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1. Introduction

In [SY12] the last two authors constructed characteristic free projective
resolutions of the Weyl modules for the classical Schur algebra. Then, us-
ing the Schur functor, obtained resolutions by permutation modules of the
co-Specht modules for the symmetric group. This last result allowed them
to prove Conjecture 3.4 of Boltje and Hartman [BH11]. The key ingredi-
ents of [SY12] are the use of the normalised bar resolution in the context of
Borel-Schur algebras and Woodcock’s Theorem [Woo94b], which reduces the
construction of projective resolutions for Weyl modules to the construction of
projective resolutions for rank-one modules for the Borel-Schur algebra. The
original motivation of the present paper was to extend the results of [SY12]
to the context of quantised Schur algebras and Hecke algebras. This is easily
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achieved once one has a quantised version of the generalization of Woodcock’s
theorem given in [SY12].
Fix positive integers n and r, a commutative ring R and an invertible

element q in R. Consider the quantised Schur algebra SR,q (n, r) and the
quantised positive Borel-Schur algebra S+

R,q (n, r). For each partition λ =

(λ1, . . . , λn) of r there is a rank-one module Rλ for S+
R,q (n, r). The induced

module

WR,q
λ := SR,q (n, r)⊗S+

R,q(n,r)
Rλ

is the Weyl module associated with λ. Following [SY12], we work in the
category of S+

R,q (n, r)-modules and use the normalised bar resolution to con-
struct a projective resolution of Rλ. Next we apply the induction functor
SR,q (n, r)⊗S+

R,q(n,r)
− to this resolution and obtain a complex BR,q

∗,λ of finite

length

· · · → BR,q
1,λ → BR,q

0,λ → WR,q
λ → 0,

where each BR,q
k,λ is a projective SR,q(n, r)-module.

To show that this complex is exact we use Theorem 8.4, which is the
quantised version of Woodcock’s Theorem. So BR,q

∗,λ is a projective resolution

of the quantised Weyl moduleWR,q
λ and it is simple to see that this resolution

is universal, that is

BR,q
∗,λ

∼= BZ,t
∗,λ ⊗Z R,

where Z = Z t, t−1 is the universal quantization ring.
Write HR,q for the Hecke algebra over R associated with the symmetric

group Σr. In [BM12], Boltje and Maisch constructed, for each composition
λ = (λ1, . . . , λn) of r, a complex Cλ

∗ of left HR,q-modules and proved that it

is exact in degrees 0 and −1. Specializing to q = 1, Cλ
∗ coincides with the

complex constructed in [BH11]. Suppose that λ is a partition of r. Then
the last module in Cλ

∗ is the dual of the Specht module Sλ over HR,q. It
was proved in [SY12] that in this situation upon specializing to q = 1 the
resulting complex is exact. It is natural to conjecture that the same should
be true for an arbitrary q.
Returning to our setting, we choose n ≥ r and fix λ a partition of r into

at most n parts. We apply the Schur functor

F : SR,q(n, r)-mod → HR,q-mod
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to our resolution BR,q
∗,λ and obtain an exact complex F BR,q

∗,λ which we prove

to be isomorphic to Cλ
∗ . This proves the exactness of Cλ

∗ .
We approach the quantisation of Woodcock’s Theorem, as described above,

via the representation theory of the quantum general linear group G(n) of
degree n, introduced in [DD91]. In fact we take this opportunity to develop
the homological theory previously considered in [Don96] and [Don98]. The
focus here is on a comparison between the homological algebra in the category
of polynomial modules and in the full category of modules for the quantum
group. We work over an arbitrary field K and non-zero parameter q ∈ K.
Let B(n) be the negative Borel (quantum) subgroup of G. We prove in par-

ticular that the derived functors of induction Riind
G(n)
B(n) take polynomial mod-

ules to polynomial modules, Corollary 7.7. Furthermore we show that if V

is a homogeneous polynomial B(n)-module of degree r then Riind
G(n)
B(n)V = 0

for all i > r, Lemma 6.2. In general the tensor product is not commutative
in the category of modules for a quantum group. However, we show that
if L and M are B-modules and L is one dimensional then the B-modules
L⊗M and M ⊗L are isomorphic, Proposition 7.1. Using this property and
a Koszul resolution we show that the polynomial part of the coordinate al-
gebra of B(n) is acyclic for the induction functor. This leads to the fact that
the derived functors of induction applied to a polynomial B(n)-module are
the same whether computed in the polynomial category or the full module
category, Theorem 7.5. Kempf’s Vanishing Theorem for representations of
quantum groups, when expressed in the polynomial category, is essentially
the quantised version of Woodcock’s Theorem, over a field. Some further
work is needed to expressed this in terms of the acyclicity theorem for induc-
tion over Schur algebras, over an arbitrary coefficient ring, mentioned above,
Theorem 8.4.
Though not needed for the application to resolutions we also take the

opportunity to give the generalisation to the quantum Borel subgroup B(n)
of another theorem of Woodcock, [Woo92], Theorem 7 and [Woo94a] (see
also [Woo97] for related material obtained by working with global bases).
This theorem asserts that the extension groups between polynomial B(n)-
modules of the same degree whether calculated in the polynomial category
or the full B(n)-module category are the same, Theorem 5.2. We approach
the quantised version by considering the derived functors of the functor pol ,
which takes a B(n)-module to its largest polynomial submodule. Though
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in detail it looks quite different it is in spirit rather close to the approach
of [Woo92], and we gratefully acknowledge the influence of this unpublished
work.
The organization of the present paper is as follows. We first study the ho-

mological results for quantum G(n) and its negative Borel subgroup. Then
we use this to obtain the quantised version of Woodcock’s Theorem, The-
orem 8.4. In the last part of the paper we construct universal projective
resolutions for quantised Weyl modules. Using these resolutions, we prove
the exactness of Boltje and Maisch complexes for dominant weights.

2. Restriction and induction of comodules

We fix a field K. For a vector space V over K we write V ∗ for the linear
dual HomK(V,K) and if W is also a vector space over K we write simply
V ⊗W for the tensor product V ⊗K W . We write idX for the identity map
on a set X.
For a coalgebra A = (A, δA, ǫA) over K we write Comod(A) for the cat-

egory of right A-comodules and write comod(A) for the category of finite
dimensional right A-comodules. We recall for future use the definition of the
coefficient space of an A-comdodule. Let V = (V, τ) be a right A-comodule
and let {vi : i ∈ I}, be a K-basis of V . The coefficient space cf(V ) is the
K-span of the elements fij ∈ A defined by the equations

τ(vi) =
∑

j∈I

vj ⊗ fji

for i ∈ I. (This space is independent of the choice of basis. For further
properties see [Gre76].)
Let B = (B, δB, ǫB) also be a coalgebra and suppose φ : A → B is a

coalgebra map. Recall that for V = (V, τ) ∈ Comod(A) we have

φ0(V ) = (V, (idV ⊗ φ) ◦ τ) ∈ Comod(B).

If f : V → V ′ is a morphism of right comodules then the same map f : V → V ′

is also a morphism of B-comodules. In this way we have an exact functor
φ0 : Comod(A) → Comod(B), with φ0(f) = f , for f a morphism of A-
comodules. We call φ0 the φ-restriction (or just restriction) functor.
More interestingly perhaps, we have the φ-induction functor

φ0 : Comod(B) → Comod(A). This is described in [Don80], Section 3, and
we briefly recall the construction and some properties. If X is a K-vector
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space (possibly with extra structure) we write |X| ⊗ A for the vector space
X⊗A regarded as an A-comodule with structure map idX⊗δA. Let (W,µ) ∈
Comod(B). The set of all s ∈ W ⊗ A such that

(µ⊗ idA)(s) = (idW ⊗ (φ⊗ idA) ◦ δA)(s) ∈ W ⊗B ⊗A

is an A-subcomodule of |W | ⊗ A, which we denote φ0(W ). If f : W → W ′

is a morphism of B-comodules then the map f ⊗ idA restricts to an A-
comodule map φ0(f) : φ0(W ) → φ0(W ′). In this way we obtain a left exact
functor φ0 : Comod(B) → Comod(A). Let V = (V, λ) ∈ Comod(A) andW =
(W,µ) ∈ Comod(B). We have a natural isomorphism HomB(φ0(V ),W )) →
HomA(V, φ

0(W )), taking α ∈ HomB(φ0(V ),W )) to α̃ = (α⊗ idA) ◦ λ.
Suppose now that A is finite dimensional. We consider the dual alge-

bra S = A∗ = HomK(A,K). Given a right A-comodule V with struc-
ture map τ : V → V ⊗ A we may also regard V as a left S-module with
action αv = (idV ⊗ α)τ(v). If θ : V → V ′ is a morphism of right A-
comodules then, regarding V and V ′ as left S-modules, θ : V → V ′ is also
a morphism in the category of left S-modules. In this way we have an
equivalence between the categories of finite dimensional right A-comodules
and of finite dimensional left S-modules. For finite dimensional right A-
comodules V, V ′ this equivalence of categories induces aK-linear isomorphism
ExtiA(V, V

′) → ExtiS(V, V
′) in each degree i.

If S is a K-algebra and V is a left (resp. right) A-module then the linear
dual V ∗ is naturally a right (resp. left) S-module. Now suppose φ : A→ B is
a morphism of finite dimensional K-coalgebras and let T = B∗. The linear
dual φ∗ : T → S is a K-algebra map. Now A is naturally an (S, S)-bimodule
with left action αa = (idA⊗α)δA(a) and right action aβ = (β⊗ idA)δ(a), for
a ∈ A, α, β ∈ S. We view an S-module also as a T -module via φ∗.
We have the natural linear isomorphism η : V ⊗ A → (V ∗ ⊗ A∗)∗. The

tensor product V ∗ ⊗T A
∗ is a quotient of (V ∗ ⊗ A∗) and we thus identify

(V ∗ ⊗T A
∗)∗ with a subspace of (V ∗ ⊗A∗)∗. From the definitions one checks

that an element y of V ⊗A lies in φ0(V ) if and only if η(y) lies in (V ∗⊗T A
∗)∗.

The map η restricts to an isomorphism of left A-modules

φ0V → (V ∗ ⊗T A
∗)∗.

It follows that the derived functors of φ0 are given as follows.
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Proposition 2.1. Let φ : A → B be a morphism of finite dimensional coal-
gebras over K. Then for V ∈ comod(B) we have

Riφ0V = (TorB
∗

i (V ∗, A∗))∗

for i ≥ 0.

3. The quantum polynomial algebra in n2 variables

We shall work with the quantum general linear groups defined in [DD91].
We briefly recall the construction and some properties, starting with the
construction of the quantum polynomial algebra. We fix n ≥ 1. Let R be a
commutative ring and let q ∈ R. We write AR,q(n) for the R-algebra given
by generators cij, 1 ≤ i, j ≤ n, and relations:

circis = ciscir, for 1 ≤ i, r, s ≤ n;

cjrcis = qciscjr, for 1 ≤ i < j ≤ n, 1 ≤ r ≤ s < n;

cjscir = circjs + (q − 1)ciscjr, for 1 ≤ i < j ≤ n, 1 ≤ r < s ≤ n.

We call the elements cij the coordinate elements of AR,q(n). Since the
relations are homogeneous, AR,q(n) has an R-algebra grading

AR,q(n) =
⊕

r≥0
AR,q(n, r)

in which each coordinate element has degree 1. Then by [DD91], Theo-
rem 1.1.8 the elements

cm11
11 cm12

12 . . . cm1n
1n cm21

21 . . . cmnn

nn ,

with m11, . . . , mnn ≥ 0, form an R-basis of AR,q(n). We make this slightly
more formal.
Let r ≥ 0. As in [Gre07], we write I(n, r) for the set of maps i : {1, . . . , r} →

{1, . . . , n}. We identify i ∈ I(n, r) with the sequence (i1, . . . , ir) in the obvi-
ous way. For i, j ∈ I(n, r) we write cij for the product ci1j1 . . . cirjr . We write
i ≤ j if ia ≤ ja, for all 1 ≤ a ≤ r, and write i < j if i ≤ j and i 6= j. We
write Y (n, r) for the set of all pairs (i, j) ∈ I(n, r) such that i1 ≤ · · · ≤ ir
and whenever, for some 1 ≤ a < r, we have ia = ia+1 then ja ≤ ja+1. We
write Y (n) for the disjoint union of the sets Y (n, r), r ≥ 0.

Lemma 3.1. The elements cij, with i, j ∈ Y (n) form an R-basis of AR,q(n)
and, for r ≥ 0, the elements cij, with i, j ∈ Y (n, r), form an R-basis of
AR,q(n, r).
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We write I for the ideal of AR,q(n) generated by all cij , with 1 ≤ i < j ≤ n.
We leave it to the reader to check (by an easy induction argument using the
defining relations) the following result.

Lemma 3.2. The ideal I has R-basis cij, with (i, j) ∈ Y (n, r) for some r
and ia < ja, for some 1 ≤ a ≤ r.

We set Ā(n) = A(n)/I. For f ∈ A(n) we set f̄ = f + I ∈ Ā(n). For
r ≥ 0, we write Ȳ (n, r) for the set of all (i, j) ∈ Y (n, r) such that i ≥ j. We
set Ȳ (n) =

⋃
r≥0 Ȳ (n, r). As an R-module we have AR,q(n) = I ⊕D, where

D = ⊕(i,j)∈Ȳ (n)Rcij. Hence we have the following.

Lemma 3.3. ĀR,q(n) has R-basis c̄ij, (i, j) ∈ Ȳ (n), and, for r ≥ 0, ĀR,q(n, r)
has R-basis c̄ij, (i, j) ∈ Ȳ (n, r).

4. Quantum general linear groups

Let K be a field. The category of quantum groups over K is the dual of
the category of Hopf algebras over K. More informally, we shall use the
expression “G is a quantum group over K” to indicate that we have in mind
a Hopf algebra over K, which we will denote K[G] and call the coordinate
algebra of G. By the expression “θ : G → H is a morphism of quantum
groups (over K)” we indicate that G and H are quantum groups and that
we have in mind a Hopf algebra morphism from K[H] to K[G], which we
call the comorphism of θ and denote θ♯. We shall say that a quantum group
H is a (quantum) subgroup of a quantum group G over K to indicate that
K[H] = K[G]/IH for some Hopf ideal IH of K[G], which we call the defining
ideal of H in G. If H is a quantum subgroup of the quantum group G then
by the inclusion map i : H → G we mean the quantum group homomorphism
such that i♯ : K[G] → K[H] is the natural map.
Let G be a quantum group over K. By the category of left G-modules

we mean the category of right K[G]-comodules. We write Mod(G) for the
category of left G-modules and mod(G) for the category of finite dimensional
left G-modules. For V,W ∈ Mod(G) and i ≥ 0 we write ExtiG(V,W ) for
ExtiK[G](V,W ). Let H be a quantum subgroup of G. Then we have the

induction functor indGH = φ0 : Mod(H) → Mod(G), where φ = i♯ is the
comorphism of the inclusion map i : H → G. The functor indGH is left exact
so we have the derived functors RiindGH : Mod(H) → Mod(G), for i ≥ 0.
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We work with the quantum coordinate algebra AR,q(n) of the previous
section, now taking R = K and q 6= 0. To simplify notation we will omit
K and q in subscript in the objects defined in the previous section, where
confusion seems unlikely.
By [DD91], Theorem 1.4.2, A(n) has a unique structure of a bialgebra with

comultiplication δ : A(n) → A(n)⊗A(n) and counit ǫ : A(n) → K, satisfying

δ(cij) =
n∑

r=1
cir ⊗ crj , ǫ(cij) = δij

for 1 ≤ i, j ≤ n and where δij is the Kronecker delta.
The quantum determinant

d =
∑

π∈Σn

sgn(π)c1,π(1)c1,π(2) . . . cn,π(n)

is a group-like element of A(n). Here sgn(π) denotes the sign of a permu-
tation π. Furthermore, we have cijd = qi−jdcij for 1 ≤ i, j ≤ n (see [DD91,
Section 4]). It follows that we can form the Ore localisation A(n)d. The bial-
gebra structure on A(n) extends to A(n)d and indeed the localisation A(n)d
is a Hopf algebra. We write G(n) for the quantum group with coordinate
algebra K[G(n)] = A(n)d.
We write B(n) for the quantum subgroup whose defining ideal IB(n) is

generated by all cij, with 1 ≤ i < j ≤ n. We write T (n) for the quantum
subgroup whose defining ideal is generated by all cij with 1 ≤ i, j ≤ n
and i 6= j. The inclusion map A(n) → K[G(n)] gives rise to an injective
map Ā(n) → K[B(n)] by which we identify Ā(n) with a subbialgebra of
K[B(n)]. A G(n)-module V is called polynomial (resp. polynomial of degree
r) if cf(V ) ≤ A(n) (resp. cf(V ) ≤ A(n, r)) and a B(n)-module M is called
polynomial (resp. polynomial of degree r) if cf(M) ≤ Ā(n) (resp. cf(V ) ≤
Ā(n, r)). We shall often identify a polynomial G(n)-module (resp.B(n)-
module) with the corresponding A(n)-comodule (resp. Ā(n)-comodule).
We shall also need the parabolic (quantum) subgroups containing B(n).

We fix a string a = (a1, . . . , am) of positive integers whose sum is n. We let
I(a) be the ideal of K[G(n)] generated by all cij such that 1 ≤ i < j ≤ a1
or a1 + · · · + ar < i < j ≤ a1 + · · · + ar+1 for some 1 ≤ r < m. Then I(a)
is a Hopf ideal and we denote by P (a) the quantum subgroup of G(n) with
defining ideal I(a). Thus we have P (1, 1, . . . , 1) = G(n) and P (n) = B(n).
For 1 ≤ i < m we shall write Pi for the “minimal parabolic” P (a), where
a = (1, 1, . . . , 2, 1, . . . , 1) (with 2 in the ith position).
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We now introduce certain combinatorial objects associated with the rep-
resentation theory of G(n) and its subgroups, following [Don96]. We set
X(n) = Zn. We shall write δn, or simply δ, for (n−1, n−2, . . . , 1, 0) ∈ X(n).
For 1 ≤ i ≤ n we set ǫi = (0, . . . , 0, 1, 0, . . . , 0) (with 1 in the ith position). We
have the dominance order � on X(n): for λ = (λ1, . . . , λn), µ = (µ1, . . . , µn)
we write λ � µ if λ1 + · · · + λi ≤ µ1 + · · · + µi, for 1 ≤ i < n, and
λ1 + · · ·+ λn = µ1 + · · ·+ µn.
We write X+(n) for the set of all λ = (λ1, . . . , λn) ∈ X(n) with λ1 ≥ · · · ≥

λn. Elements ofX(n) will sometimes be called weights and elements ofX+(n)
called dominant weights. We write Λ(n) for the set of polynomial weights,
i.e., the set of λ = (λ1, . . . , λn) ∈ X(n) with all λi ≥ 0, and write Λ+(n) for
the set of polynomial dominant weights, i.e., X+(n)

⋂
Λ(n). We define the

degree of a polynomial weight λ = (λ1, . . . , λn) by deg(λ) = λ1 + · · · + λn.
For r ≥ 0 we define Λ(n, r) ⊂ Λ(n) to be the set of all polynomial weights of
degree r (or compositions of r). We define the length, len(λ), of a polynomial
weight λ to be 0 if λ = 0 and to be the number of non-zero entries of λ if
λ 6= 0.
For λ = (λ1, . . . , λn) ∈ X(n) we have a one dimensional B(n)-module

Kλ: the comodule structure map τ : Kλ → Kλ ⊗ K[B(n)] takes v ∈ Kλ to

v ⊗ (cλ1
11 . . . c

λn
nn + IB(n)). We regard Kλ also as a T (n)-module by restriction.

The modulesKλ, λ ∈ X(n), form a complete set of pairwise non-isomorphic
irreducible T (n)-modules. For a T (n)-module V we have the weight space
decomposition V = ⊕λ∈X(n)V

λ, where V λ is a direct sum of copies of Kλ,
λ ∈ X(n).

For λ ∈ X(n) the induced module ind
G(n)
B(n)Kλ is non-zero if and only if

λ ∈ X+(n). We set ∇(λ) = ind
G(n)
B(n)Kλ, for λ ∈ X+(n). The socle L(λ)

of ∇(λ) is simple. The modules L(λ), λ ∈ X+(n), form a complete set of
pairwise non-isomorphic irreducibleG(n)-modules and the modules L(λ), λ ∈
Λ+(n), form a complete set of pairwise non-isomorphic irreducible polynomial
G(n)-modules. We will write D for the determinant module, i.e., the (one
dimensional) left G(n)-module L(1, . . . , 1).
Let 1 ≤ i < n. Let λ = (λ1, . . . , λn) ∈ X(n) and suppose that m =

λi − λi+1 ≥ 0. We define ∇i(λ) = indPi

B(n)Kλ. Then ∇i(λ) has weights

λ−r(ǫi−ǫi+1), 0 ≤ r ≤ m, each occurring with multiplicity one (see [Don96],
p251).
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We shall need that a G(n)-module whose composition factors have the form
L(λ) with λ ∈ Λ+(n) (resp. λ ∈ Λ+(n, r)) is polynomial (resp. polynomial
of degree r). Given the results of [Don96] this follows from the arguments in
the classical case in [Don86]. We make this explicit.
Let π ⊆ X+(n). We say that a G(n)-module V belongs to π if each

composition factor of V belongs to {L(λ) | λ ∈ π}. For an arbitrary G(n)-
module we write Oπ(V ) for the largest G(n)-submodule of V belonging to
π. Regarding K[G(n)] as the left regular G(n)-module we define A(π) =
Oπ(K[G]). Then, by the arguments for the classical case, [Don86], Section
1.2, one has the following.

Lemma 4.1. A(π) is a subcoalgebra of K[G(n)] and a G(n)-module V belongs
to π if and only if cf(V ) ≤ A(π).

In the case π = Λ+(n, r), r ≥ 0, we have A(π) = A(n, r), see [Don96], p263,
and taking π = Λ+(n), since Λ+(n) =

⋃
r≥0 Λ

+(n, r), we have A(π) = A(n).
Hence the above lemma gives:

Lemma 4.2. A G(n)-module V is polynomial (resp. polynomial of degree
r) if and only if each composition factor of V belongs to {L(λ) |λ ∈ Λ+(n)}
(resp. {L(λ) |λ ∈ Λ+(n, r)}).

Remark 4.3. We note that if M is a polynomial B-module then indGBM is
a polynomial G-module. It is enough to check this for M finite dimensional
since induction commutes with direct limits. By the left exactness of induc-
tion and the Lemma 4.2 it is enough to check this for M one dimensional.
So we may assume that M = Kλ for some λ ∈ Λ(n). But now we have

indGBKλ =




∇(λ), if λ ∈ Λ+(n);

0, if λ 6∈ Λ+(n)

and, in particular, indGBM is polynomial.

5. Extensions of B-modules and of polynomial B-modules

Though it is not needed for the application to resolutions of modules for
the Borel-Schur algebras, we take this opportunity to put on record the quan-
tised version of [Woo97, Theorem 7] giving that, for homogeneous polynomial
B(n)-modules, the extension groups Exti(V,X) are the same whether calcu-
lated in the module category of the Borel-Schur algebra or the full B(n)-
module category. Though the proof given here looks rather different it is
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similar at key points to that of Woodcock in the classical case, [Woo92] and
we gratefully acknowledge the influence of [Woo92]. A later proof was given
in [Woo94a] using the deep theory of cohomology of line bundles on Schubert
varieties due to van der Kallen, [vdK89] and related results are to be found
in the later work [Woo97] using the theory of global bases.
In this section we adopt the following notation. We put B = B(n), A =

Ā(n) and Am = K[c̄m1, c̄m2, . . . , c̄mm], xm = c̄mm, ym = c̄−1
mm , for 1 ≤ m ≤ n.

For α = (α1, . . . , αn) ∈ Λ(n) we put xα = xα1
1 . . . xαn

n and yα = yα1
1 . . . yαn

n .
We write simply d for the restriction of the determinant to the quantum
subgroup B(n), i.e., d = x1 . . . xn.
We have A = A1 ⊗ · · · ⊗ An, see Lemma 3.3, and it is easy to check that

Am/xmAm
∼=




Am−1, for 1 < m ≤ n;

K, for m = 1

as B(n)-modules.
We shall need the following result.

Lemma 5.1. Let λ ∈ Λ(n) and suppose 1 ≤ m ≤ n is such that λm 6= 0.
Let Z be a polynomial B-module such that for each weight µ of Z, we have
µm = µm+1 = · · · = µn = 0. Then we have

ExtiA(Kλ, Z ⊗Am+1 ⊗ · · · ⊗ An) = 0

for all i ≥ 0. In particular, we have

ExtiA(Kλ, A/xmA) = 0

for all i ≥ 0.

Proof : Suppose not and let i be minimal for which the lemma fails. Since
ExtiA(Kλ,−) commutes with direct limits, the lemma fails for some finite
dimensional Z and by the long exact sequence we may assume that Z = Kµ,
for some µ ∈ Λ(n), with µm = µm+1 = · · · = µn = 0. NowKµ⊗Am+1⊗· · ·⊗An

has socle Kµ ⊗K[xm+1, . . . , xn] and so for each weight ν of the socle we have
νm = 0. Since λm 6= 0 there can be no non-zero image of Kλ in the socle of
Kµ ⊗Am+1 ⊗ · · · ⊗ An and therefore HomA(Kλ,Kµ ⊗ Am+1 ⊗ · · · ⊗ An) = 0.
Thus we must have i > 0.
Now we have a short exact sequence of A-comodules (or polynomial B-

modules)

0 → Kµ → A1 ⊗ · · · ⊗ Am−1 → Q→ 0
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and for each weight ν of A1 ⊗ · · · ⊗ Am−1, and hence Q, we have νm = 0.
Tensoring with Am+1 ⊗ · · · ⊗ An we obtain the short exact sequence

0 → Kµ ⊗Am+1 ⊗ · · · ⊗ An →A1 ⊗ · · · ⊗ Am−1 ⊗ Am+1 ⊗ · · · ⊗An

→Q⊗Am+1 ⊗ · · · ⊗ An → 0.

But now A1⊗· · ·⊗Am−1⊗Am+1⊗· · ·⊗An is an injective A-comodule (since
it is a direct summand of A, viewed as the right regular comodule) so we get

ExtiA(Kλ,Kµ ⊗ Am+1 ⊗ · · · ⊗An) = Exti−1
A (Kλ, Q⊗Am+1 ⊗ · · · ⊗ An)

from the long exact sequence. This is 0, by the minimality of i, and so we
are done.

We now consider the functor pol : Mod(B) → Comod(A), taking X ∈
Mod(B) to the largest polynomial submodule of X. For a morphism θ : X →
X ′, of B-modules, pol (θ) : pol (X) → pol (X ′) is the restriction of θ.
For V ∈ Comod(A), X ∈ Mod(B), since the image of any B-module

homomorphism from V to X is contained in pol (X), we have HomB(V,X) =
HomA(V, pol (X)). Thus we get a factorisation of left exact functors

HomB(V,−) = HomA(V,−) ◦ pol .

Moreover, pol (K[B]) = A and it follows that pol takes injective B-modules
to injective A-comodules. Thus, for V ∈ Comod(A), X ∈ Mod(B), we
have a Grothendieck spectral sequence, with second page ExtiA(V,R

jpolX),
converging to Ext∗B(V,X). In particular, if k > 0 and Rjpol (X) = 0 for all
0 < j < k, then we have the 5-term exact sequence

0 → ExtkA(V, polX) →ExtkB(V,X) → HomA(V,R
kpolX)

→Extk+1
A (V, polX) → Extk+1

B (V,X).
(1)

Theorem 5.2. (i) Let X be a polynomial B-module. Then we have
Ripol (X) = 0, for all i > 0.
(ii) If V is also a polynomial B-module then the above spectral sequence

degenerates and we have ExtiA(V,X) = ExtiB(V,X), for all i ≥ 0.

Proof : For k > 0 we prove by induction the statement P (k): for all poly-
nomial B-modules V ′, X ′ we have RipolX ′ = 0 for all 0 < i < k and
ExtiA(V

′, X ′) = ExtiB(V
′, X ′), for all 0 ≤ i < k.

Note that P (1) is true since HomA(V
′, X ′) = HomB(V

′, X ′) for polynomial
B-modules V ′, X ′. We now assume P (k) and deduce P (k + 1).
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We claim that RkpolA = 0. Assume, for a contradiction, that this is not
the case. Then the B-socle of RkpolA is not zero so we have
HomB(Kλ, R

kpolA) 6= 0 for some λ ∈ Λ(n). Dimension shifting, using the
short exact sequence

0 → A→ K[B] → K[B]/A→ 0

gives Extk−1
B (Kλ,K[B]/A) 6= 0. Now K[B] has an ascending exhaustive fil-

tration A ⊆ d−1A ⊆ d−2A ⊆ · · · and Extk−1
B (Kλ,−) commutes with direct

limits so we must have Extk−1
B (Kλ, d

−sA/A) 6= 0 for some s > 0. Hence we
have Extk−1

B (Kλ, y
αA/A) 6= 0, for some α ∈ Λ(n). We choose α, β ∈ Λ(n)

with βi ≤ αi, for 1 ≤ i ≤ n, and with deg(α) − deg(β) minimal subject to
the condition Extk−1

B (Kλ, y
αA/yβA) 6= 0. Note that in fact we must have

deg(α) = deg(β) + 1 since if γ ∈ Λ(n) with βi ≤ γi ≤ αi, for all i, then we
get a short exact sequence

0 → yγA/yβA→ yαA/yβA→ yαA/yγA→ 0

and so we must have

Extk−1
B (Kλ, y

γA/yβA) 6= 0 or Extk−1
B (Kλ, y

αA/yγA) 6= 0.

Thus we have α = β + ǫm, for some 1 ≤ m ≤ n. Hence we have

Extk−1
B (Kλ, y

β+ǫmA/yβA) 6= 0

and so
Extk−1

B (Kλ ⊗Kβ+ǫm,Kβ+ǫm ⊗ (yβ+ǫmA/yβA)) 6= 0.

Now Kβ+ǫm ⊗ (yβ+ǫmA/yβA) is isomorphic to A/xmA so we have

Extk−1
B (Kν, A/xmA) 6= 0,

where ν = λ+ β + ǫm. By the inductive hypothesis, we have

Extk−1
A (Kν, A/xmA) = Extk−1

B (Kν, A/xmA) 6= 0

and this contradicts Lemma 5.1. Hence we have RkpolA = 0. Since Rkpol
commutes with direct limits we also have RkpolZ = 0, where Z is a direct
sum of copies of the right regular comodule A. Let X ′ be any polynomial
B-module. Then X ′ embeds in a direct sum of copies of A, via the comodule
structure map. Thus we have a short exact sequence 0 → X ′ → Z → Y → 0,
where Z is a direct sum of copies of A and Y is a polynomial B-module. Now
the derived functors of pol give the exact sequence

Rk−1polY → RkpolX ′ → RkpolZ = 0.
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But also, we have Rk−1polY = 0, from the inductive hypothesis, so that
RkpolX ′ = 0.
Now for V ′, X ′ ∈ Comod(A) the 5-term exact sequence (1) gives an isomor-

phism ExtkA(V
′, X ′) → ExtkB(V

′, X ′). This completes the proof of P (k + 1).
Hence P (k) is true for all k. Thus we have RipolX = 0 for all i > 0. This
proves (i).
(ii) follows from (i).

Corollary 5.3. A B-module is polynomial if and only if all its weights are
polynomial.

Proof : If V is a polynomial B-module then V embeds, via the comodule
structure map, into a direct sum of copies of Ā(n) and it follows that all
weights of V are polynomial. To prove that a B-module V with all weights
polynomial is polynomial it suffices, by local finiteness, to consider the case in
which V is finite dimensional. If V is one dimensional then it is isomorphic
to Kλ, for some λ ∈ Λ(n), and hence polynomial. Suppose now that V
has dimension bigger than one and let L be a one dimensional submodule.
We may assume inductively that V/L is polynomial. We have a natural
isomorphism Ext1Ā(n)(V/L, L) → Ext1B(V/L, L), by the theorem and it follows

that every extension of V/L by L arises from an Ā(n)-comodule, in particular
V is polynomial.

Let r ≥ 0. We define the negative (quantised) Borel-Schur algebra S−(n, r)
to be the dual algebra of Ā(n, r). We now obtain the quantised version of a
theorem of Woodcock, [Woo92], Theorem 7.

Corollary 5.4. Let V and X be polynomial B-modules which are homo-
geneous of degree r. Then we have ExtiS−(n,r)(V,X) = ExtiB(V,X), for all
i ≥ 0.

Proof : We have

ExtiS−(n,r)(V,X) = ExtiĀ(n,r)(V,X) = ExtiĀ(n)(V,X) = ExtiB(V,X).

6. A vanishing theorem for polynomial modules

To save on notation we shall abbreviate G(n), B(n), T (n) to G,B, T where
confusion seems unlikely.
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We shall need a bound for the vanishing of RiindGBKλ, for λ ∈ Λ(n). We do
this by an inductive argument using the function b that we now introduce.
For each λ ∈ Λ(n) we shall define a non-negative integer b(λ). We define b
on Λ(n, r), for r ≥ 0 by descending induction on the dominance order. If λ
is dominant or if λj − λj+1 = −1 for some 1 ≤ j < n we set b(λ) = 0. In
particular this defines b(λ) for λ = (r, 0, . . . , 0). If λ ∈ Λ(n, r) is not of the
form already considered then we have λj − λj+1 = −mj, with mj ≥ 2, for
some 1 ≤ j < n. We define

bj(λ) = max{b(λ+ t(ǫj − ǫj+1)) | 0 < t < mj}+ 1.

and

b(λ) = min{bj(λ) | 1 ≤ j < n, λj − λj+1 ≤ −2}. (2)

By an easy induction one sees that if λ = (λ1, . . . , λm, 0, . . . , 0) with
λ1, . . . , λm 6= 0 then b(λ) = b(µ), where µ = (λ1 − 1, . . . , λm − 1, 0, . . . , 0).

Lemma 6.1. For λ ∈ Λ(n) we have b(λ) ≤ deg(λ)− len(λ).

Proof : Since Λ(1) consists of dominant weights the result holds for n = 1.
Suppose that it is false in general and let n be minimal for which it fails.
Let λ ∈ Λ(n) be a counterexample of smallest possible degree . If λ =
(λ1, . . . , λm, 0, . . . , 0) with λ1, . . . , λm 6= 0 then

b(λ) = b(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

≤ deg(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

− len(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

= deg(λ)−m− len(λ1 − 1, . . . , λm − 1, 0, . . . , 0)

≤ deg(λ)−m = deg(λ)− len(λ).

Hence there exists some 1 ≤ j < n such that λj = 0, λj+1 > 0. If λj+1 = 1
then b(λ) = 0 and λ is not a counterexample. Hence we have λj+1 = m ≥ 2.
But now we have

b(λ) ≤ bj(λ)

= max{b(λ+ t(ǫi − ǫi+1) | 0 < t < m}+ 1.

We consider µ = λ + t(ǫj − ǫj+1) with 0 < t < m. Note that µ has entry
t 6= 0 in the jth position and entry λj+1 − t ≥ λj+1 − (m − 1) = 1 in the
(j + 1)st position. Moreover, λ and µ agree in all positions other than j and
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j + 1. Hence we have len(µ) = len(λ) + 1. Moreover, µ is greater than λ, in
the dominance order. Hence we have

b(µ) ≤ deg(µ)− len(µ) = deg(λ)− len(λ)− 1

i.e., b(µ) + 1 ≤ deg(λ)− len(λ).
Since this is true for all µ of the form λ + t(ǫi − ǫi+1) with 0 < t < m,

from (2), we have b(λ) ≤ deg(λ)− len(λ).

Lemma 6.2. (i) For λ ∈ Λ(n) we have RiindGBKλ = 0 for all i > b(λ), and
hence for i ≥ deg(λ) > 0.
(ii) If V is a polynomial B-module of degree r then RiindGBV = 0 for i > r.

Proof : (i) We argue by induction on b(λ). If b(λ) = 0 then either λ is
dominant or λj−λj+1 = −1 for some 1 ≤ j < n, and RiindGBKλ = 0 for i > 0,
[Don96], Theorem 3.4 and Lemma 3.1, (ii), and the result holds. So suppose
b(λ) > 0 and the result holds for all µ ∈ Λ(n) with b(µ) < b(λ). We have
b(λ) = bj(λ) + 1 for some 1 ≤ j < n with λj − λj+1 = −m, m ≥ 2. Consider
the module∇j(λ+(m−1)(ǫj−ǫj+1)+δ). Writing µ = λ+(m−1)(ǫj−ǫj+1)+δ
we have

µj − µj+1 = −m+ 2(m− 1) + 1 = m− 1.

Hence ∇j(λ+ (m− 1)(ǫj − ǫj+1) + δ) has weights λ+ (m− 1)(ǫj − ǫj+1) + δ,
λ+(m−2)(ǫj−ǫj+1)+δ, . . ., λ+δ, each occurring with multiplicity 1. Hence
the module ∇j(λ+(m− 1)(ǫj − ǫj+1+ δ)⊗K−δ has bottom weight λ and we
have a short exact sequence of B-modules

0 → Kλ → ∇j(λ+ (m− 1)(ǫj − ǫj+1) + δ)⊗K−δ → Q→ 0. (3)

where Q has weights λ+ i(ǫj − ǫj+1), with 1 ≤ i ≤ m− 1.

Now we have Riind
Pj

B K−δ = 0 for all i, by [Don96], Lemma 3.1 (ii) and so
by the tensor identity and [Don96], Proposition 1.3 (iii), we have

Riind
Pj

B (∇j(λ+ (m− 1)(ǫj − ǫj+1) + δ)⊗K−δ) = 0

for all i. By the spectral sequence arising from the transitivity of induction,
[Don96], Proposition 1.2, we get RiindGB(∇j(λ+(m−1)(ǫj−ǫj+1)+δ)⊗K−δ) =

0 for all i. Hence from (3) we get RiindGBKλ = Ri−1indGBQ.
But a weight ν of Q has the form λ + t(ǫj − ǫj+1), with 1 ≤ t ≤ m − 1,

and b(ν) ≤ b(λ) − 1. So that for i > b(λ) we have i − 1 > b(ν) and hence
Ri−1indGBKν = 0, by the inductive hypothesis. Since this holds for all weights
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of Q, i.e., for all composition factors Kν of Q, we get Ri−1indGBQ = 0, from
the long exact sequence, and hence RiindGBKλ = 0
(ii) This follows from (i) and the long exact sequence.

7. Kempf vanishing for quantised Schur algebras

At this point we introduce the natural left G-module for use later in this
section. We write E for the K-vector space with basis e1, . . . , en. Then E is
a G-module via the comodule structure map τ : E → E ⊗ K[G] defined by
τ(ei) =

∑n
j=1 ej⊗cji, 1 ≤ i ≤ n. We shall also need the symmetric powers SrE

and exterior powers
∧rE of E. We recall the construction from [DD91] and

[Don98]. Let T (E) be the tensor algebra ⊕r≥0E
⊗r. Thus T (E) is a graded

K-algebra, in such a way that each ei ∈ E has degree 1. The ideal generated
by all eiej − ejei, 1 ≤ i, j ≤ n, is homogeneous and is a G-submodule, so the
(usual) symmetric algebra S(E) inherits a grading S(E) =

⊕
r≥0 S

r(E) and
each Sr(E) is a G-submodule of S(E). Also, the ideal of T (E) generated
by the elements e2i , ekel + qelek, 1 ≤ i ≤ n, 1 ≤ k < l ≤ n, is homogeneous
and a G-submodule and we write

∧
(E) for the quotient algebra. Thus

∧
(E)

inherits a grading
∧
(E) = ⊕r≥0

∧r(E) and each
∧r(E) is a G-submodule.

For i = (i1, . . . , ir) ∈ I(n, r) we write ei for ei1 ⊗ · · · ⊗ eir ∈ E⊗r and êi for
the image of ei in

∧r(E). The module
∧r(E) has basis êi, with i ∈ I(n, r),

running over all maps with i1 > · · · > ir.

Proposition 7.1. (i) Let 1 ≤ r ≤ n and let Lr be the simple B-module with
weight ǫr. Then for any B-moduleM the K-linear map φM : M⊗Lr → Lr⊗M
given by

φ(m⊗ l) = qα1+···+ αrl ⊗m

for α = (α1, . . . , αn) ∈ X(n) and m ∈Mα, is a B-module isomorphism.
(ii) For any B-module M and one dimensional B-module L the B-modules

M ⊗ L and L⊗M are isomorphic.

Proof : (i) Certainly φM is a linear isomorphism so it remains to show that it
is B-module homomorphism. We shall call a B-module M admissible if φM
is a B-module homomorphism. So the point is to show that all B-modules
are admissible. Note also that admissibility is preserved by isomorphism. Let
M and N be B-modules. Then the map φM⊗N : M ⊗N ⊗ L→ L⊗M ⊗N
factorizes as (φM ⊗ idN)◦ (idM ⊗φN) so that admissibility is preserved under
tensor products.
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Suppose now that M is a submodule of N . Then the map φN : N ⊗ Lr →
Lr ⊗N restricts to φM : M ⊗Lr →M ⊗Lr. Thus if N is admissible then so
isM . Similarly, if N is admissible then so is the quotient N/M . By the local
finiteness of B-modules it suffices to prove that finite dimensional B-modules
are admissible.
We now prove that all G-modules are admissible. Note that if M is one

dimensional then the twisting map θ : M⊗Lr → Lr⊗M , given by θ(m⊗ l) =
(l⊗m), for l ∈ Lr, m ∈M , is a B-module map and φM is a scalar multiple of
θ. Hence one dimensional B-modules are admissible. Now if M is any finite
dimensional G-module then D⊗r ⊗M is polynomial for some r ≥ 0. Hence
M is isomorphic to a module of the form Z ⊗ N , where Z is the dual of
D⊗r and N is polynomial. Hence it suffices to prove that finite dimensional
polynomial modules are admissible.
Note that if M = M1 ⊕ · · · ⊕Mt, for G-modules M1, . . . ,Mt then φM =

φM1
⊕ · · · ⊕ φMt

so that if each Mi is admissible then so is M . Now if M is a
polynomialG-module then, for some r ≥ 0, we may writeM = M0⊕· · ·⊕Ms,
where Mr is polynomial of degree r, for 0 ≤ r ≤ s. Hence it suffices to prove
that for each r, all polynomial G-modules of degree r are admissible.
We now check that the natural module E is admissible. Let Z be the

subspace of K[B] spanned by the elements c̄nic̄rr, 1 ≤ i ≤ n. It is seen from
the defining relations that Z is also spanned by c̄rr c̄ni, 1 ≤ i ≤ n. We fix a
non-zero element l0 of Lr. The subspace Z is a left B-submodule of K[B] and
we have B-module isomorphisms θ : E ⊗ Lr → Z, η : Lr ⊗ E → Z satisfying
θ(ei ⊗ l0) = c̄nic̄rr and η(l0 ⊗ ei) = c̄rr c̄ni, for 1 ≤ i ≤ n.
Hence we have an isomorphism ψ = η−1◦θ : E⊗Lr → Lr⊗E. We consider

first the case r = n. The element c̄nn commutes with the elements c̄ni and
ψ : E ⊗ Ln → Ln ⊗ E is the twisting map, taking ei ⊗ l0 → l0 ⊗ ei, for
1 ≤ i ≤ n. The map φE is qψ and hence is a homomorphism. Now suppose
that r < n. For 1 ≤ i ≤ r we have θ(ei ⊗ l0) = c̄nic̄rr = qc̄rr c̄ni = η(ql0 ⊗ ei)
and hence ψ(ei ⊗ l0) = ql0 ⊗ ei. For i > r we have θ(ei ⊗ l0) = c̄rr c̄ni = c̄nic̄rr
(from the defining relations) and so θ(ei ⊗ l0) = η(l0 ⊗ ei). We have shown
that the B-module homomorphism ψ : E ⊗ Lr → Lr ⊗ E is given by

ψ(ei ⊗ l0) =




ql0 ⊗ ei, if 1 ≤ i ≤ r;

l0 ⊗ ei, if r < i ≤ n.

Thus ψ = φE and therefore φE is a B-module homomorphism.
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Since the class of admissible modules is closed under taking tensor products
and quotients we get that the jth symmetric power SjE is admissible for all
j ≥ 0. Now we get that for any β = (β1, . . . , βn) ∈ Λ(n) the module SβE =
Sβ1E⊗ · · ·⊗SβnE is admissible. But these modules SβE are injective in the
category of polynomial G-modules and every finite dimensional polynomial
G-module embeds in a direct sum of copies of the modules SβE, [Don98],
Section 2.1. Hence every finite dimensional polynomial module is admissible
and hence all G-modules are admissible.
The left regular B-module K[B] is admissible since it is the image of the

restriction homomorphism K[G] → K[B]. Hence a direct sum of copies
of K[B] is admissible. Let M be a B-module. Then the structure map
τ : M →M ⊗K[B] embeds M into a direct sum of copies of the left regular
B-module and hence M is admissible. This complete the proof of (i).
(ii) We have L = Kλ, for some λ ∈ Λ(n). If λ = 0 there is nothing to

prove. If λ 6= 0 and λ ∈ Λ(n) we may write λ = µ + ǫr, for some 1 ≤ r ≤ n
and µ ∈ Λ(n). Then Kλ

∼= Kµ ⊗ Lr so we get

Kλ ⊗M ∼= Kµ ⊗ Lr ⊗M ∼= Kµ ⊗M ⊗ Lr

by part (i) and now it follows by induction on degree that Kλ⊗M is isomor-
phic to M ⊗Kλ. Finally, if λ = µ− τ , where µ, τ ∈ Λ(n) then

Kτ ⊗Kλ ⊗M ∼= Kµ ⊗M ∼= M ⊗Kµ

∼= M ⊗Kτ ⊗Kλ
∼= Kτ ⊗M ⊗Kλ.

So Kτ ⊗ Kλ ⊗M is isomorphic to Kτ ⊗M ⊗ Kλ and tensoring on the left
with the dual of Kτ gives the desired result.

Corollary 7.2. Let t ≥ 1. Let Vj be a polynomial B-module of degree rj, for
1 ≤ j ≤ t and let Mj be a G-module for 1 ≤ j ≤ t+ 1. Then we have

RiindGB(M1 ⊗ V1 ⊗ · · · ⊗Mt ⊗ Vt ⊗Mt+1) = 0

for i > r1 + · · ·+ rt.

Proof : By the long exact sequence we may assume that each Vi is one dimen-
sional. Then by the PropositionM1⊗V1⊗· · ·⊗Mt⊗Vt⊗Mt+1 is isomorphic
to M ⊗ V , where M = M1 ⊗ · · · ⊗Mt+1 and V = V1 ⊗ · · · ⊗ Vt and so the
result follows from the tensor identity and Lemma 6.2(ii).

Remark 7.3. Recall (or check, by dimension shifting) that if m ≥ 0 and

0 → Xr → Xr−1 → · · · → X0 →M → 0
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is an exact sequence of B-modules such that RiindGBXj = 0 for all i > m+ j

then RiindGBM = 0 for all i > m. In particular if RiindGBXj = 0 for all i > j

then RiindGBM = 0 for all i > 0.

Proposition 7.4. We have

RiindGBĀ(n) =




A(n), if i = 0;

0, if i > 0.

Proof : We first consider the case i = 0. The natural map π : A(n) → Ā(n)
gives rise to a G-module map π̃ : A(n) → indGBĀ(n), given by

π̃(f) =
m∑

i=1

π(fi)⊗ f ′
i

where δK[G](f) =
∑m

i=1 fi ⊗ f ′
i ∈ A(n)⊗K[G]. Now if π̃(f) = 0 then applying

ǫK[B] ⊗ idK[G] we get

0 =
m∑

i=1

ǫK[B]π(fi)f
′
i =

m∑

i=1

ǫK[G](fi)f
′
i = f.

Hence π̃ is injective. Now the inclusion Ā(n) of K[B] gives rise to an injec-
tive G-module homomorphism indGBĀ(n) → indGBK[B] = K[G]. Moreover,
indGBĀ(n) is polynomial, by Remark 4.3, so that this map goes into A(n).
Hence we have a composition of injective G-module homomorphisms

A(n) → indGBĀ(n) → A(n).

But now, restricting to degree r we get an injective homomorphismA(n, r) →
A(n, r) and since A(n, r) is finite dimensional this map is surjective, for all
r ≥ 0. Hence the composite A(n) → indGBĀ(n) → A(n) is surjective and the
second map indGBĀ(n) → A(n) is a G-module isomorphism.
We now suppose i > 0. Let Ar be the subaglebra of Ā(n) generated by the

elements c̄r1, . . . , c̄rr. Then Ar is a B-submodule and the multiplication map
A1 ⊗ · · · ⊗ An → Ā(n) is a B-module isomorphism (see Lemma 3.3).
Let 0 ≤ m < n and let Vm be the B-submodule of E spanned by ej, with

m < j ≤ n. Let V = Vm. For r ≥ 0 we write
∧r V for the subspace of

∧rE
spanned by êi, with i ∈ I(n, r), ia > m for 1 ≤ a ≤ r. Since this is the image
of the B-submodule V ⊗r of E⊗r under the natural map E⊗r →

∧r E we have
that

∧r V is a B-submodule of
∧r E. Similarly the ideal J , say, of S(E)

generated by V is a B-submodule. We write S(E/V ) for the K-algebra and
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B-module S(E)/J . We write Sr(E/V ) for the rth homogeneous component
of S(E/V ).
Let Um be the B-submodule of A(n) spanned by c̄m1, . . . , c̄mm. Now we

have a B-module homomorphism θ : E → Um, sending ei to c̄mi, for 1 ≤
i ≤ m, and to 0 for m < i ≤ n. Then θ induces a B-module isomorphism
S(E/Vm) → Am. Hence we have

Ā(n, r) ∼=
⊕

r=r1+···+rn

Sr1(E/V1)⊗ · · · ⊗ Srn(E/Vn). (4)

By [Don96], Lemma 3.3(ii), we have that, for r > 0, the K-linear map
ψ :

∧r E → E ⊗
∧r−1E, given by

ψ(êi) =
r∑

a=1
(−1)a−1eia ⊗ êi1...̂ia...ir

for ∈ I(n, r) with i1 > · · · > ir (where îa indicates that ia is omitted) is a
G-module homomorphism. Combining these maps with the multiplication
maps Sb(E)⊗E → Sb+1(E), b ≥ 0, (also G-module maps) in the usual way,
for a ≥ 0, we obtain the Koszul resolution

0 →
∧aE → · · · → Sa−2(E)⊗

∧2E → Sa−1(E)⊗ E → Sa(E) → 0.

By restricting the maps in the above we obtain, in the usual way, the Koszul
resolution (cf.[Jan03, II 12.12 (i)])

0 →
∧a Vm → · · · → Sj(E)⊗

∧a−j Vm

→ · · · → Sa(E) → Sa(E/Vm) → 0.

Tensoring all such together, for 1 ≤ m ≤ n, we obtain a resolution

· · · → Y1 → Y0 → Sr1(E/V1)⊗ · · · ⊗ Srn(E/Vn) → 0

where each term Ys is a direct sum of modules of the form M1 ⊗ Z1 ⊗ · · · ⊗
Mt ⊗Zt with each Mi a G-module and each Zj polynomial of degree dj, say,

d1 + · · · + dt = s. Now from Corollary 7.2, we have that RiindGBYs = 0 for
i > s and hence by Remark 7.3 we have Ri(Sr1(E/V1)⊗· · ·⊗Srn(E/Vn)) = 0
for all i > 0. Hence by (4) above we have RiindGBĀ(n) = 0, for all i > 0.

Theorem 7.5. Let φ : Ā(n) → k[B] and ψ : A(n) → k[G] be the inclu-
sion maps. Let π : A(n) → Ā(n) be the restriction map. Then, for V ∈
Comod(Ā(n)), we have RiindGB(φ0V ) ∼= ψ0R

iπ0V for all i ≥ 0.
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Proof : If M is a polynomial B-module then indGBM is a polynomial G-
module, by Remark 4.3. Hence we have

indGB ◦ φ0 = ψ0 ◦ π
0 : Comod(Ā(n)) → Mod(G).

We write F = indGB ◦ φ0 = ψ0 ◦ π
0. Now ψ0 is exact so we have RF iV =

ψ0R
iπ0V . An injective Ā(n)-comodule is a direct summand of a direct sum

of copies of the left regular comodule Ā(n). So it follows from the Propo-
sition 7.4 that φ0 takes injective objects to indGB-acyclic objects. Hence we
have a Grothendieck spectral sequence, with second page RiindGB ◦ Rjφ0V
converging to R∗FV . But φ0 is exact, so the spectral sequence degenerates
and we have RiFV ∼= RiindGB(φ0V ) = ψ0R

iπ0V .

Remark 7.6. Slightly less formally, identifying Comod(Ā(n)) with the full
subcategory of B-modules whose objects are the polynomial modules and iden-
tifying Comod(A(n)) with the subcategory of G-modules whose objects are the
polynomial modules, we have Riπ0V ∼= RiindGBV for a polynomial B-module
V .

The Theorem 7.5 has the following corollary, generalising Remark 4.3, but
which may also be proved by a straightforward dimensional shifting argu-
ment.

Corollary 7.7. If V is a polynomial B-module then RiindGBV is a polynomial
G-module, for all i ≥ 0.

However, the main point of the discussion is to demonstrate the following
result, which follows from Kempf’s Vanishing Theorem for G, as in [Don96],
Theorem 3.4.

Corollary 7.8. (Kempf Vanishing for polynomial modules.) Consider the
restriction map π : A(n) → Ā(n). For λ ∈ Λ+(n) we have

Riπ0Kλ =




∇(λ), if i = 0;

0, if i > 0.

Let π(r) : A(n, r) → Ā(n, r) be the restriction of π. Now

π = ⊕∞
r=0π(r) : A(n) = ⊕∞

r=0A(n, r) → Ā(n, r).

If V ∈ Comod(Ā(n)) then we may write V uniquely as V =
⊕∞

r=0 V (r), where
V (r) ∈ Comod(Ā(n, r)) (or less formally, V (r) is polynomial of degree r). It
follows that Riπ0V =

⊕∞
r=0R

iπ(r)0V (r). Hence we get:
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Corollary 7.9. (Kempf Vanishing for homogeneous polynomial modules.)
Let r ≥ 0 and let π(n, r) : A(n, r) → Ā(n, r) be the restriction map. For
λ ∈ Λ+(n, r) we have

Riπ(n, r)0Kλ =




∇(λ), if i = 0;

0, if i > 0.

Let S(n, r) = A(n, r)∗ and S−(n, r) = Ā(n, r)∗. Then from Proposition 2.1
we get :

Corollary 7.10. (Kempf Vanishing for Schur algebras) For λ ∈ Λ+(n, r) we
have

Tor
S−(n,r)
i (K∗

λ, S(n, r)) =




∇(λ)∗, if i = 0;

0, if i > 0.
.

(Here K∗
λ denotes the right S−(n, r)-dual module of Kλ.)

8. General coefficient rings

We shall work with Schur algebras over general coefficient rings. We will
use the universal coefficient ring Z = Z t, t−1 . First we consider the Schur
algebra SQ(t),t(n, r) over the field of rational functions in the parameter t. We
define SZ,t(n, r) to be

{ξ ∈ SQ(t),t(n, r) | ξ(f) ∈ Z for all f ∈ AZ,t(n, r)}

which, by Lemma 3.1, is a Z-form of SQ(t),t(n, r). For an arbitrary com-
mutative ring and a unit q in R we define, by base change via the ring
homomorphism from Z to R, taking t to q, the R-algebra

SR,q(n, r) = R⊗Z SZ,t(n, r).

It is easy to check that, for R a field and q a unit in R this is consistant
with our earlier definition, i.e., that the homomorphism Z → R, taking t to
q induces an isomorphism AR,q(n, r)

∗ → R ⊗Z SZ,t(n, r).
In the same way we define the negative (quantised) Borel-Schur subalgebra

S−
R,q(n, r) of SR,q(n, r). We define S−

Q(t),t(n, r) = ĀQ(t),t(n, r)
∗. The coalgebra

AQ(t),t(n, r) has a Z-form AZ(n, r) spanned as a Z-module by the elements
c̄ij,Q(t),t, with i, j ∈ I(n, r). We define S−

Z,t(n, r) to be

{ξ ∈ S−
Q(t),t(n, r) | ξ(f) ∈ Z for all f ∈ AZ,t(n, r)}
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which, by Lemma 3.3 is a Z-form of S−
Q(t),t(n, r). For an arbitrary com-

mutative ring and a unit q in R we define, by base change via the ring
homomorphism from Z to R taking t to q, the R-algebra

S−
R,q(n, r) = R⊗Z S

−
Z,t(n, r).

It is easy to check that, for R a field and q a unit in R this is consistent
with our earlier definition, i.e., that the homomorphism Z → R, taking t to
q induces an isomorphism AR,q(n, r)

∗ → R ⊗Z S
−
Z,t(n, r).

The positive Borel-Schur algebra S+
R,q(n, r) is defined in an analogous way.

We define A+
Q(t),t(n) = AQ(t),t(n)/I, where I is the ideal of AQ(t),t(n) generated

by the elements cij with 1 ≤ j < i ≤ n. Then A+
Q(t),t(n) has a natural

coalgebra grading
A+

Q(t),t(n) =
⊕

r≥0

A+
Q(t),t(n, r).

For a nonnegative r we define S+
Q(t),t(n, r) to be the Q(t)-algebra dual of

A+
Q(t),t(n, r). We write A+

Z,t(n, r) for the image of AZ,t(n, r) under the natural

map AQ(t),t(n, r) → A+
Q(t),t(n, r). Then A+

Z,t(n, r) is a Z-form of A+
Q(t),t(n, r)

and we define S+
Z,t(n, r) to be

{ξ ∈ S+
Q(t),t(n, r) | ξ(f) ∈ Z for all f ∈ A+

Z,t(n, r)}.

For an arbitrary commutative ring and a unit q in R we define, by base
change via the ring homomorphism from Z to R taking t to q, the R-algebra

S+
R,q(n, r) = R⊗Z S

+
Z,t(n, r).

We identify S−
R,q(n, r) and S

+
R,q(n, r) with R-subalgebras of SR,q(n, r) in the

obvious way.

We now generalise Corollary 7.10 to an arbitrary commutative ground ring
from a general result. This is presumably well known but we include it here
since we were unable to find a suitable reference. For an algebra S over a
commutative ring R and maximal ideal M of R with residue field K = R/M
we write SK for the K-algebra K ⊗R S obtained by base change. Further,
if D is a left (resp. right) S-module we write DK for the left (resp. right)
SK-module K⊗R D obtained by base change.

Proposition 8.1. Let R be a commutative Noetherian ring. Let S be an
R-algebra which is finitely generated and projective as an R-module. Let
D be a right S-module and E a left S-module. Suppose that D and E are
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finitely generated and projective as R-modules. Suppose further that for each
maximal ideal M of R we have

TorSK

i (DK, EK) = 0

for all i > 0 (where K = R/M). Then we have TorSi (D,E) = 0 for all i > 0.

Proof : We first make a reduction to the case in which R is local. So we
first assume the result in the local case. Let M be a maximal ideal of R
and K = R/M . Then we have the RM -algebra SM obtained by localising
at M . The RM -module DM (resp.EM) obtained by localisation is naturally
a left (resp. right) SM -module. Also, for i ≥ 0, we have the localisation
TorSi (D,E)M of the R-module TorSi (D,E). Moreover, by (the argument of)
[Mat70], (3.E), we have

TorSi (D,E)M ∼= TorSM

i (DM , EM) (5)

and

TorK⊗RSM

i (K⊗R DM ,K⊗ EM) ∼= TorSK

i (DK, EK) = 0

for i > 0. Thus, for i > 0, we get TorSi (D,E)M = 0 for all maximal ideals.
Since S is a finitely generated R-module and R is a Noetherian ring, the
R-module TorSi (D,E) is finitely generated. Therefore TorSi (D,E) = 0.
We now assume that R is local with maximal ideal M and K = R/M . We

make a reduction to the case i = 1. Suppose that TorS1 (D,E) is zero for
all D,E as above but that the result is false. We choose i > 1 as small as
possible such that TorSi (D,E) 6= 0 for some D,E as above. We choose an
epimorphism from a finitely generated projective S-module P onto E and
consider the corresponding short exact sequence of S-modules

0 → N → P → E → 0.

Then N is finitely generated and projective as an R-module. Hence we have
a short exact sequence of SK-modules

0 → NK → PK → EK → 0

with PK projective as an SK-module. Hence we have

TorSj (D,N) = TorSj+1(D,E) and TorSK

j (DK, NK) = TorSK

j+1(DK, EK)

for j ≥ 1. So by the minimality of i we have TorSi−1(D,N) = 0 and therefore

also TorSi (D,E) = 0, a contradiction.
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Hence it suffices to prove that TorS1 (D,E) = 0 for all D,E satisfying the
hypotheses. We now consider the right exact functor F from the category of
finitely generated S-modules to K-spaces, F(X) = XK ⊗SK

EK. Note that F
factorizes: F is isomorphic to G ◦H, where H is a functor from S-modules to
SK-modules, H(X) = XK and G is a functor from the category of SK-modules
to K-spaces G(Y ) = Y ⊗SK

EK. Moreover, the functors G and H are right
exact and H takes projective S-modules to projective SK-modules. Hence,
for X ∈ mod(S), there is a Grothendieck spectral sequence with second page
(LiG◦LjH)X converging to (L∗F)X. TakingX = D, sinceD is projective as
an R-module we have (LjH)D = 0 for all j > 0. Hence the spectral sequence
degenerates and we have (LiF)D = (LiG)(H(D)) for all i ≥ 0. Hence we
have (LiF)D = TorSK

i (DK, EK), and from the hypotheses, (LiF)D = 0 for
all i > 0.
But also, for a right S-moduleX we have F(X) = XK⊗SK

EK = K⊗R(X⊗S

E). This gives another factorisation: F is the composite P ◦ Q, where Q is
the functor from right S-modules to R-modules, Q(X) = X ⊗S E and P is
the functor from R-modules to K-spaces P(Y ) = K⊗R Y . For X projective,
X ⊗S E is a projective R-module. Hence, for X a right S-module, there is a
Grothendieck spectral sequence, with second page (LiP ◦LjQ)X converging
to (L∗F)X. In particular (see [Wei94], Corollary 5.8.4), we have the 5-term
exact sequence

(L2F)X → (L2P)(Q(X)) → P(L1Q(X))

→ (L1F)X → (L1P)Q(X) → 0.

Taking X = D we obtain the exact sequence

TorSK

2 (DK, EK) →TorR2 (K, D ⊗S E) → K⊗R TorS1 (D,E)

→TorSK

1 (DK, EK) → TorR1 (K, D ⊗S E) → 0.

But TorSK

i (DK, EK) = 0, for i > 0, and so TorR1 (K, D ⊗S E) = 0. Hence
D⊗R E is a projective R-module, see [Mat70], Section 18, Lemma 4. Hence
TorR2 (K, D ⊗S E) = 0 and hence K ⊗R TorS1 (D,E) = 0, and hence, by
Nakayama Lemma, TorS1 (D,E) = 0.

Let R be a commutative ring with Noetherian subring R0. Let φ : X → Y
be an R0-module homomorphism. It is easy to check (and we leave this to
the reader) that if for every subring R′ of R containing R0 which is finitely
generated over R0, the R

′-module homomorphism φR′ : R′⊗R0
X → R′⊗R0

Y
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is injective then the R-module homomorphism φR : XR → YR (obtained by
base change) is injective.

Lemma 8.2. Let R be a commutative ring and let R0 be a Noetherian sub-
ring. Let S be an R0-algebra, finitely generated and projective as an R0-
module. Let M be a right S-module and N a left S-module and suppose that

M and N are finitely generated and projective over R0. If Tor
SR′

i (MR′, NR′) =
0 for all i > 0, and all subrings R′ of R containing R0 and finitely generated
over R0, then TorSR

i (MR, NR) = 0 for all i > 0.

Proof : Choose an S-module surjection P → N , where P is a finitely projec-
tive S-module and let

0 → H → P → N → 0 (6)

be the corresponding short exact sequence. Then we have that
MR′ ⊗SR′

HR′ →MR′ ⊗SR′
PR′, is injective, i.e.,

R′ ⊗R0
(M ⊗R0

H) → R′ ⊗R0
(M ⊗R0

P )

is injective (whenever R′ is a subring of R finitely generated over R0, since

Tor
SR′

1 (MR′, NR′) = 0). Hence

R ⊗R0
(M ⊗R0

H) → R⊗R0
(M ⊗R0

P )

is injective, i.e., MR ⊗SR
HR →MR ⊗SR

PR is injective and therefore

TorSR

1 (MR, NR) = 0.

Now for i > 1 it follows that TorSR

i (MR, NR) = 0 using (6) and dimension
shifting.

Let λ ∈ Λ(n, r). Then we have the one dimensional module Kλ for the
quantised Borel subgroup B(n) over K = Q(t). Thus Kλ is naturally a
left S−

Q(t),t(n, r)-module. The structure map τ : Kλ → Kλ ⊗ K[B] takes

v ∈ Kλ to v ⊗ c̄λ, where c̄λ = c̄λ1
11 . . . c̄

λn

11 . Thus, for 0 6= v0 ∈ Kλ and
ξ ∈ S−

Z,t(n, r) we have ξ(v0) = ξ(c̄λ)v0 ∈ Zv0. We thus obtain an S−
Z,t(n, r)-

moduleZλ = Zv0, free of rank one overZ and determined up to isomorphism.
Given an arbitrary commutative ring R and unit q we obtain, by base change,
(via the homomorphism from Z to R taking t to q) the S−

R,q(n, r)-module

Rλ = R ⊗Z Zλ. We write R∗
λ for the right S−

R,q(n, r)-module dual of Rλ.

Similarly we construct an S+
R,q(n, r)-module, also denoted Rλ, free of rank

one over R.
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Theorem 8.3. Let R be a commutative ring and let q be a unit in R. Let
λ ∈ Λ+(n, r). Then we have

Tor
S−

R,q(n,r)
i (R∗

λ, SR,q(n, r)) = 0

for all i > 0.

Proof : The result for R Noetherian follows from Corollary 7.10 and Propo-
sition 8.1 and the result for general R follows from Lemma 8.2.

We shall also give the version of this result for the positive Borel-Schur
algebra. Suppose J is an anti-automorphism of a ring S and that S has
subrings S− and S+ interchanged by J . Given a right S−-module (resp. left)
M we write MJ for the same group M regarded as a left (resp. right) S+-
module with action xm = mJ(x) (resp.mx = J(x)m),m ∈M , x ∈ S+. Note
that if M is S, regarded as a right S−-module via right multiplication, then
MJ is isomorphic to S regarded as a left S+-module via left multiplication.
Similarly ifM is S, regarded as a left S−-module via left multiplication, then
MJ is isomorphic to S regarded as a right S+-module via right multiplication.
If M is a right S−-module and N is a left S−-module then we have

TorS
−

i (M,N) ∼= TorS
+

i (NJ ,MJ)

for all i ≥ 0.
Recall that, by [Don98], pg. 82, we have an involutary anti-automorphism

J of the Schur algebra SK,q(n, r) over a field K. For i ∈ I(n, r) we write d(i)
for the number of pairs (a, b) such that 1 ≤ a < b ≤ r and ia < ib. Then, for
i, j ∈ I(n, r), we have

cji(ξ)q
d(j) = cij(J(ξ))q

d(i)

(see [Don98], p83) and clearly J is determined by this property. Taking
K = Q(t) and q = t, it is easy to check that J preserves SZ,t(n, r) and
interchanges S−

Z,t(n, r) and S+
Z,t(n, r). Hence J induces, for a general com-

mutative ring R and unit q ∈ R, an anti-automorphism, which we also denote
J , of SR,q(n, r) which interchanges S−

R,q(n, r) and S+
R,q(n, r). Moreover, for

λ ∈ Λ(n, r), starting with the left S−
R,q(n, r)-module Rλ, we have that (R∗

λ)
J

is the left S+
R,q(n, r)-module also denoted by Rλ. Thus from Theorem 8.3 we

get our quantised version of Woodcock’s Theorem.
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Theorem 8.4. Let R be a commutative ring and let q be a unit in R. Let
λ ∈ Λ+(n, r). Then we have

Tor
S+
R,q(n,r)

i (SR,q(n, r), Rλ) = 0

for all i > 0.

9. The normalised bar construction for the algebra S+
R,q (n, r)

From now on n and r are arbitrary fixed positive integers. We say that
i ∈ I(n, r) has content λ ∈ Λ(n, r), and write i ∈ λ, if

λm = # { a | 1 ≤ a ≤ r, ia = m} , 1 ≤ m ≤ n.

For λ ∈ Λ(n, r), we denote by l(λ) the multi-index
(
1λ1, . . . , nλn

)
. Of course,

l(λ) ∈ λ. Let π ∈ Σr and i ∈ I(n, r). We define

iπ =
(
iπ(1), . . . , iπ(r)

)
.

This gives an action of Σr on I(n, r). We will denote by Σλ the Young
subgroup of Σr that corresponds to λ, that is Σλ is the stabiliser of l (λ).
Recall that AQ(t),t(n, r) has basis { cij | (i, j) ∈ Y (n, r)}. Let

{ ξij | (i, j) ∈ I(n, r)}

be the dual basis of SQ(t),t(n, r), that is

ξij(ci′,j′) =




1, i = i′, j = j′

0, (i′, j′) ∈ Y (n, r), (i, j) 6= (i′, j′).

Then it is straightforward that { ξij | (i, j) ∈ Y (n, r)} is a Z-basis of SZ,t(n, r).
We will also denote by the same symbol ξij the image of ξij in SR,q(n, r) under
base change. For λ ∈ Λ(n, r), we will write ξλ for ξl(λ),l(λ).
Note that in Section 2 of [Don98] there is used a slightly different pa-

rameterisation of the set { ξij | (i, j) ∈ Y (n, r)}. As we will refer the results
of [Don98], we will explain this in more detail. First we remark that ev-
ery element in Y (n, r) can be written as (l(λ), j) for some λ ∈ Λ(n, r) and
j ∈ I(n, r). Now, let U be the subset of pairs (l (λ) , j) in I(n, r) × I(n, r)
such that λ ∈ Λ(n, r) and j1 ≥ · · · ≥ jλ1

, jλ1+1 ≥ · · · ≥ jλ1+λ2
and so on.

For every λ ∈ Λ(n, r), there is a permutation πλ ∈ Σλ of order 2 such that
(l(λ), j) ∈ Y (n, r) if and only if (l (λ) , jπλ) ∈ U . Since the generators cab
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and cab′ commute for any b and b′, we have cl(λ),j = cl(λ),jπλ
. Thus we get for

any (i, j) ∈ Y (n, r) and (i′, j′) ∈ U that

ξij(ci′,j′) = ξij (ci′,j′πλ
) =




1, i = i′, j = j′πλ

0, otherwise.

Therefore ξij in our notation corresponds to ξi,jπλ
in the notation of [Don98].

Using the above identification, from [Don98], page 38, for λ, µ ∈ Λ(n, r)
we obtain

ξλξijξµ =




ξij, i ∈ λ, j ∈ µ,

0, otherwise.

Moreover, 1 =
∑

λ∈Λ(n,r) ξλ is an orthogonal idempotent decomposition of the
identity.
Similarly to Lemma 3.2, we have that the kernel of the projection

f : AQ(t),t(n, r) ։ A+
Q(t),t(n, r)

has basis

{ cij | (i, j) ∈ Y (n, r) but not i ≤ j} .

Thus for any (i, j) ∈ Y (n, r) such that i ≤ j, we get that the restriction
of ξij to Ker(f) is zero. Therefore we can consider ξij as an element of
S+
Q(t),t(n, r) = A+

Q(t),t(n, r)
∗. Using a dimension argument we get that

{ ξij | (i, j) ∈ Y (n, r), i ≤ j} (7)

is a Q(t)-basis of S+
Q(t),t(n, r). Obviously, it is also a Z-basis of S+

Z,t(n, r) and,

by base change, an R-basis for any S+
R,q(n, r).

We now recall the normalised bar construction. Note that this is a special
case of the construction described in Chapter IX, §7 of [ML63] and its detailed
treatment can be found in Section 3 of [SY12].
Let S be a ring with identity and S ′ a subring of S. We assume that there

is an epimorphism of rings p : S → S ′ that splits the natural inclusion of S ′

into S. Write K for the kernel of p. Then K is an S ′-bimodule.
For every S-module M we define the chain complex

B∗ (S, S
′,M) = (Bk (S, S

′,M) , dk)k≥−1
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as follows:

B−1 (S, S
′,M) =M, B0 (S, S

′,M) = S ⊗M,

Bk (S, S
′,M) = S ⊗K⊗k ⊗M, ∀k ≥ 1,

dk =
k∑

t=0
(−1)tdkt : Bk (S, S

′,M) → Bk−1 (S, S
′,M) ,

where all the tensor products are over S ′ and the S-module homomorphisms
dkt : Bk (S, S

′,M) → Bk−1 (S, S
′,M), k ≥ 0, 0 ≤ t ≤ k are given by

d00 (s⊗m) = sm

dk0 (s⊗ s1 ⊗ · · · ⊗ sk ⊗m ) = ss1 ⊗ s2 ⊗ · · · ⊗ sk ⊗m

dkt (s⊗ s1 ⊗ · · · ⊗ sk ⊗m) = s⊗ · · · ⊗ stst+1 ⊗ · · · ⊗m, 1 ≤ t ≤ k − 1

dkk (s⊗ s1 ⊗ · · · ⊗ sk ⊗m) = s⊗ s1 ⊗ · · · ⊗ sk−1 ⊗ skm, k ≥ 0.

The complex (B (S, S ′,M) , d) is exact and is called the normalised bar res-
olution of M over S. Now we specialize this construction to the case of the
quantised Borel-Schur algebra.
Define

L = LR,q =
⊕

(i,i)∈Y (n,r)

Rξii =
⊕

λ∈Λ(n,r)

Rξλ

and
J = JR,q =

⊕

(i,j)∈Y (n,r)

i<j

Rξij.

Then L⊕ J = S+
R,q(n, r).

Proposition 9.1. The R-module LR,q is a split subalgebra of S+
R,q(n, r) and

JR,q is a split ideal of S+
R,q(n, r).

Proof : It is obvious that LR,q is a subalgebra of S+
R,q(n, r).

Now, we will check that JR,q is an ideal of S+
R,q(n, r). By a base change

argument, it is enough to check that JZ,t is an ideal of S+
Z,t(n, r) and this

can be reduced to showing that JQ(t),t(n, r) is an ideal of S+
Q(t),t(n, r).

Let (i, j), (i′, j′) ∈ Y (n, r) such that i ≤ j and i′ ≤ j′. Then the coefficient
of ξλ in the expansion of the product ξi,jξi′,j′ in the basis (7) of S+

Q(t),t(n, r) is
given by

(ξi,jξi′,j′)
(
cl(λ),l(λ)

)
=

∑

h∈I(n,r)

ξi,j
(
cl(λ),h

)
ξi′,j′

(
ch,l(λ)

)
,
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where cij denotes the image of cij under the epimorphism

AQ(t),t(n, r) ։ A+
Q(t),t(n, r).

However cl(λ),h 6= 0 and ch,l(λ) 6= 0 imply that l(λ) ≤ h ≤ l(λ). Hence

(ξi,jξi′,j′)
(
cl(λ),l(λ)

)
= ξi,j

(
cl(λ),l(λ)

)
ξi′,j′

(
cl(λ),l(λ)

)
,

which is zero, if i 6= j or i′ 6= j′. This proves that the product ξi,jξi′,j′ lies in
JQ(t),t, if ξi,j ∈ JQ(t),t or ξi′,j′ ∈ JQ(t),t.

For any λ ∈ Λ(n, r) we can apply the normalised bar construction to
S+
R,q(n, r), L, and the rank-one module Rλ.

Denote Bk(S
+
R,q(n, r), L, Rλ) by B

+
k,λ for k ≥ −1. We get

B+
−1,λ = Rλ, B

+
0,λ = S+

R,q (n, r)⊗L Rλ,

B+
k,λ = S+

R,q (n, r)⊗L J ⊗Lk ⊗L Rλ, k ≥ 1.

For any µ ∈ Λ(n, r), M ∈ mod-L and N ∈ L-mod, we have

(M ⊗L Rξµ)⊗R (Rξµ ⊗L N) ∼= M ⊗L Rξµ ⊗L N.

Thus

M ⊗L N ∼= M ⊗L L⊗L N ∼=
⊕

µ∈Λ

(M ⊗L Rξµ)⊗R (Rξµ ⊗L N)

∼=
⊕

µ∈Λ

Mξµ ⊗R ξµN,

since M ⊗L Rξµ ∼= Mξµ and Rξµ ⊗L N ∼= ξµN . Hence

B+
0,λ

∼=
⊕

µ∈Λ

S+
R,q (n, r) ξµ ⊗R ξµRλ

= S+
R,q (n, r) ξλ ⊗R Rλ

∼= S+
R,q (n, r) ξλ,

since ξµRλ = 0 unless µ = λ. Further

B+
k,λ

∼=
⊕

µ(1),...,µ(k+1)∈Λ

S+
R,q (n, r) ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R . . .

⊗R ξµ(k)J ξµ(k+1) ⊗R ξµ(k+1)Rλ.

As { ξij | (i, j) ∈ Y (n, r) , i < j} is an R-basis of J , we get that ξµJ ξτ is
zero, unless µ ⊲ τ . If µ ⊲ τ , then ξµJ ξτ has an R-basis

{ ξij | (i, j) ∈ Y (n, r) , i < j, j ∈ τ, i ∈ µ} .
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Thus for every k ≥ 1 we can write

B+
k,λ

∼=
⊕

µ(1)⊲...⊲µ(k)⊲λ

S+
R,q (n, r) ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R · · · ⊗R ξµ(k)J ξλ.

Note that B+
k,λ is zero for k sufficiently large.

Given µ ⊲ λ, we define Ω+
k (λ, µ) to be the set of all sequences

(i(1), j(1)), . . . , (i(k), j(k))

of elements in Y (n, r) such that i(1) ∈ µ, j(k) ∈ λ, and

i(1) < j(1) ∼ i(2) < j(2) ∼ i(3) < · · · < j(k),

where j ∼ i means that i and j have the same content. Then we have
isomorphisms of S+

R,q(n, r)-modules

B+
k,λ

∼=





S+
R,q(n, r)ξλ, k = 0

⊕
µ⊲λ

(
S+
R,q (n, r) ξµ

)#Ω+
k (λ,µ) , k ≥ 1.

(8)

So we get the following result

Theorem 9.2. Let λ ∈ Λ(n, r). Then the complex B+
∗,λ is a projective reso-

lution of Rλ over S+
R,q(n, r).

Now consider λ ∈ Λ+(n, r). The Weyl module associated with λ is

Wλ = SR,q(n, r)⊗S+
R,q(n,r)

Rλ.

By Theorem 8.4, Rλ is an acyclic module for the functor SR,q ⊗S+
R,q(n,r)

−.

Therefore B∗,λ := SR,q(n, r) ⊗S+
R,q(n,r)

B+
∗,λ is a projective resolution of Wλ.

Moreover, since

SR,q(n, r)⊗S+
R,q(n,r)

S+
R,q(n, r)

∼= SR,q(n, r),

we get the following theorem.

Theorem 9.3. Let λ ∈ Λ+(n, r). Define the complex Bλ as follows:

B−1,λ =Wλ, B0,λ = SR,q(n, r)ξλ,

and for k ≥ 1, we set Bk,λ to be
⊕

µ(1)⊲...⊲µ(k)⊲λ

µ(1),...,µ(k)∈Λ(n,r)

SR,q (n, r) ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R · · · ⊗R ξµ(k)J ξλ.
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Define d0 to be the canonical projection of SR,q(n, r)ξλ on Wλ, and for k ≥ 1
define dk : Bk,λ → Bk−1,λ to be the R-linear extension of the map

x0 ⊗ x1 ⊗ · · · ⊗ xk 7→
k−1∑

t=0
(−1)tx0 ⊗ · · · ⊗ xtxt+1 ⊗ · · · ⊗ xk.

Then Bλ is a projective resolution of Wλ over SR,q(n, r).

We will show now that Bλ is stable under base change. Our resolutions
for a moment will get additional indices to emphasize dependence on R and
q ∈ R. Let R and R′ be commutative rings, θ : R→ R′ a ring homomorphism,
q ∈ R and q′ := θ(q) ∈ R′ invertible elements. Since SR,q(n, r) ⊗R R

′ ∼=
SR′,q(n, r) and B

R
k,λ are free SR,q(n, r)-modules for k ≥ 0, we get that (BR

k,λ⊗R

R′, k ≥ 0) and (BR′

k,λ, k ≥ 0) are isomorphic complexes. Moreover, from the
commutative diagram with exact rows

BR
1,λ ⊗R R

′ d1
//

∼=
��

BR
0,λ ⊗R R

′ d0
//

∼=
��

WR
λ ⊗R R

′ //

∃!∼=
��
�

�

�

0

BR′

1,λ

d1
// BR′

0,λ

d0
// WR′

λ
// 0,

it follows that BR
∗,λ ⊗R R

′ and BR′

∗,λ are isomorphic also in degree −1.

10. The Hecke algebra and resolutions of co-Specht mod-

ules

In this section we will use the notation of [DJ86] but will denote by lng (σ)
the length of σ ∈ Σr. The Hecke algebra H = HR,q associated with Σr over
R is free as an R-module with basis {Tσ |σ ∈ Σr}, where

TsTσ =




Tsσ, if lng(sσ) = lng(σ) + 1

qTsσ + (q − 1)Tσ, otherwise,

for σ, s ∈ Σr with lng(s) = 1.
In [BM12] Boltje and Maisch constructed for every composition λ of r

a chain complex C̃λ
∗ of H-modules. These complexes are liftings to the q-

setting of the corresponding RΣr-module complexes described in [BH11]. It
was proved in [SY12], that C̃λ

∗ is a permutation resolution of the co-Specht
modules HomR(S

λ, R) for q = 1 and λ a partition of r. In this section we
will prove a similar result for any invertible q in R.
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Choose any n ≥ r, and let

ω = (1, . . . , 1, 0, . . . , 0) ∈ Λ(n, r)

u = (1, 2, . . . , r) ∈ I(n, r).

Note that u = l (ω). Then (see [Don98, Section 0.23])

{ ξu,uπ |π ∈ Σr}

is an R-basis of ξωSR,q(n, r)ξω and

ξωSR,q(n, r)ξω → H

ξu,uπ 7→ Tπ−1

is an isomorphism of R-algebras. Therefore we have the Schur functor

F : SR,q(n, r)-mod → H-mod

V 7→ ξωV.

Applying F to the resolution Bλ ofWλ with λ ∈ Λ+(n, r), we obtain an exact
sequence F (Bλ). It is our aim to prove that F (Bλ) and C̃

λ
∗ are isomorphic

chain complexes of H-modules. This will prove that the complexes C̃λ
∗ are

resolutions of the co-Specht modules HomR(S
λ, R) over H.

We start by reminding the reader of some facts on Hecke algebras. By
[DJ86, Lemma 1.1] each right coset of the Young subgroup Σλ in Σr contains
a unique element of minimal length, the distinguished coset representative of
Σλ in Σr. We denote byDλ the set of these elements. Given two compositions
λ and µ, we also define Dλ,µ = Dλ∩D

−1
µ . By [DJ86, Lemma 1.6] the set Dλ,µ

is a system of Σλ-Σµ double coset representatives in Σr.
Recall that every element of Y (n, r) is of the form (l (λ) , j) for some λ ∈

Λ(n, r) and j ∈ I(n, r). It is easy to see (cf. [DD91, pp. 188-189]), that for
given λ, µ ∈ Λ(n, r), there is a bijective correspondence

{ (l(λ), j) ∈ Y (n, r) | j ∈ µ} → Dλ,µ, (9)

defined as follows. For a given pair (l(λ), j) the set
{
π ∈ Σr

∣∣∣ l(µ)π−1 = j
}

is a Σµ-orbit, and thus contains a unique distinguished element d̄ of D−1
µ . We

define d as the representative of ΣλdΣµ in Dλ,µ.
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For λ ∈ Λ(n, r), define xλ :=
∑

π∈Σλ

Tπ and Mλ := xλH. Then the R-module

HomH(M
µ,Mλ) is free and has an R-basis

ϕλ,µ
d

∣∣∣∣ d ∈ Dλ,µ ,

where
ϕλ,µ
d (xµ) =

∑

π∈ΣλdΣµ

Tπ, d ∈ Dλ,µ.

Theorem 3.2.5 and Corollary 3.2.6 in [DD91] say that there is an algebra
isomorphism

SR,q(n, r) →
⊕

µ,λ∈Λ(n,r)

HomH(M
µ,Mλ) (10)

ξl(λ),j 7→ ϕλ,µ
d ,

where the correspondence (l(λ), j) 7→ d is given by (9).
Denote by T (λ, µ) the set of all λ-tableaux with content µ and by T rs(λ, µ)

the set of all row semistandard λ-tableaux with content µ. Write

T λ =

1 2 . . . λ1
λ1 + 1 λ1 + 2 . . . . . . . . . λ1 + λ2
. . .

λ1 + · · ·+ λn−1 + 1 . . . . . . . . . r

and for each i ∈ I(n, r), let T λ
i be the λ-tableaux

T λ
i =

i1 i2 . . . iλ1

iλ1+1 iλ1+2 . . . . . . . . . iλ1+λ2

. . .
iλ1+...λn−1+1 . . . . . . . . . ir.

Recall that (i, j) ∈ Y (n, r) if and only if i1 ≤ i2 ≤ · · · ≤ ir and jν ≤ jν+1 if
iν = iν+1, 1 ≤ ν ≤ r − 1. Therefore there is a bijective correspondence

{ (l (λ) , j) ∈ Y (n, r) | j ∈ µ} → T rs (λ, µ)

(l (λ) , j) 7→ T λ
j

that in combination with (9) induces the bijection

Dλ,µ ↔ T rs (λ, µ) . (11)

Boltje and Maisch say that a λ-tableaux in T (λ, µ) is ascending if, for every
a ∈ N, the ath row of this tableau contains only entries which are greater
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than or equal to a. They denote the set of all ascending elements of T rs (λ, µ)
by T ∧(λ, µ). One has T ∧ (λ, µ) 6= ∅ if and only if µ E λ, if and only if
T λ
l(µ) ∈ T ∧(λ, µ). Notice that for j ∈ I(n, r), the λ-tableau T λ

j is ascending if

and only if l (λ) ≤ j. Therefore we have a bijective correspondence

Y (λ, µ)∧ := { (l (λ) , j) ∈ Y (n, r) | j ∈ µ, l (λ) ≤ j} → T ∧ (λ, µ)

(l(λ), j) 7→ T λ
j .

Denote by D∧
λ,µ the image of Y (λ, µ)∧ in Dλ,µ under the correspondence (9).

Boltje and Maisch define for each µ E λ

Hom∧
H(M

µ,Mλ) :=
⊕

d∈D∧

λ,µ

Rϕλ,µ
d ⊂ HomH(M

µ,Mλ).

Then under the isomorphism (10), Hom∧
H(M

µ,Mλ) corresponds to
⊕

(l(λ),j)∈I2(λ,µ)∧
Rξl(λ),j .

But, since
{
ξl(λ),j

∣∣∣ (l(λ), j) ∈ Y (n, r), l(λ) ≤ j, λ ∈ Λ
}

is an R-basis of S+
R,q(n, r) and for any ν, τ ∈ Λ(n, r)

ξνξijξτ =




ξij, if i ∈ ν, j ∈ τ

0, otherwise,

we get that Hom∧
H(M

µ,Mλ) corresponds to ξλS
+
q (n, r)ξµ. We saw in Sec-

tion 9 that S+
R,q(n, r) = L ⊕ J . But if λ ⊲ µ, we have ξλLξµ = 0. Hence

Hom∧
H(M

µ,Mλ) corresponds to ξλJ ξµ if λ ⊲ µ.

Next we define the Boltje-Maisch complex Cλ
∗ . We will restrict ourselves

to the case when λ is a partition of r. For every right H-module N the
R-module HomR(N,R) has the structure of a left H-module given by

(hε)(n) := ε(nh),

where h ∈ H, ε ∈ HomR(N,R), and n ∈ N . So given an R-module N ′, the
R-module HomR(N,R)⊗R N

′ can be viewed as an H-module via

h(ε⊗ n′) = (hε)⊗ n′,

where h ∈ H, ε ∈ HomR(N,R), and n
′ ∈ N ′.
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For each λ ∈ Λ+(n, r), Boltje and Maisch define a complex

C̃λ
∗ : 0 → Cλ

a(λ)

dλa(λ)
−→ Cλ

a(λ)−1

dλa(λ)−1
−→ · · ·

dλ1−→ Cλ
0

dλ0−→ Cλ
−1 → 0

in the following way:

Cλ
−1 = HomR(S

λ, R),

Cλ
k =

⊕

µ(1)⊲...⊲µ(k)⊲λ

µ(1),...,µ(k)∈Λ(n,r)

HomR Mµ(1)

, R ⊗R Hom∧
H(M

µ(2)

,Mµ(1)

)

⊗R · · · ⊗R Hom∧
H(M

λ,Mµ(k)

).

The differential dλk : C
λ
k → Cλ

k−1 is given by the sum
k−1∑
t=0

(−1)tdkt, where for

k ≥ 1 and 1 ≤ t ≤ k − 1, we set

dk0(ε⊗ φ1 ⊗ · · · ⊗ φk) = εφ1 ⊗ φ2 ⊗ · · · ⊗ φk,

dkt(ε⊗ φ1 ⊗ · · · ⊗ φk) = ε⊗ φ1 ⊗ · · · ⊗ φtφt+1 ⊗ · · · ⊗ φk,
(12)

and d0 : HomR(M
λ, R) → HomR(S

λ, R) is defined to be the restriction on
Sλ.
Let us consider the resolution Bλ of Wλ. Applying the Schur functor to Bλ

we obtain the exact sequence F (Bλ), where

F (Bλ)−1 = ξωWλ, F (Bλ)0 = ξωSR,q(n, r)ξλ,

and for k ≥ 1 the H-module F (Bλ)k is given by
⊕

µ(1)⊲...⊲µ(k)⊲λ

µ(1),...,µ(k)∈Λ(n,r)

ξωSq(n, r)ξµ(1) ⊗R ξµ(1)J ξµ(2) ⊗R · · · ⊗R ξµ(k)J ξλ.

Notice that, for µ ∈ Λ(n, r) the subspace ξωSq(n, r)ξµ corresponds under (10)
to HomH(M

µ,Mω). But Mω = xωH = H, since Σω is the trivial group
and xω =

∑
π∈Σω

Tπ = Tid. Thus ξωSR,q(n, r)ξµ corresponds under (10) to
HomH(M

µ,H). Here we have that HomH(M
µ,H) is a H-module by

(hψ)(m) = hψ(m),

where h ∈ H, m ∈Mµ, and ψ ∈ HomH(M
µ,H).

Thus we can write

F (Bλ)0 = HomH(M
λ,H),
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F (Bλ)k =
⊕

µ(1)⊲...⊲µ(k)⊲λ

µ(1),...,µ(k)∈Λ(n,r)

HomH(M
µ(1)

,H)⊗R Hom∧
H(M

µ(2)

,Mµ(1)

)

⊗R · · · ⊗R Hom∧
H(M

λ,Mµ(k)

),

and the differentials dk in F (Bλ) are the sums
∑k−1

t=0 (−1)tdkt, where the maps
dkt are defined analogously to (12).
We will prove that F (Bλ) is isomorphic to the complex Cλ

∗ in non-negative
degrees. Since F (Bλ) is exact and Cλ

∗ is exact in the degrees 0 and −1 by
[BM12, Theorems 4.2 and 4.4 ], the isomorphism in degree −1 will follow.
To prove that F (Bλ)k ∼= Cλ

k for k ≥ 0, we start by showing that there is an
isomorphisms of H-modules

Fµ : HomH(M
µ,H) → HomR(M

µ, R)

such that for all ν ∈ Λ(n, r), ψ ∈ HomH(M
µ,H), ϕ ∈ HomH(M

ν ,Mµ), we
have Fν(ψϕ) = Fµ(ψ)ϕ.
We will prove this in a more general setting. Let ∗ : H → H be the anti-

automorphism ofH given by Tπ 7→ T ∗
π = Tπ−1. LetM be any rightH-module.

By [DJ86, Theorem 2.6] there is an isomorphism of R-modules

HomR(M,R) → HomH(M,H)

ϕ 7→ ϕ̂,

where

ϕ̂(m) :=
∑

σ∈Σr

q−lng(σ)ϕ(mT ∗
σ)Tσ.

The inverse of this isomorphism is the map

HomH (M,H) → HomR(M,R)

ψ 7→ ψ̃,

where ψ̃(m) is the coefficient of Tid in the expansion

ψ(m) =
∑

σ∈Σr

aσTσ, aσ ∈ R.

Consider the symmetric associative bilinear form f : H ⊗ H → R ([DJ86,
Lemma 2.2 and proof of Theorem 2.3]) given by

f(Tσ, Tπ) =




qlng(σ), if σ = π−1

0, otherwise.
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Note that we have

f(
∑

σ∈Σr

aσTσ, Tid) = aid(Tid, Tid) = aid.

Thus for m ∈ M we get ψ̃(m) = f(ψ(m), Tid). We will prove that ψ →

ψ̃ is an H-module homomorphism. Recall that HomR(M,R) is a left H-
module by (hϕ)(m) = ϕ(mh), where h ∈ H, m ∈ M , ϕ ∈ HomR(M,R),
and HomH(M,H) is a left H-module by (hψ)(m) = hψ(m), where h ∈ H,
ψ ∈ HomH(M,H), m ∈M .

Proposition 10.1. The map

FM : HomH(M,H) → HomR(M,R)

ψ 7→ ψ̃
(13)

where ψ̃(m) = f (ψ(m), Tid) for m ∈M , is an isomorphism of H-modules.

Proof : Given h ∈ H, ψ ∈ HomH(M,H), and m ∈M , we have

hψ(m) = f ((hψ)(m), Tid) = f(hψ(m), Tid) = f(h, ψ(m)Tid)

= f(h, ψ(m)) = f(ψ(m), h) = f(Tid, ψ(m)h) = f(Tid, ψ(mh))

= f(ψ(mh), Tid) = ψ̃(mh) = (hψ̃)(m).

Proposition 10.2. Let M and N be right H-modules. Then the following
diagram is commutative

HomH(M,H)⊗ HomH(N,M)
FM⊗id

//

◦
��

HomR(M,R)⊗ HomH(N,M)

◦
��

HomH(N,H)
FN

// HomR(N,R).

Proof : Let ϕ : N →M , ψ : M → H be homomorphisms of right H-modules.
Then for all x ∈ N

ψϕ(x) = f(ψϕ(x), Tid) = f(ψ(ϕ(x)), Tid) = ψ̃(φ(x)) = ψ̃φ(x).

Thus ψϕ = ψ̃ϕ.
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Returning to our setting we will abbreviate FMµ to Fµ. For each k ≥ 0
define the map τk : F (Bλ)k → Ck,λ to be the direct sum

τk :=
⊕

µ(1)⊲...⊲µ(k)⊲λ

µ(1),...,µ(k)∈Λ(n,r)

Fµ(1) ⊗ id⊗ · · · ⊗ id.

Then τk is an isomorphism of H-modules for k ≥ 0. From Proposition 10.2,
we get that for every k ≥ 1

dk,0τk = τk−1dk,0.

Moreover it is obvious that for all k ≥ 1 and 1 ≤ t ≤ k

dk,tτk = τk−1dk,t.

Thus for all k ≥ 1 we have dkτk = τk−1dk. This shows that τ = (τk)k≥1 is a
chain transformation between the truncated complexes F (Bλ)≥0 and C≥0,λ.

Since every τk is an isomorphism of H-modules, we get that F (Bλ) and C∗,λ
are isomorphic in non-negative degrees as promised. The existence of an
isomorphism in degree −1 follows from the commutative diagram with exact
rows

F (Bλ)1
d1

//

τ1
��

F (Bλ)0
d0

//

τ0
��

F (Wλ) //

∃!
��
�

�

�

0

Cλ
1

d1
// Cλ

0

d0
// Sλ // 0.

Thus we proved

Theorem 10.3. Let λ be a partition of r. Then the complexes Cλ
∗ and F (Bλ)

are isomorphic. In particular, Cλ
∗ is an exact complex.
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