previously
described) are presented in Figures 5 and 6. The number of problems is
reduced from 167 to 39 (when n < 2000) and from 265 to 133 (all dimensions
considered). While these new performance profiles are in accordance with
the original ones in [11], the number of problems considered is considerably
smaller and the best solvers are likely to be in disadvantage since problems
where a solver attains ¢, ; = 0 are removed from the analysis (disregardless
of other solvers having or not ¢, ; > 0).

From the depicted profiles for n < 2000, one can observe that Lancelot B
is the most efficient solver, while TRON and IPOPT are the most robust. TRDC
presents a similar performance in terms of efficiency and attains a robustness
of about 85%. When all the problems in the restricted test set are considered
we observe a slight disadvantage for the TRDC solver.

6. Conclusions

A trust-region type method has been proposed, analyzed, and implemented,
involving a new minimum requirement, from the solution of the trust-region
subproblems, for achieving global convergence to first-order stationary points.
Such a requirement, different from Cauchy or generalized Cauchy points, is
related to the application of a first step of a primal-dual subgradient method
(the DC algorithm), and it necessarily involves the knowledge of second-
order derivatives, although it only requires one projection onto the feasible
set. One is able to prove, in a relatively short and clean argument, that all
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Problems with n<2000 (restricted test set, 'easy’ removed)
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FIGURE 5. Performance profiles [11] for CPU time used by
IPOPT, Lancelot B, and TRDC. Restricted test set, problems with
n < 2000 except the ‘easy’ ones.
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FIGURE 6. Performance profiles [11] for CPU time used by
IPOPT, Lancelot B, and TRDC. All problems in the restricted test
set, except the ‘easy’ ones.
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limit points of the sequence of iterates are first-order critical. The numer-
ical experiments reported show that the new approach is competitive with
state-of-the-art solvers for problems with bounds on the variables.

References

1]

[11]
[12]
[13]
[14]

[15]

D. P. Bertesekas. Projected Newton methods for optimization problems with simple con-
straints. SIAM J. Control Optim., 20:221-246, 1982.

E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient
methods on convex sets. SIAM J. Optim., 10:1196-1211, 2000.

R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16:1190-1208, 1995.

F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, New
York, 1983. Reissued by SIAM, Philadelphia, 1990.

T. F. Coleman and Y. Li. An interior trust region approach for nonlinear minimization subject
to bounds. SIAM J. Optim., 6:418-445, 1996.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM J. Numer. Anal., 25:433-460, 1988.
A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Correction to the paper on global convergence
of a class of trust region algorithms for optimization with simple bounds. SIAM J. Numer.
Anal., 26:764-767, 1989.

A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series on
Optimization. STAM, Philadelphia, 2000.

Y.-H. Dai. Fast algorithms for projection on an ellipsoid. SIAM J. Optim., 16:986-1006, 2006.
J. E. Dennis and L. N. Vicente. Trust-region interior-point algorithms for minimization prob-
lems with simple bounds. In H. Fisher, B. Riedmiiller, and S. Schéffer, editors, Applied Math-
ematics and Parallel Computing, pages 97-107. Physica-Verlag, Springer-Verlag, Berlin, 1996.
Festschrift for Klaus Ritter.

E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201-213, 2002.

F. Facchinei, J. Judice, and J. Soares. An active set Newton’s algorithm for large-scale non-
linear programs with box constraints. SIAM J. Optim., 8:158-186, 1998.

A. Friedlander, J. M. Martinez, and S. A. Santos. A new trust region algorithm for bound
constrained minimization. Appl. Math. Optim., 30:235-266, 1994.

N. I. M. Gould, D. Orban, and Ph. L. Toint. Contrained and unconstrainted test environement,
revisited. http://cuter.rl.ac.uk/cuter-www.

N. I. M. Gould, D. Orban, and Ph. L. Toint. Results from a numerical evaluation of
LANCELOT B. Internal Report 2002-1, Numerical Analysis Group, Rutherford Appleton
Laboratory, Chilton, England, 2002.

N. I. M. Gould, D. Orban, and Ph. L. Toint. GALAHAD, a library of thread-safe Fortran
90 packages for large-scale nonlinear optimization. ACM Trans. Math. Software, 29:353-372,
2004.

W. W. Hager and H. Zhang. A new active set algorithm for box constrained optimization.
SIAM J. Optim., 17:526-557, 2006.

M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Superlinear and quadratic convergence of
affine-scaling interior-point Newton methods for problems with simple bounds without strict
complementarity assumption. Math. Program., 86:615-635, 1999.



20 LE THI HOAI AN, HUYNH VAN NGAI, PHAM DINH TAO, A. 1. F. VAZ AND L. N. VICENTE

[19] L. T. Hoai An and P. Dinh Tao. Convex analysis approach to D.C. programming: Theory,
algorithms and applications. Acta Math. Vietnam., 22:289-355, 1997.

[20] L. T. Hoai An and P. Dinh Tao. A D.C. optimization algorithm for solving the trust-region
subproblem. STAM J. Optim., 8:476-505, 1998.

[21] L. T. Hoai An and P. Dinh Tao. Large scale molecular optimization from distance matrices
by a D.C. optimization approach. SIAM J. Optim., 14:77-114, 2003.

[22] L. T. Hoai An and P. Dinh Tao. The DC (difference of convex functions) programming and
DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper.
Res., 133:23-46, 2005.

[23] M. Lescrenier. Convergence of trust region algorithms for optimization with bounds when
strict complementarity does not hold. SIAM J. Numer. Anal., 28:476-495, 1991.

[24] C.-J. Lin and J. J. Moré. TRON, a trust region Newton method for the solution of large
bound-constrained optimization problems. http://www.mcs.anl.gov/~more/tron/.

[25] C.-J.Lin and J. J. Moré. Newton’s method for large bound-constrained optimization problems.
SIAM J. Optim., 9:1100-1127, 1999.

[26] J. L. Morales and J. Nocedal. Remark on “Algorithm 778. L-BFGS-B, Fortran subroutines for
Large-Scale bound constrained optimization”. ACM Trans. Math. Software, 38:7:1-7:4, 2011.

[27] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition,
2006.

[28] R. T. Rockafellar. Convexr Analysis. Princeton University Press, Princeton, 1970.

[29] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin, 1997, third printing
in 2009.

[30] C. Sainvitu and Ph. L. Toint. A filter-trust-region method for simple-bound constrained opti-
mization. Optim. Methods Softw., 22:835-848, 2007.

[31] A. Schwartz and E. Polak. Family of projected descent methods for optimization problems
with simple bounds. J. Optim. Theory Appl., 92:1-31, 1997.

[32] A. I F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound constrained
global optimization. J. Global Optim., 39:197-219, 2007.

[33] A. Wéchter and L. T. Biegler. On the implementation of a primal-dual interior point filter line
search algorithm for large-scale nonlinear programming. Math. Program., 106:25-57, 2006.

[34] C. Zhu, R.H. Byrd, P. Lu, and J. Nocedal. Algorithm 778. L-BFGS-B, Fortran subroutines for
Large-Scale bound constrained optimization. ACM Trans. Math. Software, 23:550-560, 1997.

LE Tur Hoar AN
LABORATORY OF THEORETICAL AND APPLIED COMPUTER SCIENCE (LITA EA 3097), PAuL VER-
LAINE UNIVERSITY, METZ, ILE DU SAULCY, 57045 METZ, FRANCE (lethi@univ-metz.fr).

HuvyNH VAN NGAI
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QUYNHON, 170 AN DUONG VUONG, QUY NHON,
VIETNAM.

PaaM DiNH TAO
LABORATORY OF MATHEMATICS, NATIONAL INSTITUTE FOR APPLIED SCIENCES-ROUEN, BP &8, F 76
131 MONT SAINT AIGNAN CEDEX, FRANCE.

A. 1. F. Vaz



GLOBALLY CONVERGENT DC TRUST-REGION METHODS 21

ALGORITMI RESEARCH CENTER, DEPARTMENT OF SYSTEMS AND PRODUCTION, ALGORITMI RE-
SEARCH CENTER, UNIVERSITY OF MINHO, CAMPUS DE GUALTAR, 4710-057, PORTUGAL (aivaz
@dps.uminho.pt).

L. N. VICENTE
CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-501 COIMBRA, PORTUGAL
(1nv@mat.uc.pt).



