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Abstract: In this paper initial boundary value problems, defined using quasilin-
ear diffusion equations of Volterra type, are considered. These equations arise for
instance to describe diffusion processes in viscoelastic media whose behaviour is
represented by a Voigt-Kelvin model or a Maxwell model. We propose a finite
difference discretization defined on a general nonuniform grid and we show second
convergence order. The analysis does not follows the usual splitting of the global
error using the solution of an elliptic equation induced by the integro-differential
equation. The new approach enables us to reduce the smoothness required to the
theoretical solution when the usual split technique is used. Numerical simulations
which shows the effectiveness of the method are included.
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1. Introduction

In this paper we consider the class of quasilinear integro-differential equa-
tions of Volterra type

∂c

∂t
=

∂

∂x

(

a(c)
∂c

∂x

)

+

∫ t

0

ker(t− s)
∂

∂x

(

d(c(s))
∂c

∂x
(s)
)

ds

+f in (0, 1)× (0, T ],

(1)

where ker is a kernel function. In (1) a(c) stands for the diffusion coefficient,
d(c) for a viscoelastic diffusion coefficient and f represents a reaction term.
Equation (1) is completed with Dirichlet boundary conditions

c(0, t) = cin, for t ∈ (0, T ], (2)

c(1, t) = cout, for t ∈ (0, T ], (3)

and initial condition

c(x, 0) = c0(x), x ∈ (0, 1). (4)
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Equation (1) is usually used to replace the classical diffusion-reaction equa-
tion

∂c

∂t
=

∂

∂x

(

e(c)
∂c

∂x

)

+ f in (0, 1)× (0, T ], (5)

when Fick’s law for the mass flux JF ,

JF = −e(c)
∂c

∂x
(6)

does not hold. In this case the mass flux is split into a Fickian contribution
and a non Fickian one that is

J = JF + JnF ,

with JF given by (6), e(c) replaced by a(c) and

JnF (t) = −

∫ t

0

ker(t− s)d(c(s))
∂c

∂x
(s) ds. (7)

Integro-differential equation (1) arises in a huge number applications. With-
out being exhaustive we mention diffusion in polymers ([7], [8], [9], [10] and
[28]), diffusion in live tissues ([15], [16], [21], [23] and [25]) and diffusion
in porous media ([22], [24] and [26]). The linear version of (1) has been
previously studied for instance in [1], [2], [6], [18] and [19].
Our aim is to generalize the results obtained in [4] and [20] for the linear

version of the quasilinear equation (1) avoiding the use of an elliptic auxiliary
problem induced by this equation. The paper is organized as follows. In
Section 2 we introduce the spatial discretization using the piecewise linear
finite element method. Its convergence is analysed in Section 3. In the
main result of this paper, Theorem 1, we prove that a discrete L2 norm
of the spatial discretization error and of its discrete gradient are of second
order. We point out that the convergence analysis presented here does not
use the approach introduced by Wheeler in [27] and largely followed in the
literature. This approach is essentially based on the splitting of the spatial
discretization error considering an elliptic problem induced by (1). In Section
4 we present a numerical illustration of our main convergence result. Finally,
some conclusions are included in Section 5.

2. Finite Difference Method

The finite difference method is introduced in what follows considering a
variational problem associated with the the integro-differential equation (1).
Without loss of generality we will consider homogenous Dirichlet boundary
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conditions. By L2(0, 1) and H1
0(0, 1) we represent the usual Sobolev spaces

where we consider the usual inner products (., .) and (., .)1, respectively. By
‖.‖ and ‖.‖1 we denote the correspondent norms. Let V be a Banach space,
by L2(0, T ; V ), we denote the space of functions v : (0, T ) 7→ V such that

‖v‖2L2(0,T ;V ) =

∫ T

0

‖v(t)‖2V dt < ∞ .

We consider the following space

W(0, T ) = {g ∈ L2(0, T,H1
0(0, 1)) : g

′ ∈ L2(0, T,H−1(0, 1))},

where H−1(0, 1) denotes the dual space of H1(0, 1). Thus we replace IBVP
(1)-(4) by the following variational problem (VP): find c ∈ W(0, T ) such
that

(
dc

dt
(t), w) + (a(c(t))

∂c

∂x
(t), w′) = −

∫ t

0

ker(t− s)(d(c(s))
∂c

∂x
(s), w′) ds

+(f(t), w), a. e. in (0, T ),

(8)

∀w ∈ H1
0(0, 1), where

c(0) = c0. (9)

Let h = (h1, . . . , hN ), with hi > 0, for i = 1, . . . , N , be such that
N
∑

i=1

hi = 1.

We define in I = [0, 1] the nonuniform grid

Ih = {xi, i = 0, . . . , N, xi = xi−1 + hi, i = 1, . . . , N, x0 = 0}

and we use the notations I ′h = Ih − {0, 1} and ∂Ih = {0, 1}.
By Wh we represent the space of grid functions defined in Ih and by Ph the

piecewise linear interpolation operator defined in Wh. By Wh,0 we represent
the subspace of Wh of the grid functions null on ∂Ih. The piecewise linear
approximation ĉh(t) = Phch(t) for the concentration c(t) is a solution of the
following equation

(
dĉh
dt

(t), Phwh) + (a(ĉh(t))
∂ĉh
∂x

(t), Phw
′
h)

= −

∫ t

0

ker(t− s)(d(ĉh(s))
∂

∂x
ĉhh(s), Phw

′
h) ds+ (f(t), Phwh), ∀wh ∈ Wh,0,(10)
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with
ĉh(0) = PhRhc0, (11)

where Rh denotes the restriction operator.

Let hi+ 1
2
=

1

2
(hi + hi+1), i = 1, . . . , N − 1, xi± 1

2
=

1

2
(xi±1 + xi). To define

the semi-discrete approximation we introduce the following definitions:










































gh(xi) =
1

hi+ 1
2

∫ xi+
1
2

xi−
1
2

g(x) dx, i = 1, . . . , N − 1,

gh(x0) =
2

h1

∫ x1
2

0

g(x)dx,

gh(xN) =
2

hN

∫ 1

x
N−

1
2

g(x) dx,

(12)

and
Mhvh(xi) =

1
2(vh(xi−1) + vh(xi)), i = 1, . . . , N

Mhvh(x0) = 0, vh ∈ Wh,0.
(13)

In Wh,0 we consider the discrete inner product

(vh, wh)h =
N−1
∑

i=1

hi+ 1
2
vh(xi)wh(xi), vh, wh ∈ Wh,0, (14)

and by ‖.‖h we represent the norm induced by the previous discrete inner
product.
In what follows we use the notations

(vh, wh)h,+ =

N
∑

i=1

hivh(xi)wh(xi), vh, wh ∈ Wh,

and
‖vh‖h,+ = (vh, vh)

1/2
h,+.

In the space Wh we introduce the norm ‖.‖1,h defined by

‖uh‖
2
1,h = ‖vh‖

2
h + ‖D−xvh‖

2
h,+ ,

where D−x represent the usual backward finite difference operator.
Let Wh(0, T ) be defined by

Wh(0, T ) = {g ∈ L2(0, T,Wh,0) : g
′ ∈ L2(0, T,W−1

h )},

where W
−1
h denotes the dual space of Wh.



QUASILINEAR NON-FICKIAN DIFFUSION MODELS 5

The semi-discrete approximation for the solution of the variational problem
(10) and (11) is computed using the following discrete variational problem:
find ch ∈ Wh(0, T ) such that

(
dch
dt

(t), wh)h + (a(Mhch(t))D−xch(t), D−xwh)h,+

= −

∫ t

0

ker(t− s)(d(Mhch(s))D−xch(s), D−xwh)h,+ ds+ (fh(t), wh)h,(15)

∀wh ∈ Wh,0, and
ch(0) = Rhc0, (16)

where fh is defined by (12) with g replaced by f(t). It is easy to show that
ch is solution of the initial value problem (15), (16) if and only if ch satisfies

dch
dt

(t)−D∗
x

(

a(Mhch(t))D−xch(t)
)

=

∫ t

0

ker(t− s)D∗
x

(

d(Mhch(s))D−xch(s)
)

ds

+fh(t) in I ′h,

ch(t) = 0 on ∂Ih,
(17)

and (16).
In (17) D∗

x denotes the following finite difference operator

D∗
xvh(xi) =

vh(xi+1)− vh(xi)

hi+ 1
2

, i = 1, . . . , N − 1, vh ∈ Wh.

3. Convergence Analysis

Let Λ be a sequence of vectors h = (h1, . . . , hN),hi > 0, i = 1, . . . , N,
N
∑

i=1

hi = 1, and hmax = max
i=1,...,N

hi → 0. For h ∈ Λ, let eh(t) = Rhc(t)−ch(t) be

the semi-discretization error induced by (15) and (16) or equivalently (17) and
(16). In this section we prove that ‖eh(t)‖h = O(h2

max), and ‖D−xeh(t)‖h,+ =
O(h2

max). In the convergence analysis we require some smoothness to the
solution c for(VP) that we specify in what follows.
By H1(0, T ; V ) we denote the space of functions v : (0, T ) 7→ V such that

‖v‖2H1(0,T ;V ) =

1
∑

i=0

∫ T

0

∥

∥

∥
v(i)(t)

∥

∥

∥

2

V
dt < ∞ .
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We represent by W 1,∞(0, 1) the space of functions v : (0, 1) → R such that

‖v‖1,∞ =

1
∑

i=0

ess sup
(0,1)

|v(i)| < ∞, (18)

The space of functions v : (0, T ) → W 1,∞(0, 1) such that

‖v‖L∞(W 1,∞(0,1)) = ess sup
(0,T )

‖v(t)‖1,∞ < ∞

is denoted as L∞(0, T ;W 1,∞(0, 1)).
We assume that the solution of (VP), c, satisfies

c ∈ H1(0, T ;H2(0, 1))
⋂

L2(0, T ;H3(0, 1) ∩H1
0(0, 1)) (19)

For the kernel function ker(t) we impose the existence of a positive constant
k satisfying

∫ t

0

k2er(t− s)ds ≤ k, (20)

for t ∈ [0, T ]. The discrete Poincaré-Friedrich’s inequality

‖vh‖
2
h ≤ ‖D−xvh‖

2
h,+, vh ∈ Wh,0, (21)

will be used in the proof of Theorem 1. By C1
B(R) we represent the space of

bounded continuous real functions with bounded first order derivative.

Theorem 1. Let c be a solution of (VP), such that c satisfies (19),and let
ch be the approximation defined by (15). If a, d ∈ C1

B(R), 0 < a0 ≤ a, and
ker satisfies (20), then there exist positive constants C1 and C2 depending on
the coefficient functions a, d and on the kernel ker such that

‖eh(t)‖
2
h +

∫ t

0

‖D−xeh(s)‖
2
h,+ ds ≤ C2h

4
maxe

C1(1+‖c‖2
L∞(W1,∞(0,1))

)t
∫ t

0

T (s) ds,

(22)
where

T (t) = ‖
∂c

∂t
(t)‖2H2(0,1) + (1 + ‖c(t)‖2W 1,∞(0,1))‖c(t)‖

2
H3(0,1)

+k(1 + ‖c‖2L∞W 1,∞(0,1))

∫ t

0

‖c(s)‖2H3(0,1)ds

(23)
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Proof : From (15), it follows that eh(t) satisfies

(
deh
dt

(t), wh)h = (Rh
∂c

∂t
(t), wh)h + (a(Mhch(t))D−xch(t), D−xwh)h,+

+

∫ t

0

ker(t− s)(d(Mhch(s))D−xch(s), D−xwh)h,+ ds

−(fh(t), wh)h , wh ∈ Wh,0. (24)

Fixing in (24) wh = eh(t) and considering that

(fh(t), eh(t))h = (

(

∂c

∂t

)

h

, eh(t))h + (a(M̂hc(t))M̂h
∂c

∂x
(t), D−xeh(t))h,+

+(

∫ t

0

ker(t− s)d(M̂hc(s))M̂h
∂c

∂x
(s) ds,D−xeh(t))h,+,

where

(

∂c

∂t

)

h

(t) is defined by (12) with g replaced by
∂c

∂t
(t) and M̂hg(xi) =

Rhg(xi− 1
2
), i = 1, . . . , N, we deduce

1

2

d

dt
‖eh(t)‖

2
h = Ta(t) + Tint(t) +

3
∑

p=1

Zp, (25)

where

Ta(t) = (a(Mhch(t))D−xch(t), D−xeh(t))h,+−(a(Mhc(t))D−xRhc(t), D−xeh(t))h,+,

Tint(t) =

∫ t

0

ker(t− s)((d(Mhch(s))− d(Mhc(s)))D−xRhc(s), D−xeh(t))h,+ ds,

Z1 = (Rh
∂c

∂t
(t)−

(

∂c

∂t

)

h

, eh(t))h,

Z2 = (a(Mhc(t))D−xRhc(t)− a(M̂hc(t))M̂h
∂c

∂x
(t), D−xeh(t))h,+,

and

Z3 =

∫ t

0

ker(t−s)(d(Mhc(s))D−xRhc(s)−d(M̂hc(t))M̂h
∂c

∂x
(s)), D−xeh(t))h,+ds .

We estimate separately the previous terms.
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(1) Estimate for Ta(t):
We have

Ta = (a(Mhch(t))D−xeh(t), D−xeh(t))h,+

+((a(Mhch(t))− a(Mhc(t)))D−xRhc(t), D−xeh(t))h,+

consequently, as a ≥ a0 > 0, we obtain

Ta(t) ≤ −a0‖D−xeh(t)‖
2
h,+ +

(a′b)
2

4ǫ20
‖D−xRhc‖

2
h,+‖eh(t)‖

2
h + ǫ20‖D−xeh(t)‖

2
h,+,

(26)
where |a′| ≤ a′b in R and ǫ0 6= 0 is an arbitrary constant.
From (26) we conclude

Ta(t) ≤ (−a0 + ǫ20)‖D−xeh(t)‖
2
h,+ +

(a′b)
2

4ǫ20
‖c(t)‖W 1,∞(0,1)‖eh(t)‖

2
h. (27)

(2) Estimate for Tint(t):
As d ∈ C1

B(R), following the procedure used to deduce (27), it can
be shown that

Tint ≤ db

∫ t

0

ker(t− s)‖D−xeh(s)‖h,+ ds‖D−xeh(t)‖h,+

+d′b

∫ t

0

ker(t− s)‖D−xRhc(s)‖h,+‖eh(s)‖hds‖D−xeh(t)‖h,+

and then, using the discrete Poincaré-Friedrichs inequality, we deduce

Tint ≤
1

4ǫ21
k
(

d2b + (d′b)
2‖c‖2L∞(W 1,∞(0,1))

)

∫ t

0

‖D−xeh(s)‖
2
h,+ ds

+2ǫ21‖D−xeh(t)‖
2
h,+

(28)

where |d′| ≤ d′b in R and ǫ1 6= 0 is an arbitrary constant.
(3) Estimate for Z1:

It can be shown that for Z1 holds the following

|Z1| ≤ CZ1
h2
max‖

∂c

∂t
(t)‖H2(0,1)‖D−xeh(t)‖h,+
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where CZ1
is a positive constant (see [3]). Consequently we have

|Z1| ≤
1

4ǫ22
C2

Z1
h4
max‖

∂c

∂t
(t)‖2H2(0,1) + ǫ22‖D−xeh(t)‖

2
h,+ (29)

where ǫ2 6= 0 is an arbitrary constant.
(4) Estimate for Z2:

For Z2 holds the representation

Z2 = Z2,1 + Z2,2

with

Z2,1 = (a(M̂hc(t))(D−xRhc(t)− M̂h
∂c

∂x
(t)), D−xeh(t))h,+

and

Z2,2 = ((a(Mhc(t))− a(M̂hc(t)))D−xRhc(t), D−xeh(t))h,+.

To estimate Z2,1 we remak that

Z2,1 = (a(M̂hc(t))λ(g), D−xeh(t))h,+,

with g(ξ) = c(xi−1 + ξ hi

2 ) and

λ(g) =
1

hi
(g(1)− g(0)− g′(

1

2
)).

Applying Bramble-Hilbert lemma ([5]) to estimate λ(g) we obtain

|λ(g)| ≤ CZ2,1
hi|

∂3c

∂x3
(t)|L1(xi−1,xi),

where CZ2,1
is a positive constant. The last estimate leads to

|Z2,1| ≤ abCZ2,1
h2
max|c(t)|H3(0,1)‖D−xeh(t)‖h,+, (30)

which implies

|Z2,1| ≤
a2bC

2
Z2,1

4ǫ23
h4
max|c(t)|

2
H3(0,1) + ǫ23‖D−xeh(t)‖

2
h,+, (31)

where a ≤ ab in R and ǫ3 6= 0 is an arbitrary constant.
To estimate Z2,2 we consider

λ(g) =
1

2
(g(1) + g(0))− g(

1

2
),
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with g(ξ) = c(xi−1+ ξhi, t). Applying Bramble-Hilbert lemma to esti-
mate λ(g) we obtain

|λ(g)| ≤ CZ2,2
hi|

∂2c

∂x2
(t)|L1(xi−1,xi),

where CZ2,2
is a positive constant. Then

|Z2,2| ≤ a′bCZ2,2
h2
max‖D−xRhc(t)‖h,+|c(t)|

2
H2(0,1)‖D−xeh(t)‖h,+, (32)

which implies

|Z2,2| ≤
(a′b)

2C2
Z2,2

4ǫ24
h4
max‖c(t)‖

2
W 1,∞(0,1)|c(t)|

2
H2(0,1) + ǫ24‖D−xeh(t)‖

2
h,+, (33)

where |a′| ≤ a′b in R and ǫ4 6= 0 is an arbitrary constant.
(5) Estimate for Z3:

Following the steps used to estimate Z2 it can be shown the following

|Z3| ≤

∫ t

0

ker(t− s)dbCZ3,1
h2
max|c(s)|H3(0,1)ds‖D−xeh(t)‖h,+

+

∫ t

0

ker(t− s)d′bCZ3,2
h2
max|c(s)|H2(0,1)‖D−xRhc(s)‖h,+ds‖D−xeh(t)‖h,+

(34)
where |d| ≤ db and |d′| ≤ d′b in R.
From (34) we get

|Z3| ≤ h4
max

1

4ǫ25
k
(

d2bC
2
Z3,1

+ (d′b)
2C2

Z3,2
‖c‖2L∞(W 1,∞(0,1))

)

∫ t

0

‖c(s)‖2H3(0,1) ds

+2ǫ25‖D−xeh(t)‖
2
h,+,

(35)
where ǫ5 6= 0 is an arbitrary constant.

Considering in (27)-(35) ǫi = ǫ, i = 0, . . . , 5, and taking in (25) these
upper bounds we obtain

d
dt‖eh(t)‖

2
h +2(a0 − 8ǫ2)‖D−xeh(t)‖

2
h,+ ≤

1

2ǫ2
‖c(t)‖2W 1,∞(0,1)‖eh(t)‖

2
h

+
1

2ǫ2
k
(

d2b + (d′b)
2‖c‖2L∞W 1,∞(0,1)

)

∫ t

0

‖D−xeh(t)‖
2
h,+ ds

+h4
max

1

2ǫ2
CTT (t),

(36)
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where T (t) is defined by (23) and CT is given by

CT = max{C2
Z1
, a2bC

2
Z2,1

, (a′b)
2C2

Z2,2
, d2bC

2
Z3,1

, (d′b)
2C2

Z3,2
}.

Inequality (36) leads to

‖eh(t)‖
2
h +2(a0 − 8ǫ2)

∫ t

0

‖D−xeh(s)‖
2
h,+ ds ≤

1

2ǫ2

∫ t

0

‖c(s)‖2W 1,∞(0,1)‖eh(s)‖
2
hds

+
1

2ǫ2
k
(

d2b + (d′b)
2‖c‖2L∞W 1,∞(0,1)

)

∫ t

0

∫ s

0

‖D−xeh(µ)‖
2
h,+ dµ ds

+h4
max

1

2ǫ2
CT

∫ t

0

T (s) ds

that implies

‖eh(t)‖
2
h +

∫ t

0

‖D−xeh(s)‖
2
h,+ ds ≤ h4

max

1

2ǫ2min{1, 2(a0 − 8ǫ2)}
CT

∫ t

0

T (s) ds

+
k
(

d2b + (d′b)
2‖c‖2L∞(W 1,∞(0,1))

)

2ǫ2min{1, 2(a0 − 8ǫ2)}

∫ t

0

∫ s

0

‖D−xeh(µ)‖
2
h,+ dµds

+
‖c‖2L∞(W 1,∞(0,1))

2ǫ2min{1, 2(a0 − 8ǫ2)}

∫ t

0

‖eh(s)‖
2
hds

(37)
when ǫ is fixed by

a0 − 8ǫ2 > 0. (38)

From (37) we conclude that there exist positive constants C1 and C2 depend-
ing on the coefficients functions a and d and on the kernel function ker such
that

‖eh(t)‖
2
h +

∫ t

0

‖D−xeh(s)‖
2
h,+ ds ≤ C2h

4
max

∫ t

0

T (s) ds

+C1(1 + ‖c‖2L∞(W 1,∞(0,1)))

∫ t

0

(

‖eh(s)‖
2
h +

∫ s

0

‖D−xeh(µ)‖
2
h,+ dµ

)

ds.

(39)
Finally the application of Gronwall lemma leads to (22).

In the upper bound (22), we have an amplification factor eΘt with Θ =
C1(1 + ‖c‖2L∞(W 1,∞(0,1))). In certain situations this amplification factor can be

reduced to the unity by considering more strict conditions on the coefficients.
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4. Numerical Simulations

The aim of this section is to illustrate the main result of the paper - The-
orem 1, when the smoothness assumptions assumed for the coefficient func-
tions a and d are weakened.
To integrate in time an IMEX (implicit-explicit ) method will be used. In

[0, T ] we consider a time grid J∆t = {tn, n = 0, 1, 2, ...,M} with t0 = 0, tM =
T and tn − tn−1 = ∆t. We use the rectangular rule to approximate the inte-
gral in (1) and the backward finite-difference operator D−t to approximate
the first partial derivative with respect to t. Then the fully discrete approx-
imation for c at (xj, tn), c

n
h(xj), is defined by the following set of equations

D−tc
n
h(xj) = D∗

x

(

a(Mhc
n−1
h (xj))D−xc

n
h(xj)

)

+ f(xj, tn)

+∆t

n−1
∑

s=0

ker(tn − ts)D
∗
x (d(Mhc

s
h(xj))D−xc

s
h(xj)) , (40)

j = 1, . . . , N − 1, (41)

with boundary conditions

cnh(x0) = cin, for n = 1, . . . , M, (42)

cnh(xN) = cout, for n = 1, . . . , M, (43)

and the initial condition

c0h(xj) = c0, for j = 1, . . . , N − 1. (44)

Let us consider in (1)-(4)

a(c) = c+ 1, d(c) = 5c, ker = e−
1
2 t, (45)

and let f , the initial and the boundary conditions be defined such that the
IBVP has the following solution

c(x, t) = et(1− cos(2πx)), x ∈ [0, 1], t ∈ [0, T ]. (46)

The numerical approximation cnh was obtained with method (40)-(44) with
nonuniform grids in the spatial domain and with an uniform grid in the time
domain with T = 0.1 and ∆t = 1 × 10−6. The initial spatial grid Ih was
arbitrary and the successively refined grids Ih were obtained introducing in
[xj, xj+1] the midpoint.
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In Table 1 we present the error

Erp = max
n

(

‖enh‖
2
hp
+∆t

n
∑

s=1

‖esh‖
2
1,hp

)
1
2

. (47)

where esh(xj) = c(xj, ts) − csh(xj), j = 1, 1dots, N − 1, esh(x0) = esh(xN) = 0,
and the rate Rp defined by

Rp =
ln(Erp/Erp+1

)

ln(hpmax
/hp+1max

)
. (48)

Np hpmax
Ep Rp

23 4.7619× 10−2 3.3469× 10−4 -
46 2.3810× 10−2 9.0189× 10−5 1.8918
92 1.1905× 10−2 2.2983× 10−5 1.9724
184 5.9524× 10−3 5.7475× 10−6 1.9996
368 2.9762× 10−3 1.4302× 10−6 2.0067
736 1.4881× 10−3 3.5509× 10−7 2.0099
1472 7.4405× 10−4 8.7942× 10−8 2.0136

Table 1: Convergence orders

We note that the rates presented in Table 1 are in agrement with the error
bound established in Theorem 1, that is Er = O(h2

max).

5. Conclusions

In this paper we propose a finite difference method to solve numerically the
IBVP defined by the quasi-linear integro-differential equation (1) of Volterra
type with Dirichlet boundary conditions. We point out that the non Fickian
equation (1) can be used, as previously mentioned, to model a large number
of physical situations where Fick’s law is not appropriate to describe the
mass flux and a delay effect is needed. The finite difference method (17) can
be seen as a fully discrete in space piecewise linear finite element method.
Methods of this class were studied for elliptic equations for instance in [3] ,
[11], [12] and [17].
In the main theorem of this paper - Theorem 1, we prove that a discrete

L2 norm of the spatial discretization error and of its discrete gradient are
second order convergent while the spatial truncation error is only of first order
with respect to infinity norm. The approach used to prove this result was
introduced in [20] for a linear version of (17) and differs from the one usually
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followed in the literature and which was introduced by Wheeler in [27]. Our
approach allows the weakening of the smoothness conditions usually required
when Wheeler’s technique is used, namely we replace c ∈ H1(0, T,H3(0, 1))∩
L2(0, T,H3(0, 1) ∩ H1

0(0, 1)) by c ∈ H1(0, T,H2(0, 1)) ∩ L2(0, T,H3(0, 1) ∩
H1

0(0, 1)).
For the sake of simplicity only the one dimensional case was studied, but

the techniques here presented can be used to extend the analysis for two
dimensional problems. Moreover, this technique can be adapted to get error
bounds to the error induced by the fully discrete IMEX method considered
in the numerical simulation.
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