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Abstract: In this paper we prove that the broad class of direct-search methods
of directional type, based on imposing sufficient decrease to accept new iterates,
exhibits the same global rate or worst case complexity bound of the gradient method
for the unconstrained minimization of a convex and smooth function. More precisely,
it will be shown that the number of iterations needed to reduce the norm of the
gradient of the objective function below a certain threshold is at most proportional
to the inverse of the threshold.

Our result is slightly less general than Nesterov’s for the gradient method, in
the sense that we require more than just convexity of the objective function and
boundedness of the initial iterate to the solution set. Our additional condition
can, however, be satisfied in several scenarios, such as strong or uniform convexity,
boundedness of the initial level set, or boundedness of the distance from the initial
contour set to the solution set. It is a mild price to pay for deriving such a global
rate for zero-order methods.
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1. Introduction
In this paper we focus on directional direct-search methods applied to the

minimization of a real-valued, convex, and continuously differentiable objective
function f , without constraints,

min
x∈Rn

f(x). (1)

In direct-search methods, the objective function is evaluated, at each itera-
tion, at a finite number of points. No derivatives are required. The action of
declaring an iteration successful (moving into a point of lower objective func-
tion value) or unsuccessful (staying at the same iterate) is based on objective
function value comparisons. Some of these methods are directional in the sense
of moving along predefined directions along which the objective function will

Date: April 8, 2013.
Support for this work was provided by FCT under grants PTDC/MAT/116736/2010 and PEst-

C/MAT/UI0324/2011 and scholarship SFRH/BD/51168/2010.

1



2 M. DODANGEH AND L. N. VICENTE

eventually decrease for sufficiently small step sizes (see, e.g., [4, Chapter 9]).
Those of simplicial type (see, e.g., [4, Chapter 8]), such as the Nelder-Mead
method, are not considered here. There are essentially two ways of globalizing
direct-search methods (of directional type), meaning making them convergent
to stationary points independently of the starting point: (i) by integer lattices,
insisting on generating points in grids or meshes (which refine only with the
decrease of the step size), or (ii) by imposing a sufficient decrease condition,
involving the size of the steps, on the acceptance of new iterates. Although we
derive our results for the latter strategy, we recall that both share the essentials
of these class of direct-search methods: the directional feature for the displace-
ments, and, as in any other direct-search technique, the fact that decisions in
each iteration are taken solely by comparison of objective function values.
The analyzes of global convergence of algorithms can be complemented or

refined by deriving worst case complexity bounds for the number of iterations
or number of function evaluations, an information which becomes valuable in
many instances. Such bounds are also called global rates since no assumption on
the starting point is made. In terms of the derivation of worst case complexity
bounds, Nesterov [10, Page 29] first showed that the steepest descent or gradient
method for unconstrained optimization takes at most O(ε−2) iterations (or
gradient evaluations) to drive the norm of the gradient of the objective function
below ε ∈ (0, 1). Such a bound or rate has been proved sharp or tight by
Cartis, Gould, and Toint [2]. There has been quite an amount of research on
global rates for several other classes of algorithms in the non-convex case (see,
e.g., [1, 8, 12]).
Derivative-free or zero-order methods have also been recently analyzed with

the purpose of establishing their global rates. Vicente [15] has shown a global
rate of O(ε−2) for the number of iterations of direct-search methods (of di-
rectional type, when imposing sufficient decrease, and applied to a smooth,
possibly non-convex function), which translates to O(n2ε−2) in terms of the
number of function evaluations. Cartis, Gould, and Toint [3] have derived a
worst case complexity bound of O(n2ε3/2) for their adaptive cubic overesti-
mation algorithm when using finite differences to approximate derivatives. In
the non-smooth case, using smoothing techniques, both Garmanjani and Vi-
cente [7] and Nesterov [11], established a global rate of approximately O(ε−3)
iterations (and O(n3ε−3) function evaluations) for their for zero-order methods,
where the threshold ε refers now to the gradient of a smoothed version of the
original function. Nesterov [11] random Gaussian approach sees its worst case
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cost in terms of function evaluations reduced to O(n2ε−2) in the non-convex
smooth case and to O(n2ε−1) in the convex smooth case.
Nesterov [10, Section 2.1.5] has also shown that the gradient method achie-

ves an improved global rate of O(ε−1) if the objective function is convex. It is
thus natural to ask if one can achieve a similar rate for zero-order methods, and
direct search offers a simple and instructive setting to answer such a question.
In this paper, we will show that direct search can indeed achieve a global rate
of O(ε−1) under the presence of convexity. The derived worst case complexity
bound measures the maximum number of iterations required to find a point
where norm of the gradient of the objective function is below ε, and, once again,
it is proved for directional direct-search methods when a sufficient decrease
condition based on the size of the steps is imposed to accept new iterates.
As in the non-convex case, the corresponding maximum number of objective
function evaluations becomes O(n2ε−1).
The structure of the paper is as follows. In Section 2, we briefly comment

on the worst case complexity (WCC) bounds or global rates of the gradient or
steepest descent method. In Section 3, we describe the class of direct search
under consideration and provide the known results (global asymptotics and
global rates) for the smooth (continuously differentiable) and non-convex case.
Then, in Section 4, we derive the WCC bound of O(ε−1) iterations (O(n2ε−1)
function evaluations) for such direct-search methods in the also smooth but
now convex case.
This result is derived under a bound R on the distance of all unsuccessful it-

erates to the solution set, being the WCC bounds actually of the type O(Rε−1)
or O(n2Rε−1). It is proved in Section 5 that such a bound R holds under strong
or uniform convexity, boundedness of the initial level set, or boundedness of
the distance from the initial contour set to the solution set. In Section 6, we
exhibit a parameterized family of strongly convex functions satisfying the as-
sumption required to derive the global rate ofO(ε−1) for gradient-type methods
in the convex case. Such an assumption requires a bound on the product of
the distance of (only) the initial iterate to the solution set by the Lipschitz
constant of the gradient of f . We will see, however, that the distance from the
first unsuccessful iterate to the solution set grows to infinity as a function of
the parameter of the family of functions (which is in turn the inverse of the
stationarity threshold ε), in other words that R = O(ε−1), showing that the
bound O(ε−1) cannot be in general secured and that our additional assumption
is sharp.
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In Section 7 we draw some concluding remarks based on the specifics of the
material covered during the paper. We note that the notation O(M) has meant
and will mean a multiple of M , where the constant multiplying M does not
depend on the iteration counter k of the method under analysis (thus depending
only on f or on algorithmic constants set at the initialization of the method).
The dependence of M on the dimension n of the problem will be made explicit
whenever appropriate. The vector norms will be `2 ones. Given an open subset
Ω of Rn, we denote by C1

ν(Ω) the set of continuously differentiable functions in
Ω with Lipschitz continuous gradient in Ω, where ν is the Lipschitz constant
of the gradient. We use the notation F(Ω) to represent the space of convex
functions defined on a convex set Ω. The intersection of both is denoted by
F1
ν (Ω) = F(Ω) ∩ C1

ν(Ω), where Ω is open and convex.

2. WCC of gradient-type methods
Given a starting point x0 ∈ Rn, the gradient or steepest descent method

takes the form xk+1 = xk−hk∇f(xk), where hk > 0 defines the step size. The
algorithm can be applied whenever the function f is continuously differentiable,
and the well known fact that −∇f(xk) is a descent direction provides the basis
for the convergence properties of the method. The update of the step size hk is
also a crucial point in this class of minimization algorithms. There are improper
choices of the step size that make such gradient-type algorithms diverge [13,
Chapter 3]. The proper update of the step size is thus central in achieving
global convergence (see, e.g., [10, 13]).
For a number of the well known strategies to update the step size, it is possible

to prove that, when f ∈ C1
ν(Rn), there is a constant C = C(ν) > 0 such

f(xk)− f(xk+1) ≥ C(ν)‖∇f(xk)‖2, (2)

where C(ν) is essentially a multiple of 1/ν, with ν the Lipschitz constant of
the gradient of f , (being the multiple dependent on the parameters involved
in the update of the step size). In such cases, assuming that f is also bounded
from below in Rn, one can show that the gradient method takes at most O(ε−2)
iterations to reduce the gradient below ε ∈ (0, 1) (see [10, Page 29]), to be more
specific (

f(x0)− flow
C(ν)

)
1

ε2
.
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The constant multiplying ε−2 depends thus only on ν, on the parameters in-
volved in the update of the step size, on and the lower bound flow for f in
Lf(x0) = {x ∈ Rn : f(x) ≤ f(x0)}.
If, additionally, f is assumed convex, i.e., f ∈ F1

ν (Rn), then Nesterov [10,
Section 2.1.5] showed that one can achieve a better worst case complexity bound
in terms of the negative power of ε. First, based on the geometric properties
of smooth convex functions (essentially [10, Equation (2.1.7)]), he proved, for
simplicity using hk = 1/ν, that

f(xm)− f∗ ≤
2ν‖x0 − x∗‖2

m+ 4
, (3)

where f∗ is the value of the function at a (global) minimizer (see [10, Corol-
lary 2.1.2]), assumed to exist. But then one can easily see, by repeatedly
applying (2), that for m < k

2ν‖x0 − x∗‖2

m+ 4
≥ C(ν)

k∑
`=m

‖∇f(x`)‖2.

By choosing k = 2m the gradient method is then proved to only take at most
O(ε−1) iterations to achieve a threshold of ε on the norm of the gradient. The
constant multiplying ε−1 is essentially a multiple of

ν‖x0 − x∗‖.

3. WCC of direct search
The direct-search method under analysis is described in Algorithm 3.1, fol-

lowing the presentation in [4, Chapter 7]. The directional feature is presented
in the poll step, where points of the form xk + αkd, for directions d belong-
ing to the positive spanning set Dk, are tested for sufficient decrease. For
this purpose, following the terminology in [9], ρ : (0,∞) → (0,∞) will repre-
sent a forcing function, i.e., a non-decreasing (continuous) function satisfying
limt→0

ρ(t)
t = 0. Typical examples of forcing functions are ρ(t) = Ctp, for

p > 1 and C > 0. The poll step is successful if the value of the objective
function is sufficiently decreased relatively to the step size αk, in the sense of
f(xk +αkdk) < f(xk)−ρ(αk), in which case the step size is possibly increased.
The algorithm opportunistically moves to the first of such points found. Fail-
ure in doing so defines an unsuccessful iteration, and the step size is decreased
by a factor strictly less than 1 that changes between two bounds which need
to be fixed during the course of the iterations. The search step is purposely
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left open since it does not interfere in any of the convergence properties of the
algorithm, and it is solely used to improve the practical performance of the
overall algorithm.

Algorithm 3.1 (Directional direct-search method).
Initialization
Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

(1) Search step: Try to compute a point with f(x) < f(xk)− ρ(αk)
by evaluating the function f at a finite number of points. If such
a point is found, then set xk+1 = x, declare the iteration and the
search step successful, and skip the poll step.

(2) Poll step: Choose a positive spanning set Dk. Order the set of
poll points Pk = {xk + αkd : d ∈ Dk}. Start evaluating f at
the poll points following the chosen order. If a poll point xk +
αkdk is found such that f(xk + αkdk) < f(xk) − ρ(αk), then stop
polling, set xk+1 = xk+αkdk, and declare the iteration and the poll
step successful. Otherwise, declare the iteration (and the poll step)
unsuccessful and set xk+1 = xk.

(3) Mesh parameter update: If the iteration was successful, then
maintain or increase the step size parameter: αk+1 ∈ [αk, γαk].
Otherwise, decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

When the objective function is bounded from below one can prove that there
exists a subsequence of unsuccessful iterates driving the step size parameter to
zero (see [9] or [4, Theorems 7.1 and 7.11 and Corollary 7.2]).

Lemma 3.1. Let f be bounded from below on L(x0) = {x ∈ Rn : f(x) ≤
f(x0)}. Then Algorithm 3.1 generates an infinite subsequence K of unsuccess-
ful iterates for which lim

k∈K
αk = 0.

Note that when the function f is convex and has a minimizer, it is necessarily
bounded from below (see, e.g., [10, Theorem 2.1.1]).
To continue towards the global properties (asymptotic convergence and rates)

for this class of direct search, one must look at the key feature of a positive
spanning set, its cosine measure [9]. Given a positive spanning set D (with
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nonzero vectors), its cosine measure is given by

cm(D) = min
0 6=v∈Rn

max
d∈D

v>d

‖v‖‖d‖
.

Any positive spanning set with nonzero vectors has a positive cosine measure.
This fact means for any non-zero vector, in particular the negative gradient at
a given point, there is at least one direction in D making an acute angle with
it. Such a property enables us to derive that the norm of the gradient is of the
order of the step size when an unsuccessful iteration occurs [6, 9] (see also [4,
Theorem 2.4 and Equation (7.14)]).

Theorem 3.1. Let Dk be a positive spanning set and αk > 0 be given. Assume
that ∇f is Lipschitz continuous (with constant ν > 0) in an open set containing
all the poll points in Pk. If f(xk) ≤ f(xk + αkd) + ρ(αk), for all d ∈ Dk, i.e.,
the iteration k is unsuccessful, then

‖∇f(xk)‖ ≤ cm(Dk)
−1

ν
2
αk max

d∈Dk

‖d‖+
ρ(αk)

αk min
d∈Dk

‖d‖

 . (4)

It becomes then obvious that one needs to avoid degenerate positive spanning
sets.

Assumption 3.1. All positive spanning sets Dk used for polling (for all k)
must satisfy cm(Dk) ≥ cmmin and dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dk (where
cmmin > 0 and 0 < dmin < dmax are constants).

A first global asymptotic result is then easily obtained by combining
Lemma 3.1 and Theorem 3.1 (under Assumption 3.1), and assures the con-
vergence to zero of the gradient at a subsequence of unsuccessful iterates.
Moreover, we have the following worst case complexity bounds in this general
non-convex, smooth setting [15].

Theorem 3.2. Consider the application of Algorithm 3.1 when ρ(α) = Cαp,
p > 1, C > 0, and Dk satisfies Assumption 3.1. Let f be bounded from below
in Lf(x0) and f ∈ C1

ν(Ω) where Ω is an open set containing Lf(x0).
Under these assumptions, to reduce the gradient below ε ∈ (0, 1), Algo-

rithm 3.1 takes at most

O((
√
nνε−1)p̂),
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iterations, and at most

O(n(
√
nνε−1)p̂).

function evaluations, where p̂ = p
min(1,p−1).

When p = 2, these numbers are of O(nν2ε−2) and O(n2ν2ε−2), respectively.
The constant in O(·) depends only on dmin, dmax, cmmin, C, p, β1, β2, γ, α0,

and on the lower bound of f in Lf(x0).

How the step size αk is updated impacts in several ways the global rates
given above for Algorithm 3.1. In fact, the choice of C in the forcing function
and the choice of the parameters β1, β2, and γ in the step size updating for-
mulas influence the constant in the bound (4). Increasing C, for instance, will
decrease the number of successful iterations [15, Theorem 3.1], possibly leading
to more unnecessary unsuccessful iterations and consequently more unneces-
sary function evaluations. Increasing the value of the expansion factor γ ≥ 1
will increase the maximum number of unsuccessful iterations compared to the
number of successful ones [15, Theorem 3.2], again possibly leading to more
unnecessary unsuccessful iterations and consequently more unnecessary func-
tion evaluations. Setting γ = 1 leads to an optimal choice in this respect. One
practical strategy to accommodate γ > 1 is by considering an upper bound for
the step size itself.

Assumption 3.2. There is a positive constant M such that αk ≤ M for
∀k ≥ 0.

Under this assumption Theorem 3.1 simplifies to the following:

Corollary 3.1. Consider ρ(αk) = Cαpk, p > 1, C > 0. Under the assumptions
of Theorem 3.1 and Assumptions 3.1 and 3.2, if f(xk) ≤ f(xk +αkd) +ρ(αk),
for all d ∈ Dk, i.e., the iteration k is unsuccessful, then

‖∇f(xk)‖ ≤ cm−1
min

ν
2dmaxM + Cd−1

minM
p−1

Mmin(1,p−1)
αk

min(1,p−1). (5)

The step size upper bound M will appear thus in the upper bound for the
gradient in unsuccessful iterations. When p = 2, the upper bound on the
gradient does not depends on M ,

‖∇f(xk)‖ ≤ cm−1
min

(ν
2
dmax + Cd−1

min

)
αk.

The analysis of worst case complexity for the convex case when p 6= 2 will,
however, depend on the upper bound M for the step size.
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4. WCC of direct search for a class of convex functions
The solution set for problem (1) is denoted by

Xf
∗ = {x ∈ Rn : x is a minimizer of f}.

In this paper we will always consider the case when Xf
∗ is non-empty.

We will analyze the worst case complexity of direct search when the objective
function is smooth and convex under the assumption of a bound on the distance
from all unsuccessful iterates to the solution set. We will denote by S and U
the sets of indices corresponding to all successful and unsuccessful iterations,
respectively.

Assumption 4.1. There exists a positive constant R such that

sup
j∈U

dist(xj, X
f
∗ ) ≤ R.

We will discuss in Section 5 several scenarios under which this assumption is
satisfied. We will also see in Section 6 that such an assumption seems necessary.
We will start by measuring the decrease obtained in the objective function

until a given iteration as a function of the number of unsuccessful iterations
occurred until then. Recall that f∗ = f(x∗) for some x∗ ∈ Xf

∗ and p̂ =
p

min(1,p−1) > 2 for p > 1.

Lemma 4.1. Consider the application of Algorithm 3.1 when ρ(t) = C tp,
p > 1, C > 0, and Dk satisfies Assumption 3.1. Let Assumptions 3.2 and 4.1
also hold. Let f ∈ F1

ν (Ω), where Ω is an open set containing Lf(x0), and Xf
∗

be non-empty.
Let k0 be the index of the first unsuccessful iteration (which must exist from

Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0
such that

(f(xk)− f∗)p̂−1 <
Rp̂

ω(k − k0 −m− 1)
, (6)

where

ω = ωp̂gβ
p
1C, ωg =

2 cmminM
min(1,p−1)

νdmaxM + 2Cd−1
minM

p−1
, (7)

and m = m(k, k0) is the number of unsuccessful iterations between k0 and k.

Proof : Let {ki}mi=0 represent the set of unsuccessful iterations which occur be-
tween iteration k0, inclusively, and iteration k. Since all iterations between km
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and k are successful and km is unsuccessful, we have that

f(xk) < f(xk−1)− Cαpk−1

...

< f(xkm+1)− C
k−1∑

j=km+1

αpj

≤ f(xkm+1)− C(k − km − 1)αpkm+1

≤ f(xkm)− βp1C(k − km − 1)αpkm.

Now, by Corollary 3.1,

f(xk) < f(xkm)− (k − km − 1)ω‖∇f(xkm)‖p̂. (8)

By applying a similar argument, but now starting from xki, i = m, . . . , 1, we
deduce that

f(xki) < f(xki−1
)− (ki − ki−1 − 1)ω‖∇f(xki−1

)‖p̂. (9)

Denote ∆fi = f(xki)− f∗, for i = 0, . . . ,m and ∆fm+1 = f(xk)− f∗. Then,
using the property stated in [10, Equation (2.1.7)] for f ∈ F1

ν (Rn),

f∗ = f(xi∗)

≥ f(xki) + 〈∇f(xki), x
i
∗ − xki〉+

1

2ν
‖∇f(xi∗)−∇f(xki)‖2

≥ f(xki) + 〈∇f(xki), x
i
∗ − xki〉,

for some xi∗ ∈ X
f
∗ , i = 0, . . . ,m. Thus, using Assumption 4.1,

∆fi ≤ 〈∇f(xki), xki − xi∗〉
≤ ‖∇f(xki)‖‖xki − xi∗‖
≤ R‖∇f(xki)‖, i = 0, . . . ,m. (10)

By combining inequalities (8), (9), and (10) and setting here for simplicity
km+1 = k, we obtain, for i = 1, . . . ,m,m+ 1,

∆fi ≤ ∆fi−1 −
ω

Rp̂
(ki − ki−1 − 1)∆f p̂i−1 ≤ ∆fi−1. (11)

Hence, ∆fi−1/∆fi ≥ 1, i = 1, . . . ,m,m + 1. Now we divide the first in-
equality in (11) by ∆fi∆fi−1, then use p̂ > 2 and ∆fi−1 ≥ ∆fm+1, and later
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∆fi−1/∆fi ≥ 1,

1

∆fi
≥ 1

∆fi−1
+

ω

Rp̂
(ki − ki−1 − 1)

∆f p̂−1
i−1

∆fi

≥ 1

∆fi−1
+
ω∆f p̂−2

m+1

Rp̂
(ki − ki−1 − 1)

∆fi−1

∆fi

≥ 1

∆fi−1
+
ω∆f p̂−2

m+1

Rp̂
(ki − ki−1 − 1). (12)

By summing the inequality (12) for i = 1, . . . ,m,m+ 1, we arrive at

1

∆fm+1
≥ 1

∆f0
+
ω∆f p̂−2

m+1

Rp̂
(km+1 − k0 −m− 1)

=
ω∆f p̂−2

m+1

Rp̂
(km+1 − k0 −m− 1),

or, equivalently,

(f(xk)− f ∗)p̂−1 = ∆f p̂−1
m+1

≤ Rp̂

ω(km+1 − k0 −m− 1)

=
Rp̂

ω(k − k0 −m− 1)
,

as we wanted to prove.

In the following theorem by using the result of Lemma 4.1 we will derive an
upper bound for the number of successful iterations after the first unsuccessful
one needed to achieve a point for which the norm of the gradient is below a
given threshold.

Theorem 4.1. Consider the application of Algorithm 3.1 when ρ(t) = C tp,
p > 1, C > 0, and Dk satisfies Assumption 3.1. Let Assumptions 3.2 and 4.1
also hold. Let f ∈ F1

ν (Ω), where Ω is an open set containing Lf(x0), and Xf
∗

be non-empty.
Let k0 be the index of the first unsuccessful iteration (which must exist from

Lemma 3.1). Given any ε ∈ (0, 1), assume that ‖∇f(xk0
)‖ > ε and let k̄ be the

first iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to achieve ‖∇f(xk̄)‖ ≤
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ε, starting from k0, Algorithm 3.1 takes at most |Sk̄(k0)| successful iterations,
where

|Sk̄(k0)| ≤
⌈

2
R

ω
ε1−p̂ + 1

⌉
(13)

and ω is given in (7).

Proof : Let l, with k0 < l < k̄, be the index of a successful iteration occurring
before k, m be number of unsuccessful iterations between k0 and k̄, m1 be the
number of unsuccessful iterations between k0 and l, and k1, k2, . . . , km be the
sequence of unsuccessful iterations between k0 and k̄.

| | | | | |
k0 km1

l

km1+1 km

k̄

Let us assume first that there are unsuccessful iterations between l and k̄
(like in the figure above). Exactly as in the derivation of inequalities (8)–(9),
applying also Corollary 3.1 and the step size updating rules, we have

f(xk̄) < f(xkm)− (k̄ − km − 1)ω‖∇f(xkm)‖p̂

and,

f(xki) < f(xki−1
)− (ki − ki−1 − 1)ω‖∇f(xki−1

)‖p̂, m1 + 2 ≤ i ≤ m,

f(xkm1+1
) < f(xl)− (km1+1 − l)ω‖∇f(xkm1

)‖p̂.

Summing up these inequalities and considering ‖∇f(xk)‖ > ε for k < k̄ lead
us to

f(xl) > f(xk̄) + (k̄ − l −m+m1)ωε
p̂.

If there are no unsuccessful iterations between l and k̄, m = m1 and this
inequality is also true by a similar argument. On the other hand, by Lemma 4.1

(f(xl)− f∗)p̂−1 ≤ Rp̂

ω(l − k0 −m1 − 1)
.

So, in conclusion

(k̄ − l −m+m1)ωε
p̂ ≤ (k̄ − l −m+m1)ωε

p̂ + f(xk̄)− f∗
≤ f(xl)− f∗

≤
(

Rp̂

ω(l − k0 −m1 − 1)

) 1
p̂−1

. (14)
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Now we choose l such that the number of successful iterations after l is
at most one times higher than the number of successful iterations until l. To
explicitly describe l we divide the number of successful iterations into two parts
1
2(k̄−k0−m− 1), then add the number m1 of unsuccessful iterations until the
middle point, and finally shift by k0. Hence l is given by

l =

⌊
k̄ − k0 −m− 1

2

⌋
+ k0 +m1 + 1.

With such a choice of l, the number κ of successful iterations between k0 and
l is

κ = l − k0 −m1 − 1

and a simple argument shows that

κ = l − k0 −m1 − 1 ≤ k̄ − l −m+m1 ≤ κ+ 1, (15)

as expected.
Now, from (14),

(ωκ)
p̂

p̂−1 ≤ ω(k̄ − l −m+m1)[ω(l − k0 −m1 − 1)]
1

p̂−1

≤ R
p̂

p̂−1ε−p̂,

and
κ ≤ R

ω
ε1−p̂. (16)

But due to equation (15), 2κ + 1 is bigger than the number of successful iter-
ations between k0 and k,

2κ+ 1 = κ+ 1 + κ

≥ (k̄ − l −m+m1) + (l − k0 −m1 − 1)

= k̄ − k0 −m− 1,

which finishes the proof.

Following [15, Theorem 3.2] one can also guarantee that the number of un-
successful iterations is of the same order as the number of successful ones. The
proof is given for sake of clearness and completeness.

Theorem 4.2. Let all assumptions of Theorem 4.1 hold.
Let k0 be the index of the first unsuccessful iteration (which must exist from

Lemma 3.1). Given any ε ∈ (0, 1), assume that ‖∇f(xk0
)‖ > ε and let k̄ be the

first iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to achieve ‖∇f(xk̄)‖ ≤
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ε, starting from k0, Algorithm 3.1 takes at most |Uk̄(k0)| unsuccessful iterations,
where

|Uk̄(k0)| ≤
⌈
ω1|Sk̄(k0)|+ ω2 +

1

min(p− 1, 1)
logβ2

(ωgε)

⌉
,

ω1 = − logβ2
(γ), ω2 = − logβ2

(αk0
) + logβ2

(β1),

ωg is given in (7), and |Sk̄(k0)| in the number of successful iterations between
k0 and k̄.

Proof : From Corollary 3.1 and the definition of ωg in (7), we have, for each
unsuccessful iteration k, that

‖∇f(xk)‖ ≤ ω−1
g α

min(1,p−1)
k .

As before, we can backtrack from any successful iteration to the nearest unsuc-
cessful iteration and, due to the step size updating rules, we have the following
inequality for any iteration after k0

αk ≥ β1(ωgε)
1

min(1,p−1) , k = k0, k0 + 1, . . . , k̄ − 1.

On the other hand, one knows that either αk ≤ β2αk−1 or αk ≤ γαk−1. Hence,
by induction,

αk̄−1 ≤ αk0
γ|Sk̄(k0)|β

|Uk̄(k0)|
2 .

Now, since β2 < 1, the function logβ2
(·) is monotonically decreasing, and one

obtains (the coefficient ω1 is nonnegative due to γ ≥ 1)

|Uk̄(k0)| ≤ ω1|Sk̄(k0)|+ ω2 +
1

min(p− 1, 1)
logβ2

(ωgε).

Theorem 4.1 and 4.2 show that Algorithm 3.1 takes at most O(ε1−p̂) itera-
tions after the first unsuccessful one to bring the norm of the gradient below
ε ∈ (0, 1). Thus the only part missing is to bound the number of successful
iterations until the first unsuccessful one. As in [15], one can do this easily
since, from the fact that k0 is the first unsuccessful iteration,

f(xk0
) < f(x0)− C

k0−1∑
j=0

αpj ≤ f(x0)− Ck0α
p
0,
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which then implies

k0 <
f(x0)− f(xk0

)

Cαp0
≤ f(x0)− f ∗

Cαp0
.

Note that for any p > 1, p̂ is bigger than 2 and so 1− p̂ < −1. Hence for any
given ε ∈ (0, 1), ε1−p̂ > 1, and therefore one can establish that the number of
iterations required to achieve the first unsuccessful one is bounded by⌈

f(x0)− f∗
Cαp0

ε1−p̂
⌉
.

We are finally ready to state the worst case complexity bound for Algo-
rithm 3.1 when the objective function is convex.

Corollary 4.1. Let all assumptions of Theorem 4.1 hold.
To reduce the gradient below ε ∈ (0, 1), Algorithm 3.1 takes at most

O
(
ν p̂ε1−p̂

)
(17)

iterations. When p = 2, this number is of O(ν2ε−1).
The constant in O(·) depends only on dmin, dmax, cmmin, C, p, β1, β2, γ, α0,

and on the constant R of Assumption 4.1.

To count the corresponding number of function evaluations we need first
to factor out the dependence of n in the above bound. We know from [15]
that, in this bound, only the minimum cosine measure of the positive spanning
sets depends explicitly on n. One also knows from the positive spanning set
formed by the coordinate vectors and their negatives that such minimum cosine
measure can be set greater than or equal to 1/

√
n, and thus 1/ω ≤ O(n

p̂
2 ),

where ω is given in (7). On the other hand, each poll step when using such
positive spanning sets costs at most O(n) function evaluations. One then
assumes, for compatibility with the cost of such poll steps, that the search
step, when non-empty, takes at most O(n) function evaluations.

Corollary 4.2. Let all assumptions of Theorem 4.1 hold. Let cmmin be at least
a multiple of 1/

√
n and the number of function evaluations per iteration be at

most a multiple of n.
To reduce the gradient below ε ∈ (0, 1), Algorithm 3.1 takes at most

O
(
n

p̂+2
2 ν p̂ε1−p̂

)
function evaluations. When p = 2, this number is of O(n2ν2ε−1).
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The constant in O(·) depends only on dmin, dmax, cmmin, C, p, β1, β2, γ, α0,
and on the constant R of Assumption 4.1.

5. Discussion of the assumptions
Now we are going to exhibit three situations under which Assumption 4.1

is verified. First we clarify that the distance from the initial level set to the
solution set is never larger than the distance from the first contour set to the
same solution set.
In addition to being assumed non-empty, note that the solution set Xf

∗ is
also convex, since f ∈ F(Rn). Such a solution set will always be closed in our
context since we will assume that the function is continuous (an assumption
that would also result from the observation that f is real-valued and convex
in Rn, see [14, Theorem 10.1]). Thus, projecting onto Xf

∗ results in an unique
point.

Proposition 5.1. Let f ∈ F1(Rn) and X∗f be non-empty. Then

sup
y∈Lf (x0)

dist(y,Xf
∗ ) = sup

y∈f−1(f(x0))

dist(y,Xf
∗ ).

Proof : For a given z in Lf(x0) but not in Xf
∗ , there is a unique x∗ ∈ Xf

∗ such
that

dist(z,Xf
∗ ) = min

x∈Xf
∗

‖z − x‖ = ‖z − x∗‖.

Let us consider the real function g(t) = f(x∗ + t(z − x∗)) for t ∈ [0,∞),
which belongs to F1([0,∞)) and attains a (global) minimum at t∗ = 0. In
addition, it is monotonically increasing as

∂g

∂t
(t) = 〈∇f(yt), z − x∗〉 =

1

t
〈∇f(yt)−∇f(x∗), yt − x∗〉 ≥ 0,

where yt = x∗ + t(z − x∗). The function g is also unbounded (limt→+∞ g(t) =
+∞) since otherwise, by [14, Theorem 32.1], it would be constant and this
would contradict the fact that z /∈ Xf

∗ . As a result, by the Mean Value Theo-
rem, there exists a tz > 0 such that g(tz) = f(ytz) = f(x0).
It is not possible to have tz < 1 because this would lead to f(z) = g(1) >

g(tz) = f(x0) which would imply z 6∈ Lf(x0). Since tz ≥ 1,

dist(z,Xf
∗ ) = ‖z − x∗‖ =

1

tz
‖ytz − x∗‖ ≤ ‖ytz − x∗‖ = dist(ytz , X

f
∗ ).

Thus supy∈Lf (x0) dist(y,Xf
∗ ) ≤ supy∈f−1(f(x0)) dist(y,Xf

∗ ).
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Next we show that Assumption 4.1 will hold for strongly convex functions,
being the constant R there of O(1/

√
µ).

Proposition 5.2. Let f be a continuous and strongly convex function in Rn

with constant µ. Then

sup
y∈Lf (x0)

dist(y,Xf
∗ ) ≤

√
2

µ
(f(x0)− f∗).

Proof : Under the assumptions of the proposition, Xf
∗ is a singleton and let x∗

be the minimizer of f . It is simple to see that we must also have
1

2
µ‖y − x∗‖2 ≤ f(y)− f(x∗), ∀y ∈ Rn.

Otherwise, there must exist a y ∈ Rn violating the above inequality. Then, by
using the definition of strongly convexity with

0 ≤ t < 1− f(y)− f(x∗)
µ
2‖y − x∗‖2

,

one would obtain

f(ty + (1− t)x∗) ≤ tf(y) + (1− t)f(x∗)− t(1− t)
µ

2
‖y − x∗‖2

= f(x∗) + t
[
f(y)− f(x∗)−

µ

2
‖y − x∗‖2

]
+
t2

2
µ‖y − x∗‖2

< f(x∗),

which is a contradiction. In particular, for the level set Lf(x0), one has 1
2µ‖y−

x∗‖2 ≤ f(y)− f(x∗) ≤ f(x0)− f(x∗), ∀y ∈ Lf(x0), as it was desired.

Another possible situation under which Assumption 4.1 is satisfied is when
the initial level set is bounded. The proof is trivial and omitted.

Proposition 5.3. Let f ∈ F(Rn) and X∗f be non-empty and assume that
Lf(x0) is bounded. Then

sup
y∈Lf (x0)

dist(y,Xf
∗ ) ≤ 2 sup

x∈Lf (x0)

‖x‖.

Note that there are convex functions f such that supy∈Lf (x0) dist(y,Xf
∗ ) is

finite but neither f is strongly convex nor Lf(x) is bounded for any x, being
such an instance the two-dimensional function f(x, y) = y2.
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6. A convex example
We have already mentioned in Section 2 that the gradient method exhibits

a worst case complexity bound of O(ε−1) iterations as long as ν‖x0 − x∗‖,
for some x∗ ∈ Xf

∗ , is independent of ε, where ν is the Lipschitz constant
of the gradient. Moreover, Nesterov [10, Theorem 2.1.13] showed that the
gradient method for a constant step size of at most 2

ν generates iterates such
that ‖xk − x∗‖ ≤ ‖x0 − x∗‖.
Making directional direct-search methods achieve the same global rate of
O(ε−1) required a bound (independent of ε) on the distance of all unsuccessful
iterations to the solution set (see Assumption 4.1). In fact the lack of knowledge
of the gradient makes the control of the distance to the solution set harder,
which as the following example will demonstrate can become arbitrarily large.
Let ε ∈ (2,∞) and consider the application of Algorithm 3.1 to the strongly

convex function f : R2 → R parameterized by ε

f(x, y) = y2 +
1

2
(ε−1x)2 + ε−1x,

using p > 1, γ = 1, x0 = (−ε, y0), α0 = 1, C = ε−1, and

D =

[
1 0 −1

−y0ε
−1 y0ε

−1 0

]
,

with y2
0 = 1.5. The choices of β1 and β2 are irrelevant for our argument. The

unique minimizer of f is x∗ = (−ε, 0). The Lipschitz constant ν of the gradient
of f is at most 2.
Note that for such an initial point x0, one has ν‖x0 − x∗‖ ≤ 2y0 =

√
6 and

thus one does expect the global rate O(ε−1) to hold for gradient methods.
Let us see what happens with the above instance of Algorithm 3.1 on this

example. First notice that as long as 2k − 1 < ε the algorithm keeps making
successful iterations along the direction (1,−y0ε

−1) maintaining the initial step
size 1. In fact, by setting

xk = (−ε+ k, y0(1− kε−1)),
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one observes that the sufficient decrease condition always holds

f(xk−1)− f(xk)

= [y2
0(1− (k − 1)ε−1)2 + 0.5(−1 + (k − 1)ε−1)2 − 1 + (k − 1)ε−1]

−[y2
0(1− kε−1)2 + 0.5(−1 + kε−1)2 − 1 + kε−1]

= y2
0[1− (k − 1)ε−1 − (1− kε−1)][1− (k − 1)ε−1 + 1− kε−1]

+0.5[−1 + (k − 1)ε−1 + 1− kε−1][−1 + (k − 1)ε−1 − 1 + kε−1]− ε−1

= y2
0ε
−1[2− (2k − 1)ε−1]− 0.5ε−1[−2 + (2k − 1)ε−1]− ε−1

> ε−1 = Cαk,

where in the last inequality we used 2k−1 < ε, or equivalently, 2−(2k−1)ε−1 >
1.
The gradient of f at xk is given by

∇f(xk) = (kε−2, 2y0(1− kε−1)),

and, recalling ε > 2 and 2k − 1 < ε, one has ‖∇f(xk)‖ > ε−1. The distant to
the minimizer is,

‖xk − x∗‖ =
√
k2 + y2

0(1− kε−1)2 ≥ k.

Let k̄ be the largest integer number such that 2k − 1 < ε. Thus 2k̄ + 1 ≥ ε,
and consequently, k̄ ≥ 1

2(ε− 1). Hence ‖xk̄ − x∗‖ ≥ (ε− 1)/2.
To show that k̄ is unsuccessful, we start by showing that the sufficient de-

crease condition is not satisfied along the direction (1,−y0ε
−1)

f(xk̄)− f(xk̄ + (1,−y0ε
−1))

= f(−ε+ k̄, y0(1− k̄ε−1))− f(−ε+ k̄ + 1, y0(1− (k̄ + 1)ε−1))

= [y2
0(1− k̄ε−1)2 + 0.5(−1 + k̄ε−1)2 + (−1 + k̄ε−1)]

−[y2
0(1− (k̄ + 1)ε−1)2 + 0.5(−1 + (k̄ + 1)ε−1)2 + (−1 + (k̄ + 1)ε−1)]

= y2
0[1− k̄ε−1 − 1 + (k̄ + 1)ε−1][1− k̄ε−1 + 1− (k̄ + 1)ε−1]

+0.5[−1 + k̄ε−1 + 1− (k̄ + 1)ε−1][−1 + k̄ε−1 − 1 + (k̄ + 1)ε−1]− ε−1

= y2
0ε
−1[2− (2k̄ + 1)ε−1]− 0.5ε−1[−2 + (2k̄ + 1)ε−1]− ε−1

≤ (y2
0 − 0.5)ε−1 = C,
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where in the last inequality we used 2k̄+1 ≥ ε, or equivalently, 2−(2k̄+1)ε−1 ≤
1. Then we test the direction (0, y0ε

−1)

f(xk̄)− f(xk̄ + (0, y0ε
−1))

= f(−ε+ k̄, y0(1− k̄ε−1))− f(−ε+ k̄, y0(1− (k̄ − 1)ε−1))

= [y2
0(1− k̄ε−1)2 + 0.5(−1 + k̄ε−1)2 − 1 + k̄ε−1]

−[y2
0(1− (k̄ − 1)ε−1)2 + 0.5(−1 + k̄ε−1)2 − 1 + k̄ε−1]

= y2
0[(1− k̄ε−1)2 − (1 + (1− k̄)ε−1)2]

= y2
0[1− k̄ε−1 − (1 + (1− k̄)ε−1)][1− k̄ε−1 + 1 + (1− k̄)ε−1]

= −y2
0ε
−1[2− (2k̄ − 1)ε−1] < 0,

where in the last inequality we used 2k̄−1 < ε. Finally, we look at the decrease
along the direction (−1, 0)

f(zk̄)− f(zk̄ + (−1, 0))

= f(−ε+ k̄, y0(1− k̄ε−1))− f(−ε+ k̄ − 1, y0(1− k̄ε−1))

= [y2
0(1− k̄ε−1)2 + 0.5(−1 + k̄ε−1)2 − 1 + k̄ε−1]

−[y2
0(1− k̄ε−1)2 + 0.5(−1 + (k̄ − 1)ε−1)2 − 1 + (k̄ − 1)ε−1]

= 0.5[−1 + k̄ε−1 + 1− (k̄ − 1)ε−1][−1 + k̄ε−1 − 1 + (k̄ − 1)ε−1] + ε−1

= 0.5ε−1[−2 + 2k̄ε−1 − ε−1] + ε−1

< 0.5ε−1 < C,

where, again, in the first inequality we used 2k̄ − 1 < ε.
One can see how does this example illustrate our theory. Recalling that the

distance from the unsuccessful iterate xk̄ to X
f
∗ is arbitrarily large, ‖xk̄−x∗‖ ≥

(ε− 1)/2, one has that R = O(ε) in Assumption 4.1, and by setting ε = 1/ε,
R = O(ε−1). From Theorem 4.1 and regardless of how large ω in (7) can be,
one sees immediately that our theory cannot predict better than O(ε−2) (when
p = 2) as a worst case complexity bound. If one inspects better how ε = ε−1

influences ω (note that C = ε−1 and dmin = y0ε
−1), one comes to the conclusion

that not even better than O(ε−3) can be predicted in this example.

7. Conclusions
To our knowledge it is the second time that a derivative-free method is shown

to exhibit a worst case complexity bound or global rate of O(ε−1) in the con-
vex case, following the random Gaussian approach [11]. In fact we have proved
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that a maximum of O(ε−1) iterations and O(n2ε−1) function evaluations are
required to compute a point for which the norm of the gradient of the objec-
tive function f is smaller than ε (see Corollaries 4.1–4.2). Such a global rate
translates into a decrease of O(1/k) for f(xk)− f∗ for the sequence {xk}k∈S of
successful iterations (see Lemma 4.1).
This result is not obtained for all convex functions (for which the solution

set is non-empty), as it is the case for the gradient method. In fact, one has
seen that one cannot accommodate excessively flatness in the function while
approaching the solution set.
The type of non-asymptotic analysis developed in this paper provides cost

or complexity bounds in the worst case, involving an order of accuracy. The
multiple of this accuracy depends in turn on a significant number of constants,
some coming from the algorithm, others problem dependant. In Section 6, for
instance, we looked at one of such constants who played a major role in our
analysis.
However, the combined effect of all the constants might make a global rate

look either worse or not so bad. Moreover, the practical or average behavior of
the algorithm might be much below such worst case complexity bounds. In the
forthcoming PhD thesis [5], a number of numerical experiments will be reported
to better illustrate these two issues for direct search on convex functions.
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