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1. Introduction
A n-string tangle (B,T) is a ball B together with collection of n disjoint

arcs T properly embedded in B, for n ∈ N. We say that (B,T) is essential,
if n is 1 and its arc is knotted∗, or if n is bigger than 1 and there is no prop-
erly embedded disk in B disjoint from T and separating the components of
T in B. Otherwise, we say that the tangle is inessential. (See Figure 1 for
examples.)
Let K be a knot in S3 and S a 2-sphere in general position with K. Each
ball bounded by S in S3 intersects K in the same number n of arcs. So,
these balls together with the arcs of intersection with K are n-string tangles.
In this case, we say that S defines a n-string tangle decomposition of K,
and if both tangles are essential we say that the tangle decomposition of K
defined by S is essential. A knot is composite if, and only if, it has a 1-string
essential tangle decomposition. Note also that S defines an essential tangle
decomposition for K if, and only if, the intersection of S with the exterior of
K, E(K)†, is an essential surface in E(K). (See Definition 1.)
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Figure 1: Examples of essential tangles, in (a) and (b), and an inessential
tangle, in (c).

A tangle decomposition of a knot is natural and has been relevant for knot
theory and its applications. The concept of “tangle” was first used in the
work of Conway [3], where he defines and classifies (2-string) rational tangles
and uses it as an instrument to list knots. The concept of essential tangle was
first used in [8] where Kirby and Lickorish prove that any knot is concordant
to a prime knot. They actually define prime tangle, that is an essential tangle
with no local knots‡. Another example is the work of Lickorish in [9] where
he proves for instance that if a knot has a 2-string prime tangle decomposi-
tion then the knot is prime. Tangles are also used in applied mathematics
to study the DNA topology. The paper [2] by Buck surveys the subject con-
cisely, and also explains how tangles are useful to the study of the topological
properties of DNA, an application pioneered by Ernst and Sumners in [5].

This paper addresses the question if the number of strings on essential
tangle decompositions of a fixed knot is bounded. There are results show-
ing some evidence for this to be true. For instance, knots with no closed
incompressible surfaces [4], tunnel number one knots [6] and free genus one
knots [10] have no essential tangle decompositions. There also knots with
an unique essential tangle decomposition [12]. Furthermore, in Proposition
2.1 of [11], Mizuma and Tsutsumi proved that for a given knot the num-
ber of strings in essential tangle decompositions, without parallel strings§, is
bounded. The proof of this result allows a more general statement. That is,
the number of strings that are not parallel to other strings in an essential
tangle decomposition of a fixed knot is bounded. So, from this flow of results

‡A tangle (B, T) has no local knots if any 2-sphere intersecting T transversely in two points
bounds a ball in B meeting T in an unknotted arc.
§Two strings of a tangle in a ball B are parallel if there is an embedded disk in B co-bounded

by these strings and two arcs in ∂B.
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and intuition on essential tangle decompositions the following theorem and
its corollary are surprising.

Theorem 1. There are infinitely many prime knots with a n-string essential
tangle decomposition for all n ≥ 2.

Corollary 1.1. There are infinitely many knots with a n-string essential
tangle decomposition for all n ≥ 1.

Essential surfaces are very important to the study of 3-manifolds topol-
ogy. And as observed above, to each n-string essential tangle decomposition
of a knot corresponds a meridional essential surface in the exterior of the
knot, with 2n boundary components. Therefore, from the results in this
paper there are knots with meridional planar essential surfaces in their exte-
riors for all possible numbers of boundary components. Furthermore, from
Lemma 1.2 in [1], the double cover of S3 along these knots contains genus
g closed incompressible surfaces, meeting the fixed point set of the covering
action in 2(g + 1) points, and separating the double cover in irreducible and
boundary irreducible components, for all g ≥ 1.

The reference used for standard definitions and results of knot theory is
Rolfsen’s book [13], and throughout this paper we work in the piecewise lin-
ear category.
In Section 2, we show the existence of handlebody-knots (see Definition 2)
with incompressible planar surfaces in their exteriors with b boundary com-
ponents, for all b ≥ 2. In Section 3, we use these handlebody knots to prove
Theorem 1 and its corollary. The main techniques used are the standard
innermost curve argument from 3-manifold topology. Along the paper, the
number of connected components of a topological space X is denoted by |X|.

2. Meridional incompressible planar surfaces in
handlebody-knots complements

To prove Theorem 1 we use the correspondence between n-string essential
tangle decompositions of a knot and meridional planar essential surfaces in
the knot exterior. So, we start by defining these surfaces.

Definition 1. Let H be a handlebody embedded in S3.
A planar surface is obtained from a 2-sphere by cutting the interior of a finite
number of disks.
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A surface P properly embedded in Hc = S3 − intH is meridional if each
boundary component of P bounds a disk in H.
An embedded disk D in Hc is a compressing disk for P if D ∩ P = ∂D and
∂D doesn’t bound a disk in P . We say that P is incompressible if there is
no compressing disk for P in Hc.
An embedded disk D in Hc is a boundary compressing disk for P if ∂D∩P =
α, with α a connected arc not cutting a disk from P , and ∂D − α = β a
connected arc in ∂H. We say that P is boundary incompressible if there is
no boundary compressing disk for P in Hc.
The surface P is essential if it is incompressible and boundary incompressible.

In this section, we present handlebody-knots whose complements contain
meridional incompressible planar surfaces with n boundary components for
any n ≥ 2. This embedding will later be used in the proof of Theorem 1. So,
next we define a handlebody-knot.

Definition 2. A handlebody-knot of genus g in S3 is an embedded handle-
body of genus g in S3. A spine γ of a handlebody-knot Γ is an embedded
graph in S3 with Γ as a regular neighborhood.

Let Γ be the genus two handlebody-knot 41 from the list of [7], with spine
γ, as in Figure 2. Consider also a collection of knots Ci, for i ∈ N, with
distinct knot group, and C some other non-trivial knot. We work with γ as
if defined by two vertices, two loops e1, e2, one for each vertex, and an edge
e between the two vertices. (See Figure 2.)

Figure 2: The spine γ of the handlebody-knot Γ.

Consider two disjoint closed arcs a1 and a2 in e, as in Figure 3(a). We
proceed to a connected sum operation between γ and the knots considered
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before along the arcs a1 and a2 with an usual connect sum operation. That
is, we take a ball in S3 intersecting γ in a1, and a ball in S3 intersecting C
at a single arc. A connected sum operation is obtained by removing both
balls and gluing their boundaries through a homeomorphism in a way that
the boundary points of a1 are mapped to the boundary points of the chosen
arc in Ci. A similar operation can be obtained from the arc a2 and C. From
these operations we get the handlebody-knots as represented schematically
in Figure 3(b), that we denote by Γi with a respective spine γi. In this figure
we also have represented an embedded 2-sphere S2 in S3 that intersects γ at
two points, p1 and p2, and denote the ball bounded by S2 containing a single
component of e by B21 and the other by B22. Denote by l1, resp. l2, the
component of B22 ∩ γi that contains e1, resp. e2 and note that lj intersects
S2 at pj, j = 1, 2.
From Van-Kampen’s Theorem, and from the knots Ci having distinct knot
group we have that the handlebody knots Γi are not ambient isotopic.

Figure 3: (a) The arcs a1 and a2 in γ; (b) The spines γi of the handlebody-
knots Γi and the sphere S2. Note that Ci and C label the pattern of the
respective knots.

Both loops e1 and e2 co-bound an embedded annulus in B22, parallel to
the component of e in B22 each encircles, with interior disjoint from γi and
intersecting S in the other boundary component, as it can easily be observed
from Figure 3(b). Considering such an annulus with boundary l1, say A1,
we proceed with an isotopy of γi through A1 taking l1 passing by S2 and we
obtain γi as in Figure 4(a). We refer to this isotopy as an annulus isotopy
of γi. After this isotopy we denote S2 by S3, considering its relative position
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with Γi, and the respective balls it bounds by B31 and B32. We assume that
l1 intersects S3 at p1. Note that all intersections of γi and S3 are in the
arc of e between p1 and p2. Again, we consider an embedded annulus A2 in
B31, co-bounded by e1, parallel to the component of e in B31 disjoint from
e1 and in the direction of the opposite end from the previous isotopy. By an
annulus isotopy of γi through A2 taking l1 passing by S3 we obtain γi as in
Figure 4(b). After this isotopy we denote S3 by S4, and the respective balls
it bounds by B41 and B42. The ball B31 intersects γi in two parallel arcs, we
still assume that l1 ∩ S4 is p1. Note again that all intersections of γi and S3
are in the arc of e between p1 and p2.

Figure 4: The spine γi after one, (a), and two, (b), annulus isotopies and
the spheres S3 and S4.

For a canonical position, we isotope e1 along the component of e∩B42, dis-
joint from e1 and e2, encircling l2. (See Figure 5(a).) We can now continue
the previous process. Consider again an annulus A4 in B42, co-bounded by
e1, parallel to the components of e∩B42 other than l1. By an annulus isotopy
of γi through A4 taking l1 passing by S4 we obtain γi as in Figure 5(b). After
this isotopy we denote S4 by S5, and the respective balls it bounds by B51
and B52. Again, l1 intersects S5 at p1, and all intersections of S5 with γi are
in the arc of e between p1 and p2. For the next step proceed with an annulus
isotopy along annulus A5 in B42 co-bounded by e1, parallel to components of
e∩B42 disjoint from e1, in the direction of the opposite end from the previous
isotopy.
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Figure 5: The spine γi of Figure 4(b) in (a) and after another annulus isotopy
in (b), and the spheres S4 and S5.

After 2(k − 1), k = 1, 2, . . ., annulus isotopies as the ones explained above
we get γi as in Figure 6(a). From S2 we obtain S2k, and the respective balls
it bounds by B(2k)1 and B(2k)2. The ball B(2k)1 intersects γi in k parallel arcs
with the pattern of Ci, and the ball B(2k)2 intersects γi in k − 2 parallel arcs
with the pattern of C, another arc with the pattern of C encircled by l2, and
l1 that encircles all these other components.
After 2k − 1, k = 1, 2, . . . , annulus isotopies we obtain γi as in Figure 6(b).
From S2 we obtain S2k+1, and the respective balls it bounds by B(2k+1)1 and
B(2k+1)2. The ball B(2k+1)1 intersects γi in n parallel arcs with the pattern
of Ci and l1 encircling these arcs, and the ball B(2k+1)2 intersects γi in k − 1
parallel arcs with the pattern of C, together with another arc with the pat-
tern of C and l2 which encircles this arc.
Note after each isotopy we assume that lj intersects Sn, n = 2, 3, . . ., in pj

and that all points of Sn ∩ γi are in the arc between p1 and p2 in e.

Let Qn, for n = 2, 3, . . ., be the intersection of Sn with the complement of
Γi in S3 (or, of γi in S3; we use the same notation in both cases).

Lemma 1. The surface Qn is incompressible.

Proof : 1. Suppose n is even. Then Sn is as in Figure 6(a).
(a) In this case, the ball Bn1 intersects γi in a collection of k = n

2 parallel
knotted arcs. Then (Bn1, Bn1 ∩ γi) is an essential tangle. In fact, suppose
there is a compressing disk D for Qn in Bn1. Then D separates the arcs
Bn1 ∩ γi in two collections. Let s1 and s2 be two arcs in the opposites sides
separated by D in Bn1. As s1 and s2 are parallel there is a disk E with
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Figure 6: The spine γi after an even number, in (a), and an odd number, in
(b), of annulus isotopies and the corresponding spheres S2k and S2k+1, k ∈ N.

boundary s1 ∪ s2 and two arcs in Qn, α1 and α2, each with one end in s1
and the other in s2. Consider D and E in general position and suppose that
|D ∩E| is minimal. If D intersects E in simple closed curves or in arcs with
both ends in α1 or both in α2, by an innermost arc type of argument we can
reduce we can reduce |D ∩ E|, which is a contradiction. Therefore, all arcs
of D ∩ E have one end in α1 and the other end in α2. Hence, both s1 and
s2 are parallel to outermost arcs of D ∩ E, which implies that s1 and s2 are
parallel to Sn. This a contradiction because the arcs s1 and s2 are knotted
by construction.
(b) If n ≤ 4 then the ball Bn2 intersects γi in l1, l2, and when n = 4 also in an
arc encircled by both l1 and l2. In this case if there is a compressing disk for
Qn in Bn2 it separates the components l1 or l2 from the other components.
This implies that e1 or e2 bound a disk in the complement of γi, which is a
contradiction with Γi being a knotted handlebody-knot. Otherwise, suppose
that n > 4. Thus, Bn2 intersects γi in n

2 − 2 parallel arcs with the pattern of
C, another arc with the pattern of C encircled by l2, and the component l1
that encircles the n

2 − 2 parallel arcs. With exception to l1 and l2, all other
arcs are parallel. Thus, if a compressing disk for Qn in Bn2 separates these
arcs, following an argument as in 1(a) we have a contradiction with these
arcs being knotted. Therefore, a compressing disk for Qn in Bn2 separates
a single component l1 or l2 from all the other components, or it separates
both components l1 and l2 from the other parallel arcs. As e1 bounds a disk
disjoint from l2, in both cases e1 bounds a disk in the complement of γi,
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which is a contradiction with Γi being a knotted handlebody-knot.

2. Suppose now that n is odd. Then Sn is as in Figure 6(b).
(a) The ball Bn1 intersects γi in a collection of n−1

2 parallel arcs and l1 which
encircles these arcs. If there is a compressing disk D of Qn in Bn1 separating
the parallel arcs, following an argument as in 1(a) we have a contradiction
with these arcs being knotted. If D separates the component l1 from the
other components, following an argument as in 1(b) we have a contradiction
with Γi being a knotted handlebody-knot.
(b) If n = 3 the ball Bn2 intersects γi in an arc with pattern C and l2 which
encircles the arc. If there is a compressing disk for Qn in Bn2 in this case, then
it separates the component l2 from the other one. From the same argument
used in 1(b) we have a contradiction with Γi being a knotted handlebody-
knot. If n > 3 then the ball Bn2 intersects γi in n−1

2 parallel arcs, and l2 which
encircles one of the previous arcs. Without considering l2, if a compressing
disk for Qn in Bn2 separates the parallel arcs then following an argument
as in 1(a) we have a contradiction with the arcs being knotted. Then, if Qn

contains a compressing disk in Bn2 it isolates the component l2 from the other
components, and following the argument as in 1(b) we have a contradiction
with Γi being a knotted handlebody-knot.

The surface Qn is boundary compressible in the complement of Γi, as there
are boundary compressing disks over the regular neighborhoods of l1 and l2.
However, our construction of the handlebody knots Γi could have been made
in a way that the surfaces Qn are compressible and boundary compressible in
their complements. For that purpose, we could do a connect sum of γi with
two knots along two arcs in e1 and e2. After this operation, there won’t be
boundary compressing disks of Qn over the regular neighborhoods of l1 and
l2. And as these are the only possible boundary compressing disks, because
all other components γi−γi∩Sn correspond to knotted arcs in their respective
balls, the surfaces Qn are also boundary incompressible in the complement
of the handlebody knots after these connected sums. But for the purpose of
this paper, we will use the the handlebody-knots Γi.
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3. Knots with essential tangle decompositions with
arbitrarily high number of strings

In this section, we use the handlebody-knots Γi to construct infinitely many
examples of knots with essential tangle decompositions for all numbers of
strings.

Let K1 and K2 be torus knots in the boundary of the solid tori T1 and T2.
We connect sum K1 and K2 in a way that T1 and T2 are glued along a disk
D, and denote by H the resulting genus two handlebody and K = K1#K2.
Note that the knot K is parallel to the boundary of H. In Figure 7 we have
the examples of the connected sum of two trefoils that we will use as refer-
ence for the remainder of the paper.

Figure 7: The handlebody H with the connected sum of two trefoil knots.

Consider disks D1 and D2 parallel to D in H, such that the cylinder C1,2
cut by D1 ∪D2 from H intersects K in two parallel arcs, each with one end
in D1 and the other in D2. We also keep denoting by T1 and T2 the solid
torus cut from H by D1 and D2.
Let s be a spine of H that intersects C1,2 in a single arc. We denote by di the
point Di ∩ s, and by ti the intersection of s with Ti, for i = 1, 2. See Figure
8.

We now embed the knot K in Γi as follows. Consider an embedding hi of
H in S3 taking H homeomorphically to Γi, such that hi(s) = γi, hi(dj) = pj,
hi(tj) and also that hi(Tj) = Lj, for j = 1, 2.

Proof of Theorem 1: Denote by Ki the knots hi(K), i ∈ N, for a fixed knot
K as above. As ∂H is essential in the complement of K in H, we have
that ∂Γi is essential in the complement of Ki. Hence, as the complement of
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Figure 8: The handlebody H an the spine s with the connected sum of two
trefoil knots.

the handlebody-knots Γi have non-isomorphic fundamental groups, the knot
groups of the knots Ki, i ∈ N, are also non-isomorphic.

We will prove that the spheres Sn, n ≥ 2, define a n-string essential tangle
decomposition for the knots Ki, and that these knots are prime. Conse-
quently, we have infinitely many prime knots with n-string essential tangle
decompositions for all n ≥ 2, as in the statement of Theorem 1.

We start by proving that Sn defines an n-string essential tangle decompo-
sition of Ki. Let E(Ki) be the exterior of Ki in S3, that is S3 − intN(Ki),
and let Pn be the intersection of Sn with E(Ki), for a fixed n. To prove
that Sn defines an essential tangle decomposition for Ki, we need to prove
that Pn is essential in E(Ki), i.e. that Pn is incompressible and boundary
incompressible.

First, we observe that Pn is boundary incompressible. In fact, as the strings
of K ∩ Bni in Bni, i = 1, 2, are knotted, there is no boundary compressing
disk for Pn in E(Ki).

Now we prove that Pn is incompressible in E(Ki). Let Dj, j = 1, . . . , n,
be the disks of intersection between Γi and Sn with D1 = L1 ∩ Sn and
Dn = L2∩Sn. Denote by Cj,j+1 the cylinder cut by Dj ∪Dj+1 from Γi. Note
that Cj,j+1∩K is a collection of two arcs parallel to ∂Cj,j+1−Dj ∪Dj+1, each
with one end in Dj and the other in Dj+1.
Suppose that Pn is compressible in E(Ki) with D a compressing disk in gen-
eral position with Γi. Thus, D is properly embedded in Bn1 or Bn2.
Suppose that D intersects Γi and that |D ∩ Γi| is minimal.
In particular, assume that D intersects some cylinder Cj,j+1. If D∩∪n−1

j=1Cj,j+1
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contains a simple closed curve or an arc with both ends in the same disk of
Γi ∩ Sn, by considering an outermost one between such curves and arcs, and
cutting and pasting along the disk it bounds or co-bounds, which contradicts
the minimality of |D ∩ Γi|. Thus, D ∩ ∪n−1

j=1Cj,j+1 is a collection of arcs with

ends in distinct disks of Γi∩Sn. Consider an outermost arc of D∩∪n−1
j=1Cj,j+1

in D, say a, and, without loss of generality, suppose it belongs to Cj,j+1.
The arc a is parallel to a string of the tangle defined by Sn that is in Cj,j+1,
which contradicts the fact that all string of the tangle decomposition of Ki

defined by Sn are knotted. Consequently, we can assume that D∩∪n−1
j=1Cj,j+1

is empty.
Assume that D intersects Γi at L1 or L2, and also that D is general position
with l1 and l2. If D is disjoint from l1 ∪ l2 then we have a contradiction with
Lemma 1. Then, D intersects l1∪ l2 and we can assume that the intersection
of D with L1 and L2 is a collection of disks, that we suppose to be minimal.
Denote by sj the string component, of the tangle decomposition of Ki defined
by Sn, in Lj, j = 1, 2. Note that sj is parallel to ∂Lj − (Lj ∩ Sn). So, we
push sj slightly off Lj and consider a disk Oj, in the complement of Γj, with
boundary sj, an arc αj in Lj and two arcs δ1j, δ2j in Sn.

Figure 9: The string sj, the corresponding disk Oj and arcs of intersection
with D.

As sj is essential in Lj, i. e. there are no essential disks in Lj disjoint from
sj, we have that D intersects Oj. Assuming D in general position with the
disks Oj, consider the intersection of D with Oj and suppose |D ∩Oj| to be
minimal. The disk D intersects Oj in arcs with ends in δ1j, δ2j or αj, or in
simple closed curves. See Figure 9 for representations of these possible arcs
in Oj. If D intersects Oj in simple closed curves, or in arcs with both ends
in αj, both in δ1j or both in δ2j, by considering an outermost component
of D ∩ Oj between these in Oj and by cutting and pasting along the disk
bounded or co-bounded by it in Oj, we get a contradiction with the minimal-
ity of |D ∩ Oj|. Suppose that D intersects Oj in arcs with both ends in αj.
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Consider an outermost of such arcs in Oj, say a. Note that the ends of a are
in two disks of D∩Lj. If we proceed with an isotopy of D along the disk cut
by a in Oj we can reduce the number of disks of D ∩ Lj, which contradicts
the minimality of |D∩ (L1∪L2)|. Then, D intersects Oj in arcs with one end
in αj and the other in δ1j or δ2j, or arcs with one end in δ1j and the other in
δ2j.
If D intersects Oj in arcs with one end in δ1j or δ2j, and the other in αj, con-
sider an outermost arc between these in Oj, say a again, and the outermost
disk it bounds in Oj. We proceed with an isotopy of D along this disk into
and through Lj. After this isotopy we reduce the number of disks of D ∩Lj,
which contradicts the minimality of |D∩ (L1∩L2)|. So, as D is disjoint from
sj, at this point all components of D ∩ Oj are arcs with one end in δ1j and
the other in δ2j. We have that sj is parallel to these arcs. By considering
an outermost of such arcs in D this implies that sj is unknotted, which is a
contradiction because sj is a knotted string with pattern a torus knot.
Therefore, D is disjoint from Γi, and consequently we have a contradiction
with Lemma 1. So, we have that Pn is essential in the complement of Ki,
which ends the proof that Sn defines an n-string essential tangle decomposi-
tion of Ki.

Now we prove that the knots Ki are prime. From Theorem 1 of [1], if a knot
has a 2-string prime tangle decomposition, that is the tangles are essential
and with no local knots, the knot is prime. We have that the knot Ki has
a 2-string essential tangle decomposition defined by S2. So, to prove that it
is prime, we just need to show that the tangle decomposition defined by S2
has no local knots. The ball B21 intersects Ki in two parallel arcs. Hence, if
there is a 2-sphere intersecting only one of the arcs at a single component,
this component has to be unknotted. The ball B22 intersects γi in l1 and l2,
then it intersects Ki at two strings each with the pattern of a torus knot.
Note that, even though the pattern of the knot C is in l2, it doesn’t affect
the topological type of the string in L2. Suppose, the tangle in B22 contains
a local knot. That is, there is a ball Q intersecting only one of the strings,
and at a knotted component. As the torus knots are prime, this knotted
component is the all pattern of the string. Therefore, as the strings in B22
are parallel to the boundary of L1 and L2, we have Q contains either e1 or
e2. But then, either e1 or e2 bound a disk in the complement of γi, which
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implies, as observed in 1(b) from the proof of Lemma 1, that the handlebody-
knots Γi are unknotted. Consequently, the tangle decomposition defined by
S2 contains no local knots and the knots Ki are prime.

Corollary 1.1 is now an immediate consequence.

Proof of Corollary 1.1: In Theorem 1 we proved that the spheres Sn, n ≥ 2,
define a n-string essential tangle decomposition for the knots Ki. Hence,
considering the knots Ki connected sum with some other knot, we have
infinitely many knots with n-string essential tangle decompositions for all
n ∈ N, as in the statement of this corollary.
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