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Introduction

The standardly used concept of nearness in the pointfree context ([3, 1]) is
that of a system of covers N of a frame L, admissible in the sense that each
a ∈ L is the join of all the x uniformly below it. It is expedient for many
purposes, but sometimes it does call for modifications.
First, it makes sense in the regular frames only. No wonder, in this form of

admissibility it is in fact the extension of Herrlich’s regular nearness ([10, 11])
which in spaces needs regular carrier as well. The general space nearness can
be defined on much more general spaces, and can be extended to the pointfree
context so that it is definable on all subfit frames.
Second, one is sometimes interested in the non-symmetric variant which

(even in the regular case) cannot be dealt simply with covers that make
everything naturally symmetric.
In this paper we discuss the nearness extended in both the mentioned

directions: it is generalized in the sense the cover nearness was generalized
in [12], and it allows for non-symmetry as well. For the latter we exploit the
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Weil (entourage) approach ([17, 19]): unlike covers, the “neighbourhoods of
the diagonal” do not create any a priori symmetry. But we do use the so
called paircover approach as well ([9, 5]), and also the technique of biframes
similarly as it has been used in more special context in [6, 7, 8] and other
papers. In fact it turns out that the entourages naturally induce a biframe
structure on a frame, too, so that the biframe context and techniques come
quite organically, after all.
In the biframe discussion of (generalized) nearness one encounters inherent

concepts of biframe fitness and subfitness analogous with the homonymous
frame notions in the same way as the biframe regularity extending the frame
one. It may be of interest that although one gets the subfitness as a neces-
sary and sufficient condition of the existence of nearness in the quite general
context again (and fitness as the hereditary variant), it is not quite a smooth
extension (while the fitness is): one gets in fact a weaker and a stronger vari-
ant (the stronger one being the actual necessary and sufficient condition).

1. Preliminaries
1.1. We will use the standard terminology and notation for posets. In
lattices the meet will be denoted as a rule by a ∧ b, a1 ∧ · · · ∧ an etc., the
meet (infimum) of a subset A in a complete lattice will be denoted by

∧
A;

similarly we use a ∨ b, a1 ∨ · · · ∨ an etc. and
∨
A for joins (suprema).

The bottom (the smallest element) of a poset will be as a rule denoted by
0 and the top (the largest element) by 1.
Recall that a Heyting algebra is a lattice with an extra binary operation

x→y on L satisfying
a ∧ b ≤ c iff a ≤ b→c (Heyt)

(there is hardly any danger that the “→” be confused with the arrow sign for
a mapping as in f : A → B). From (Heyt) one can immediately infer rules
like (

∨
ai)→ b =

∧
(ai→ b), that a→ b = 1 iff a ≤ b, and further a ≤ b→a,

or (a ∧ b)→c = a→(b→c), to be used without further mentioning.

1.2. Recall that a frame is a complete lattice L satisfying the distribution
law

(
∨

A) ∧ b =
∨

{a ∧ b | a ∈ A} (frm)

for all subsets A ⊆ L and elements b ∈ L.
Thus, the mapping x 7→ x ∧ a preserves suprema and has a right Galois

adjoint y 7→ a→y which makes a frame a Heyting algebra.



(SUB)FIT BIFRAMES AND NON-SYMMETRIC NEARNESS 3

A frame homomorphism h : L → M preserves all joins and all finite meets.
The resulting category is denoted by

Frm,

and its dual, the category of locales is denoted by

Loc

and can be viewed as category of generalized spaces (the relations of frames
and spaces is naturally contravariant).
The morphisms of Loc will be represented by the localic maps f : L → M

defined as the right Galois adjoints of the frame homomorphisms h : M → L
(that is, maps L → M such that h(x) ≤ y iff x ≤ f(y)).

For more about frames and locales see, e.g., [23] or [14].

1.3. Subspaces of locales (viewed as generalized spaces) are represented by
sublocales. A sublocale S of a frame (locale) L is a subset S ⊆ L such that

(S1) for every M ⊆ S,
∧
M ∈ S (thus in particular, the top 1 is in S), and

(S2) for every s ∈ S and every x ∈ L, x→s is in S.

Sublocales are precisely such subsets for which the embedding map j : S
⊆
→ L

is a (one-one) localic map; thus, the embedding of sublocales are precisely
the right adjoints of the onto frame homomorphisms (which are often used
to represent generalized subspaces). The frame homomorphism associated
with the embedding j : S → L, called nucleus, will be denoted by

νS : L → S.

Sublocales of L ordered by inclusion constitute a co-frame Sℓ(L) (a complete
lattice in which one has the distribution rule dual to (frm) from 1.2) with
the meets coinciding with intersections, the suprema given by

∨
Si = {

∧
M | M ⊆

⋃
Si},

the zero O = {1} and the top 1 = L. The correspondence S 7→ νS is a dual
isomorphism between Sℓ(L) and the lattice (frame) of nuclei, in which the
meet is computed as (

∧
νi)(x) =

∧
νi(x).

1.3.1. Open resp. closed subspaces associated with elements a ∈ L are
represented by open resp. closed sublocales

o(a) = {a→x | x ∈ L} = {x ∈ L | a→x = x} resp. c(a) =↑a;
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they are complemented with each other and one has

o(
∨

ai) =
∨

o(ai) and o(a ∧ b) = o(a) ∩ o(b).

The associated nuclei are νo(a)(x) = a→x and νc(a)(x) = a∨x. (See [23, 20].)

1.3.2. Open and closed sublocales reflect in general sublocales by the natural
law

o(a) ∩ S = oS(νS(a)) and c(a) ∩ S = cS(νS(a))

(see [23], III.6.2).

Further rules we will use:

1.3.3. Lemma.

(1) For each S ∈ Sℓ(L), o(a) ∩ S 6= O iff o(a) ∩ S 6= O.

(2) c(b) ⊆ o(a) iff a ∨ b = 1.
(3) o(a) ∩ c(b) 6= O iff a � b.

Proof : (1) o(a) ∩ S = O iff S ⊆ c(a) iff S ⊆ c(a) iff o(a) ∩ S = O.

(2) ⇒: If c(b) ⊆ o(a) then L = c(b)∨ o(b) ≤ o(a)∨ o(b) = o(a∨ b) and hence
a ∨ b = 1.
⇐: If a ∨ b = 1 then o(a) ∨ o(b) = 1 and c(b) ⊆ o(a) by complementation.

(3) o(a) ∩ c(b) = O iff o(a) ⊆ o(b) iff a ≤ b.

1.4. Sublocales and subframes. Each sublocale is a frame, but this con-
cept should not be confused with that of a subframe where the embedding
is a frame homomorphism. We will need to understand the following con-
struction with subframes and sublocales. Suppose that we have a subframe
L′ ⊆ L and a sublocale S ⊆ L with the associated frame homomorphism
νS : L → S. Then we have the frame homomorphism

L′ j=⊆
−−→ L

νS−−→ S

and hence an onto frame homomorphism

µ = (x → νS(x)) : L
′ → νS[L

′].

Now obviously νS(L) is a subframe of S. It is not precisely a sublocale of L′:
it is a subset of L but not necessarily a subset of L′; but it is almost that: if
we set

S ′ = {x | x =
∨

{y | µ(x) = µ(y)}}
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then S ′ is a sublocale of L′ isomorphic with the νS[L
′] by the isomorphism

x 7→ νS(x).

1.5. Fit and subfit. According to Isbell [13], a frame is fit if each closed
sublocale is an intersection (meet) of open sublocales, that is, using 1.3.3,

∀a ∈ L, c(a) =
⋂

{o(x) | o(x) ⊇ c(a)} =
⋂

{o(x) | a ∨ x = 1}

which can be expressed as

a � b ⇒ ∃c, a ∨ c = 1 and c→b � b.

A frame is subfit if each open sublocale is a join of closed ones, that is,

∀a ∈ L, o(a) =
∨

{c(x) | a ∨ x = 1}.

This can be expressed by

a � b ⇒ ∃c, a ∨ c = 1 and b ∨ c 6= 1.

Subfitness is sometimes referred to as conjunctivity (Simmons [27]).

A sublocale of a fit locale is fit, while subfitness is not hereditary. In actual
fact, fitness is hereditary subfitness. This is a standard fact, but we will
present a short proof (first, because it is much shorter than what can be
usually found in literature, and, second, because the same procedure will be
use later in the biframe context).

Proposition. If every sublocale of a locale L is subfit then L is fit.

Proof : Suppose it is not. Then there is an a ∈ L such that

c(a) + S =
⋂

{o(x) | a ∨ x = 1}.

Thus, there is a b ∈ S that is not in c(a). We have a ∈ S (since (a ∨ x)→
a = (a→ a) ∧ (x→ a) = x→ a) and b ∈ S, a � b. Suppose a ∨ c = 1 for a
c ∈ S. Since c ∈ S and a ∨ c = 1 (so that c(a) ⊆ o(c) and hence S ⊆ o(c))
we have in particular c ∈ o(c) and hence c = c→c = 1. Thus, b ∨ c = 1 and
S is not subfit.
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2. Bilocales
2.1. Recall that a biframe ([2]) is a triple (L, L1, L2) of frames where L1, L2

are subframes of L and

∀a ∈ L, a =
∨

{a1 ∧ a2 | ai ∈ Li, a1 ∧ a2 ≤ a}.

The frame L is usually called the total part of the biframe.
A biframe homomorphism h : (L, L1, L2) → (M,M1,M2) is a frame homo-

morphism h : L → M for which h[Li] ⊆ Mi (i = 1, 2).
In the sequel, we use Li, Lj to denote L1 or L2, always assuming that

i, j = 1, 2, i 6= j.

2.2. Subbilocales. Let (L, L1, L2) be a biframe. A subbilocale of (L, L1, L2)
is a (S, S1, S2) where S is a sublocale of L and Si = νS[Li] for i = 1, 2 (cf.
1.4).

2.2.1. Observation. Each subbilocale of a biframe is a biframe.

Proof : If a ∈ S we have

a = νS(a) = νS(
∨

{a1 ∧ a2 | ai ∈ Li, a1 ∧ a2 ≤ a})

=
∨

{νS(a1) ∧ νS(a2) | ai ∈ Li, a1 ∧ a2 ≤ a},

and νS(ai) ∈ Si.

2.3. Regularity, fitness and subfitness in biframes. We will extend the
definition of fitness and subfitness to biframes in analogy with the extension
of regularity. In the next section we will see that it is not just a formal
matter: the concepts will be seen to be equivalent with another important
property.
Recall that a biframe (L, L1, L2) is said to be regular ([2]) if

∀a ∈ Li, a =
∨

{c ∈ Li | c ≺i a},

where c ≺i a means that there is a b ∈ Lj (j 6= i) such that c ∧ b = 0
and a ∨ b = 1 (equivalently, c ≺i a iff c• ∨ a = 1 where c• is the biframe
pseudocomplement ∨

{y ∈ Lj | y ∧ c = 0}

of c in Lj [26]).
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2.3.1. Proposition. A biframe is regular iff

∀a ∈ Li, ∀x ∈ L, a � x ⇒ ∃b ∈ Lj : a ∨ b = 1, b• � x. (Reg)

Proof : ⇒: Let a � x with a ∈ Li and x ∈ L. Since a =
∨
{c ∈ Li | c ≺i a},

there is a c ∈ Li such that c ≺i a and c � x. Let b = c• ∈ Lj. Then b∨ a = 1
and since b• = c•• ≥ c, b• � x.

⇐: By contradiction, if a �
∨
{c ∈ Li | c ≺i a} then there is some b ∈ Lj

with a ∨ b = 1 and
b• �

∨
{c ∈ Li | c ≺i a}.

But this is a contradiction since b• ∈ Li and b• ≺i a (indeed, b••∨a ≥ b∨a =
1).

2.3.2. Recall 1.5. We define a biframe (L, L1, L2) to be fit if

∀a ∈ Li, c(a) =
⋂

{o(b) | b ∈ Lj, o(b) ⊇ c(a)} =
⋂

{o(b) | b ∈ Lj, a∨b = 1}.

Similarly, we say that a biframe (L, L1, L2) is subfit if

∀a ∈ Li, o(a) =
∨

{c(b) | b ∈ Lj, c(b) ⊆ o(a)} =
∨

{c(b) | b ∈ Lj, a∨b = 1}.

2.3.3. Using De Morgan law in the co-frame Sℓ(L) we immediately obtain

Proposition. Every fit biframe is subfit.

2.4. Proposition. A biframe is fit iff

∀a ∈ Li, ∀x ∈ L, a � x ⇒ ∃b ∈ Lj : a ∨ b = 1, b → x � x. (Fit)

Proof : ⇒: Let a � x with a ∈ Li and x ∈ L. We have

c(x) * c(a) = ↑a =
⋂

{o(b) | b ∈ Lj, a ∨ b = 1}

and consequently there is a b ∈ Lj such that a ∨ b = 1 and c(x) * o(b).
Furthermore, if b → x = x for all b ∈ Lj such that a ∨ b = 1 then a ≤ x.

⇐: Let a ∈ Li. By contradiction, if

c(a)  
⋂

{o(b) | b ∈ Lj, a ∨ b = 1},

then there is an s in the intersection of such opens o(b) with s /∈ c(a), that
is, s � a. By hypothesis, there is a c ∈ Lj such that c∨a = 1 and c → s � s.
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Since c is one of those b’s, s ∈ o(c), that is, s = c → x for some x ∈ L. Then
we get a contradiction:

c → s = c → (c → x) = c → x = s.

2.5. Proposition. A biframe is subfit iff

∀a ∈ Li, ∀x, y ∈ L, a � y→x ⇒ ∃b ∈ Lj : a ∨ b = 1, y � b ∨ x. (Sfit)

Proof : o(a) =
∨
{c(b) | b ∈ Lj, a ∨ b = 1} is the same as o(a) ⊆

∨
{c(b) | b ∈

Lj, a ∨ b = 1}. Set

S =
∨

{c(b) | b ∈ Lj, a ∨ b = 1}.

In the language of nuclei we have νo(a) ≥ νS and hence, by 1.3.1,

a→x ≥
∧

{a ∨ x | b ∈ Lj, a ∨ b = 1}

for all x; thus, if y ≤ b∨x for all b ∈ Lj such that a∨b = 1 we have y ≤ a→x,
that is, a ≤ y→x.

2.5.1. In particular, if a biframe is subfit then the case y = 1 yields

∀a ∈ Li, ∀x ∈ L, a � x ⇒ ∃b ∈ Lj : a ∨ b = 1 6= x ∨ b (∗)

the standard formula for subfitness in frames. The reader may wonder what
makes the difference, that is, why the (∗) fails (or at least seems to fail) to
characterize subfitness also in the biframe context. If we have a � y → x,
that is, a ∧ y � x, the standard subfitness gives a b ∈ L such that a ∨ b =
1 6= b ∨ x but such b is not necessarily in Lj.
The difference can be seen already in spaces. We have

2.5.2. Proposition. Let (X,O1X,O2X) be a bitopological space. Then,

denoting by Cl, Cl1 and Cl2, respectively, the closures in OX = O1X ∨O2X,

O1X and O2X, we have:

(1) (X,O1X,O2X) satisfies (∗) iff for any A ∈ OiX (i = 1, 2) and any

x ∈ A, there is a y ∈ Cl({x}) such that Clj({y}) ⊆ A (j 6= i).
(2) (X,O1X,O2X) is subfit iff for any A ∈ OiX (i = 1, 2), U ∈ OX and any

x ∈ A ∩ U , there is a y ∈ Cl({x}) ∩ U such that Clj({y}) ⊆ A (j 6= i).
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Proof : (1)⇒: Let A ∈ OiX, x ∈ A and V = XrCl({x}). By the hypothesis,
there is a B ∈ OjX such that A∪B = X 6= V ∪B. Any element inXr(V ∪B)
is the required y.

⇐: Let A ∈ OiX and V ∈ OX withA * V , x ∈ ArV and the corresponding
y given by the hypothesis. ThenB = XrClj({y}) ∈ OjX satisfiesA∪B = X
(since Clj({y}) ⊆ A) and V ∪B 6= X (since y ∈ Cl({x}) ⊆ X r V ).

(2) ⇒: Let A ∈ OiX, U ∈ OX and x ∈ A ∩ U . Take V = X r Cl({x}). By
the hypothesis, there is a B ∈ OjX such that A∪B = X and U * B∪V . In
particular, there is a y ∈ U that is not in B ∪V . Clearly, this is the required
y, since Clj({y}) ⊆ X rB ⊆ A.

⇐: Let A ∈ OiX and U, V ∈ OX with A∩U * V . Consider x ∈ (A∩U)rV
and the corresponding y given by the hypothesis. Then B = X rClj({y}) ∈
OjX satisfies A ∪ B = X (since Clj({y}) ⊆ A) and U * B ∪ V (since
y ∈ Cl({x}) ⊆ X r V ).

2.5.3. It may be of interest to see a “Heyting” reason why (Fit)⇒(Sfit),
without reference to the coframe Sℓ(L):
Let a � x → y. Then, by (Fit), there is a b ∈ Lj satisfying a ∨ b = 1 and

b → (x → y) � x → y. Then b ∨ x = b ∨ y leads to a contradiction:

b → (x → y) = (b ∧ x) → y = ((b ∧ x) → y) ∧ (y → y) =

= ((b ∧ x) ∨ y) → y = ((b ∧ y) ∨ x) → y =

= ((b ∧ y) → y) ∧ (x → y) ≤ x → y.

2.6.1. Proposition. A subbilocale of a fit biframe is fit.

Proof : Let a = νS(a) ∈ Si, a ∈ Li. Then cS(a) = c(a) ∩ S and c(a) =∧
{o(x) | c(a) ⊆ o(x), x ∈ Lj} so that

cS(a) = S ∩
∧

{o(x) | c(a) ⊆ o(x), x ∈ Lj}

=
∧

{o(x) ∩ S | c(a) ⊆ o(x), x ∈ Lj}.

By 1.3.1, o(x) ∩ S = oS(νS(x)) and hence the statement follows.

2.6.2. Proposition. A biframe is fit iff each of its subbilocales is subfit.
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Proof : It suffices to prove that if every subbilocale of a biframe (L, L1, L2)
is subfit then (L, L1, L2) is fit. Suppose it is not. Then there is an i and an
a ∈ Li such that

c(a) (
⋂

{o(x) | c(a) ⊆ o(x), x ∈ Lj}.

That is, there is a b in
⋂
{o(x) | c(a) ⊆ o(x), x ∈ Lj} that is not in c(a). Set

S =
⋂

{o(x) | c(a) ⊆ o(x), x ∈ Lj}.

We have a � b in S and a = νS(a) ∈ Si. Suppose a ∨ c = 1 for a c ∈ Sj .
Since c ∈ S and a ∨ c = 1 (so that c(a) ⊆ o(c) and hence S ⊆ o(c)) we have
in particular c ∈ o(c) and hence c = c→c = 1. Thus, b ∨ c = 1 and S is not
subfit.

3. Biframes and quasi-nearness

The cover approach (Tukey 1940) does not allow, without radical modifi-
cation, a non-symmetric variant of the concept of nearness while there are no
such obstacles when approaching the structures in the entourage way (Weil
1938). Thus, the reader may expect us to proceed right away to the latter.
This will be discussed in the following section; first, however, we will ap-
proach the non-symmetry, via biframes and their paircovers. This is not an
idle detour. It will be seen that even if one decides for the entourages, the
biframe structure naturally emerges.

3.1. (Generalized) nearness. The standard cover nearness structure in
the pointfree context ([3, 1, 4]), as compared with the nearness as defined
originally in spaces by Herrlich (see [10, 11]) corresponds, rather, to the
regular nearness. The pointfree structure corresponding to general nearness
(or, rather, its general admissibility) was introduced in [12]. As in the regular
case, a cover of a frame L is a subset A ⊆ L such that

∨
A = 1, a cover A

refines a cover B, written A ≤ B, if for every a ∈ A there is a b ∈ B such
that a ≤ b, covers A,B have a common refinement

A ∧B = {a ∧ b | a ∈ A, b ∈ B},

and a nearness N is a filter in the preorder of refinement. The difference
comes with the definition of admissibility: whereas in the standard (regular)
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case we assume that for each a ∈ L, a =
∨
{x | ∃C ∈ N , Cx ≤ a}, in the

generalized case one requires that

o(a) =
∨

{S ∈ Sℓ(L) | ∃C ∈ N , CS ≤ a}. (gadm)

Here,

Cx =
∨

{c ∈ C | c ∧ x 6= 0} and CS =
∨

{c ∈ C | o(c) ∩ S 6= O};

hence Cx ≤ a iff Co(x) ⊆ o(a), that is, the former is the latter reduced to
the open sublocales only. Now if we recall 1.3.3.1 we see that we can reduce
(gadm) to

o(a) =
∨

{c(x) | ∃C ∈ N , Cc(x) ≤ a}

and hence each L admitting a nearness is subfit (recall 1.5). In fact, one has
(see [12]) that L admits a (generalized) nearness iff it is subfit.

3.2. Paircovers. A subset C ⊆ L1×L2 is a paircover of a biframe (L, L1, L2)
if

C̃ = {c1 ∧ c2 | (c1, c2) ∈ C}

is a cover of L (cf. [5, 6]). A paircover C is strong if, for any (c1, c2) ∈ C,
c1 ∧ c2 = 0 implies (c1, c2) = (0, 0).
A paircover C refines a paircoverD, written C ≤ D, if for every (c1, c2) ∈ C

there is a (d1, d2) ∈ D such that ci ≤ di, i = 1, 2. Paircovers C,D have a
common refinement

C ∧D = {(c1 ∧ d1, c2 ∧ d2) | (c1, c2) ∈ C, (d1, d2) ∈ D}.

3.2.1. For any paircover C of (L, L1, L2) and any x ∈ L define

C1x =
∨

{c1 | (c1, c2) ∈ C, c2∧x 6= 0}, C2x =
∨

{c2 | (c1, c2) ∈ C, x∧c1 6= 0}

and CD = {(C1d1, C2d2) | (d1, d2) ∈ D}.

3.2.2. Observations. For every x, y ∈ L and every paircovers C,D, we

have:

(1) C ≤ D & x ≤ y ⇒ Cix ≤ Diy (i = 1, 2).
(2) Ci(Dix) ≤ (CD)ix (i = 1, 2).
(3) If Cix ≤ y then x ≺ y, that is, x∗ ∨ y = 1 (i = 1, 2). In case x, y ∈ Li

then Cix ≤ y implies x ≺i y.
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More generally, for a sublocale S of L set

C1S =
∨

{a | (a, b) ∈ C, o(b) ∩ S 6= O} and

C2S =
∨

{b | (a, b) ∈ C, o(a) ∩ S 6= O}.

3.2.3. Observations.

(1) CiS ≤ a, DiT ≤ b ⇒ (C ∧D)i(S ∩ T ) ≤ a ∧ b (i = 1, 2).
(2) If CiS ≤ a then S ⊆ o(a) (i = 1, 2).
(3) Cio(x) = Cix (i = 1, 2).
(4) C1c(x) =

∨
{a | (a, b) ∈ C, b � x} and C2c(x) =

∨
{b | (a, b) ∈ C, a � x}.

(5) CiS = CiS (i = 1, 2).

(For the last one recall 1.3.3.1.)

3.3. In a biframe (L, L1, L2) one has more: for a sublocale S of L let

cli(S) =
⋂

{c(a) | a ∈ Li, S ⊆ c(a)} = c(
∨

{a ∈ Li | S ⊆ c(a)}) (i = 1, 2).

Of course, S ≤ S ≤ cli(S).

3.3.1. Lemma.

(1) Let a ∈ Li. Then o(a) ∩ S = O iff o(a) ∩ cli(S) = O.

(2) For each paircover C and each sublocale S of L, CiS = Ciclj(S).

Proof : (1) o(a) ∩ S = O ⇔ S ≤ c(a) ⇔ cli(S) ≤ c(a) ⇔ o(a) ∩ cli(S) = O.

(2) This is an immediate consequence of (1):

C1S =
∨

{a | (a, b) ∈ C, o(b) ∩ S 6= O}

=
∨

{a | (a, b) ∈ C, o(b) ∩ cl2(S) 6= O}.

3.4. It follows immediately from 3.3 that
∨

{S ∈ Sℓ(L) | ∃C ∈ N : CiS ≤ a} =
∨

{clj(S) | ∃C ∈ N , Ciclj(S) ≤ a}

=
∨

{c(b) | b ∈ Lj, ∃C ∈ N , Cic(b) ≤ a}

and we may introduce the quasi-admissibility of a system of paircovers N by
requiring that

∀a ∈ Li, o(a) =
∨

{S ∈ Sℓ(L) | ∃C ∈ N , CiS ≤ a}.



(SUB)FIT BIFRAMES AND NON-SYMMETRIC NEARNESS 13

3.5. A quasi-nearness on a biframe (L, L1, L2) is a non-void set N of pair-
covers such that

(N1) The family of strong paircovers of N is a filter-base for N with respect
to ∧ and ≤ defined above, and

(N2) N is quasi-admissible.

3.6. Proposition. A biframe admits a quasi-nearness iff it is subfit.

Proof : ⇒ follows from 3.4.
⇐: We will use the subfitness condition from 2.3.2 to prove the formula in
3.4 for the system of all paircovers. Let a ∈ L1. Consider a b ∈ L2 such that
c(b) ⊆ o(a) (that is, such that a ∨ b = 1). We will prove that C1c(b) ≤ a for
a suitable paircover C. Take

C = {(a, 1), (1, b)}.

Since b ≤ b we have o(b) ∩ c(b) = O and hence in C1c(b) only (a, 1) qualifies
and C1c(b) ≤ a.

From 2.6.1 we now immediately obtain

3.6.1. Corollary. A biframe (L, L1, L2) is fit iff each of its subbilocales

admits a quasi-nearness.

4. (Generalized) nearness: entourages

In this section we will discuss, at last, the general nearness based on en-
tourages (modelling the “neighbourhoods of the diagonal”). As it was men-
tioned earlier, here there is no immediate preference of symmetry. But a
biframe and paircover structure emerges anyway, and the reader will see that
the other approach is natural, and may be even preferred for some purposes.

Recall that the product L ⊕ L of a locale L (i.e., the coproduct of L by
itself in Frm) can be constructed as follows (see e.g. [23, 14]):
First take the Cartesian product L × L as a poset and the corresponding

set of down-sets

D(L× L) = {U ⊆ L× L | ↓U = U 6= ∅}.

Call a U ∈ D(L× L) saturated if

(1) ∀A ⊆ L, ∀b ∈ L, A× {b} ⊆ U ⇒ (
∨
A, b) ∈ U.
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(2) ∀B ⊆ L, ∀a ∈ L, {a} ×B ⊆ U ⇒ (a,
∨
B) ∈ U.

(A and B can be void and hence, in particular, each saturated set contains
the subset n = {(a, 0), (0, b) | a, b ∈ L} and for each (a, b) ∈ L× L,

a⊕ b = ↓(a, b) ∪ n

is saturated).
Then L⊕ L is the frame of all saturated U in D(L× L).

An element E of the localic product L⊕ L is an entourage of L whenever
∨

{x | (x, x) ∈ E} = 1 ([16, 19]).

Let E ∈ L⊕L (or, more generally, a down-set of L×L). For an x ∈ L we
write

E1x =
∨

{a | (a, b) ∈ E, b∧x 6= 0} and E2x =
∨

{b | (a, b) ∈ E, a∧x 6= 0}.

We have, among other, the following obvious

4.1. Observations. For any x, y ∈ L, E, F ∈ L⊕ L and i, j = 1, 2 (i 6= j),

(1) if E ⊆ F and x ≤ y then Eix ≤ Fiy,
(2) Ei(Fix) ≤ (E ◦ F )ix,
(3) (E−1)ix = Ejx (where E−1 = {(y, x) | (x, y) ∈ E}),
(4) Eix ∧ y = 0 iff x ∧ Ejy = 0.

More generally, for a sublocale S of L, we set

E1S =
∨

{a | (a, b) ∈ E, o(b) ∩ S 6= O} and

E2S =
∨

{b | (a, b) ∈ E, o(a) ∩ S 6= O}.

4.2. Proposition. For any E, F ∈ L⊕ L and S, T ∈ Sℓ(L),

(P1) if E ⊆ F and S ≤ T then EiS ≤ FiT ,
(P2) Ei(FiS) ≤ (E ◦ F )iS,
(P3) (E−1)iS = EjS,
(P4) Eio(x) = Eix,
(P5) E1c(x) =

∨
{a | (a, b) ∈ E, b � x}, E2c(x) =

∨
{b | (a, b) ∈ E, a � x},

(P6) EiS = EiS,
(P7) EiS = Eiclj(S),
(P8) if E is an entourage and EiS ≤ a then S ≤ o(a).
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Proof : (P1), (P2) and (P3) are obvious. (P4) is a consequence of the fact
that o(a) ∩ o(x) = O iff a ∧ x = 0, (P5) is a consequence of the fact that
o(a)∩ c(x) = O iff a ≤ x, while (P6) follows from the equivalence o(a)∩S =
O ⇔ o(a) ∩ S = O. (P7) follows similarly as in 3.3.1.

(P8): By (P6), it suffices to prove that EiS ≤ a ⇒ S ≤ o(a). Since E is an
entourage,

S = S ∩ o(
∨

{x | (x, x) ∈ E}) = S ∩
∨

{o(x) | (x, x) ∈ E}.

We are in a co-frame, nevertheless the distribution law

S ∩
∨

{o(x) | (x, x) ∈ E} =
∨

{S ∩ o(x) | (x, x) ∈ E, S ∩ o(x) 6= O}

holds since S is complemented. Then it follows from EiS ≤ a that x ≤ a
and thus

∨
{S ∩ o(x) | (x, x) ∈ E, S ∩ o(x) 6= O} ≤ o(a).

Whenever E is a symmetric entourage (i.e., E−1 = E) we denote the
common element E1S = E2S just by ES.

Now, for an A ∈ D(L× L) we define

κ0(A) = {(x,
∨

S) | {x} × S ⊆ A} ∪ {(
∨

S, y) | S × {y} ⊆ A}

and let κ(A) denote the element
⋂
{E ∈ L ⊕ L | E ⊇ A} of L ⊕ L. The

following useful fact generalizes Lemma 3.1 of [18]:

4.3. Lemma Let A ∈ D(L× L). For any sublocale S of L and i = 1, 2,

κ(A)iS = AiS.

Proof : Consider a sublocale S of L and the non-empty set

E = {U ∈ D(L× L) | A ⊆ U ⊆ κ(A), UiS = AiS}.

(1) If U ∈ E then κ0(U) ∈ E . Indeed:
It suffices to check that κ0(U)1S ≤ U1S. Consider (a, b) ∈ κ0(U) with

o(b) ∩ S 6= O). If (x, y) = (x,
∨
Y ) for some Y such that {x} × Y ⊆ U ,

then there is a non-zero y′ ∈ Y such that o(y′) ∩ S 6= O and (x, y′) ∈ U ,
and therefore x ≤ U1S. Otherwise, if (x, y) = (

∨
X, y) for some X with

X × {y} ⊆ U , then, immediately, x =
∨
X ≤ U1S.

(2) For any non-void X ⊆ E ,
⋃
X ∈ E , since

⋃
XiS =

∨
U∈X UiS. Conse-

quently, T =
⋃

U∈E U belongs to E , i.e., E has a largest element T .
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(3) Then, by (1), κ0(T ) ∈ E . Hence T = κ0(T ), i.e., T ∈ L ⊕ L. Finally,
κ(A) = T ∈ E and therefore κ(A)iS = AiS.

4.3.1. This helps in computing the result of the operators E1S and E2S for
a concrete E. For example, for the entourage

Eab = (a⊕ 1) ∨ (1⊕ b)

where a, b ∈ L satisfy a ∨ b = 1, we have

(Eab)1c(b) = [(a⊕ 1) ∪ (1⊕ b)]1c(b)

=
∨

{x | (x, y) ∈ (a⊕ 1) ∪ (1⊕ b), y � b} = a
(∗)

and similarly

(Eab)2c(a) = b. (∗∗)

4.4. A quasi-nearness on L is a nonvoid system N of entourages in L such
that:

(N1) E ∈ N & E ⊆ F ⇒ F ∈ N .
(N2) E, F ∈ N ⇒ E ∩ F ∈ N .

Of course, if N is a quasi-nearness on L, then the filter N−1 consisting of
the inverse entourages E−1 (E ∈ N ) is also a quasi-nearness on L.

4.5. Proposition. Let N be a quasi-nearness on L. For each i = 1, 2,

Li(N ) =
{
a ∈ L | o(a) =

∨
{S ∈ Sℓ(L) | EiS ≤ a for some E ∈ N}

}

is a subframe of L.

Proof : We prove it for L1. Obviously 1 ∈ L1, and 0 ∈ L1 by (P8).
(1) L1 is closed under binary meets: in fact, if a, b ∈ L1 then

o(a ∧ b) = o(a) ∧ o(b)

=
∨

{S ∩ T | S, T ∈ Sℓ(L), ∃E, F ∈ N , E1S ≤ a, F1T ≤ b}

≤
∨

{S ∈ Sℓ(L) | ∃E ∈ N , E1S ≤ a ∧ b}

≤ o(a ∧ b)

where the last inequalities are consequence of (P1) and (P8) respectively.
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(2) L1 is closed under arbitrary joins: if ai ∈ L1 (i ∈ I) then

o(
∨

i∈I

ai) =
∨

i∈I

o(ai) =
∨

i∈I

∨
{S ∈ Sℓ(L) | ∃Ei ∈ N , (Ei)1S ≤ ai}

=
∨

{S ∈ Sℓ(L) | ∃E ∈ N ∃i ∈ I, E1S ≤ ai}

≤
∨

{S ∈ Sℓ(L) | ∃E ∈ N , E1S ≤
∨

i∈I

ai}

≤ o(
∨

i∈I

ai).

4.6. We say that the pair (L,N ) is a quasi-nearness frame whenever the
quasi-nearness N is quasi-admissible on L, that is, whenever

(N3) the triple (L, L1(N ), L2(N )) is a biframe.

We refer to (L, L1(N ), L2(N )) as the biframe induced by N on L.

Note that this is an extension of the symmetric quasi-admissibility condi-
tion. Indeed, whenever N is symmetric, that is,

(N4) E ∈ N ⇒ E−1 ∈ N

then, evidently, L1(N ) = L2(N ) and therefore (N3) means precisely that
L = L1(N ) = L2(N ).

On the other hand, for a general non-symmetric nearness N , axiom (N3)
means that any x ∈ L is of the form

x =
∨

i∈I

(x1
i ∧ x2

i )

for some x1
i ∈ L1(N ) and x2

i ∈ L2(N ), where for any i,

o(x1
i ) =

∨
{c(b1) | ∃E ∈ N , E1c(b1) ≤ x1

i}

and

o(x2
i ) =

∨
{c(b2) | ∃F ∈ N , F2c(b2) ≤ x2

i}.

But by (P1) and (P3), if E1c(b1) ≤ x1
i and F2c(b2) ≤ x2

i , then

(E ∩ F−1)c(b1 ∨ b2) ≤ x1
i ∧ x2

i .

Consequently, if we denote by N̂ the nearness generated by the quasi-nearnesses
N andN−1, that is, the filter of entourages generated by {E∩E−1 | E ∈ N},
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we may write

o(x) =
∨

i∈I

[o(x1
i ) ∧ o(x2

i )]

=
∨

{c(b1) ∧ c(b2) | ∃E, F ∈ N , E1c(b1) ≤ x, F2c(b2) ≤ x}

≤
∨

{c(b) | ∃E ∈ N̂ , Ec(b) ≤ x} ≤ o(x).

Hence,

o(x) =
∨

{S ∈ Sℓ(L) | ∃E ∈ N̂ , ES ≤ x}

for every x ∈ L.

Remark. Note that if N is a quasi-admissible quasi-nearness on L, then its
conjugate N−1 is also a quasi-admissible quasi-nearness on L.

Analogously with 3.6 we have

4.7. Proposition. A frame L admits a quasi-nearness iff it is the total part

of a subfit biframe.

Proof : Let (L,N ) be a quasi-nearness frame with induced biframe

(L, L1(N ), L2(N )).

Then, for each a ∈ Li(N ), using properties (P7) and (P8) we may obtain

o(a) =
∨

{S ∈ Sℓ(L) | EiS ≤ a for some E ∈ N}

≤
∨

{clj(S) | Eiclj(S) ≤ a for some E ∈ N}

=
∨

{c(b) | b ∈ Lj, Eic(b) ≤ a for some E ∈ N}

≤
∨

{c(b) | b ∈ Lj, a ∨ b = 1} ≤ o(a),

which shows that (L, L1(N ), L2(N )) is subfit.
Conversely, let (L, L1, L2) be a subfit frame and letN be the quasi-nearness

on L generated by the subbasic family of entourages

{Eab | a ∈ L1, b ∈ L2, a ∨ b = 1}
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with induced subframes L1(N ) and L2(N ). By the subfitness of (L, L1, L2)
and identities (∗) and (∗∗) in 4.3.1, we get immediately for each a ∈ Li,

o(a) =
∨

{c(b) | b ∈ Lj, a ∨ b = 1}

≤
∨

{S ∈ Sℓ(L) | ∃E ∈ N , EiS ≤ a} ≤ o(a).

This means that Li ⊆ Li(N ) for i = 1, 2. Hence (L, L1(N ), L2(N )) is also a
biframe and (L,N ) is a quasi-nearness frame.

Remark 4.8. As we have proved elsewhere (see [16, 17, 18, 21, 22]), there
is a Galois correspondence between the cover and the entourage structures,
which yields an equivalence precisely in the quasi-uniform setting (the non-
symmetric case) and the uniform one (the symmetric case): the refinement
axiom is crucial for our proof of the isomorphism. In the generalized nearness
setting, as it is shown in the present paper, there is still a striking parallel
between the two approaches (in the sense that every result one gets on the
former has a corresponding exact counterpart concerning the latter). It re-
mains an open problem to decide wether they produce isomorphic categories;
the answer in the positive would be a surprise, though.
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