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1. Introduction

Two discrete-time dynamical systems are flow equivalent if their suspen-
sion flows are equivalent. For symbolic dynamical systems, Parry and Sulli-
van characterized flow equivalence as the equivalence relation between shifts
generated by conjugacy and a non-symmetric relation which at present is
called symbol expansion [61]; see also [52, Section 13.7] and [5, 3]. Special
attention has been given to the classification of shifts of finite type up to
flow equivalence; in that context, complete and decidable algebraic invari-
ants were obtained, first for the irreducible case [27], then for the reducible
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case [35, 13]. However, as pointed out in [3], only small progress have been
made in the strictly sofic case, where one finds few useful flow equivalence
invariants, even for irreducible shifts.
The role of the syntactic semigroup of the language of finite blocks of a

shift X , which we call the syntactic semigroup of X , has been considered
in the literature [8, 39, 40, 6, 7, 17, 18] essentially in the context of (strictly)
sofic shifts. In [21], one finds a characterization of the abstract semigroups
which are the syntactic semigroup of a sofic shift.
For a semigroup S, letK(S) be the Karoubi envelope (also known as Cauchy

completion or idempotent splitting) of S. It is a certain small category that
plays a crucial role in finite semigroup theory thanks in part to the Delay
Theorem of Tilson (see [71], where K(S) is denoted by SE).
For a shift X , let S(X ) be its syntactic semigroup. In this paper we

prove that the Karoubi envelope K(S(X )), more briefly denoted K(X ), is
a flow equivalence invariant of X , up to equivalence of categories. This says
in a sense to be made more precise that X determines S(X ) up to Morita
equivalence.
The category K(X ) is of little use when dealing with shifts of finite type.

Indeed, a shift of finite type is conjugate with an edge shift, and it is easy
to see that if X is an irreducible edge shift then S(X ) is isomorphic to a
Brandt semigroup Bn for some n [19, Remark 2.23]. Unfortunately, all finite
Brandt semigroups have equivalent Karoubi envelopes. However, for other
classes, including strictly sofic shifts, we do obtain interesting results.
We also investigate the actions of the category K(X ) on the Krieger cover

of X and, if X is synchronizing, on its Fischer cover. We show that these
actions are invariant under flow equivalence. This result is applied in Sec-
tion 5 to obtain a new proof of the invariance under flow equivalence of the
proper communication graph of a sofic shift (a result from [3]), and in the
process we obtain a generalization to arbitrary shifts.
In Section 6, we provide examples of pairs of almost finite type shifts X

and Y such that K(X ) and K(Y ) are not equivalent, whereas other flow
equivalence invariants fail to separate them. In the first of these examples
we use a labeled poset, hailing from Green’s relations on S(X ), which was
shown in [17] to be a conjugacy invariant of sofic shifts. This is a more refined
version of a previously invariant considered in [7].
As a consequence of the flow invariance of K(X ) (up to equivalence of

categories), we recover and extend the invariant from [17] to the context of
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flow equivalence, as well to non-sofic shifts. We mention that the proofs
in [7] are based on Nasu’s Classification Theorem for sofic shifts [59], while
those in [17] rely on using some mappings between free semigroups naturally
defined from sliding block codes of shifts. This second approach, properly
adapted from [17] to cover the case of non-sofic shifts, is again used in the
three final technical sections of the paper.
In Sections 7 and 8, using the Karoubi envelope of S(X ), we recover

other conjugacy invariants of sofic shifts, showing that they are actually flow
equivalence invariants. In Section 7 we deal with the invariants of [18], in
particular deducing again that the class of almost finite type shifts is stable
under flow equivalence (Theorem 7.5), a result from [28]. In Section 8 we
conclude that the poset of subsynchronizing subshifts of a sofic shift, studied
in [40], is invariant under flow equivalence.
The Karoubi envelope is applied in Section 9 to classify up to flow equiva-

lence a class of non-sofic shifts, the Markov-Dyck shifts of Krieger and Mat-
sumoto [48], thus reproving and generalizing the classification of Dyck shifts,
first obtained in [58].
The basic outline of the paper is as follows. We begin with two preliminaries

sections. The first contains some aspects of category theory and semigroup
theory that we shall require in order to extract flow equivalence invariants
from the category K(X ). The second preliminary section is about symbolic
dynamics. Section 4 states our main results. In Sections 5 to 9, consequences
of our main results are explored, as well as relations with previous work, from
the viewpoint of the classification of shifts up to flow equivalence. Although
the principal motivation in this paper is the study of flow equivalence, we
also deduce in Section 10 that several of our flow invariants are in addition
eventual conjugacy invariants in the case of sofic shifts. Finally, we give the
proofs of our main results in the last three sections.
There are also two short appendices. The first one contains remarks about

the flow invariance ofK(X ), up to natural equivalence, when S(X ) is viewed
as an ordered semigroup. The second appendix completes an argument in
the proof of Theorem 8.8, using technical tools from Section 12.

2. The Karoubi envelope of a semigroup

2.1. Categorical preliminaries. The reader is referred to [54, 10, 11, 12]
for basic notions from category theory. A category C is small if its objects
and arrows form a set. We recall that two categories C and D are equivalent
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if there are functors F : C −→ D and G : D −→ C such that FG ∼= 1D and
GF ∼= 1C , where the symbol ∼= stands for isomorphism of functors. A functor
F : C −→ D between small categories is an equivalence (i.e., there exists such
a G) if and only if it is fully faithful and essentially surjective. Fully faithful
means bijective on hom-sets, whereas essentially surjective means that every
object of D is isomorphic to an object of F (C). The former is in accordance
with the usual terminology for functors which are injective on hom-sets (the
faithful functors) and for those surjective on hom-sets (the full functors).

2.2. The Karoubi envelope and Morita equivalence of semigroups.

An important notion in this paper is the Karoubi envelope K(S) (also known
as Cauchy completion or idempotent splitting) of a semigroup S. It is a small
category whose object set is the set E(S) of idempotents of S. Morphisms
in K(S) from f to e are represented by arrows e←− f . It will be explained
in the following paragraph why we prefer to put the source of an arrow of
K(S) on the right. A morphism e ←− f is a triple (e, s, f) where s ∈ eSf .
Note that s ∈ eSf if and only if s = esf , because e and f are idempotents.
Composition of morphisms is given by

(e, s, f)(f, t, g) = (e, st, g).

The identity at e is (e, e, e). It is easy to show that idempotents e, f are
isomorphic in K(S) if and only if there exist x, x′ ∈ S such that xx′x = x,
x′xx′ = x′, x′x = e and xx′ = f . In semigroup terms (which will be explained
in more detail in Subsection 2.4), this says that e, f are D-equivalent [68],
whereas in analytic terms this corresponds to von Neumann-Murray equiva-
lence.
In Semigroup Theory, a triple (e, s, f) such that s ∈ eSf is normally

viewed as a morphism with domain e and co-domain f , and the composi-
tion of morphisms is taken in the direction opposite to that usually followed
in Category Theory. This is because one tends to read a semigroup product
from left to right. Accordingly to this alternate convention, we still have
(e, s, f)(f, t, g) = (e, st, g). In this paper, we adopt the Category Theory
convention for composition. However, we do not want to deviate from the
Semigroup Theory notation, and that is why we represent graphically a mor-
phism (e, s, f) as an arrow e ←− f with source on the right. All other
categories will be treated as usual with arrows drawn from left to right.
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If e is an idempotent of the semigroup S, then eSe is a a monoid with
identity e, which is called the local monoid of S at e. The local monoid of a
category C at an object c is the endomorphism monoid of c in C. The local
monoids of S correspond to the local monoids of K(S), more precisely, eSe
and K(S)(e, e) are isomorphic for every e ∈ E(S).
An element s of a semigroup S has local units e and f , where e and f are

idempotents of S, if s = esf . The set LU(S) = E(S)SE(S) of elements
of S with local units is a subsemigroup of S. If LU(S) = S, then we say
that S has local units. In general, LU(S) is the largest subsemigroup of S
which has local units (it may be empty). Clearly K(S) = K(LU(S)) and
so the Karoubi envelope does not distinguish between these two semigroups.
Talwar defined in [70] a notion of Morita equivalence of semigroups with local
units in terms of equivalence of certain categories of actions. It was shown
in [51, 29] that semigroups S and T with local units are Morita equivalent if
and only if K(S) and K(T ) are equivalent categories. Thus we shall say that
semigroups S and T are Morita equivalent up to local units if K(S) and K(T )
are equivalent categories, or in other words if LU(S) is Morita equivalent to
LU(T ). In this paper, we will show that flow equivalent shifts have syntactic
semigroups that are Morita equivalent up to local units.

2.3. Categories with zero. A semigroup with zero is a semigroup S with
an element 0 such that 0s = 0 = s0 for all s ∈ S. The element 0 is unique.
A category with zero is a category C enriched over the monoidal category

of pointed sets. What this means concretely is that, for all objects c, d of C,
there is a zero morphism 0c,d ∈ C(c, d) satisfying the following property. For
all f : c′ −→ c and g : d −→ d′ one has

0c,df = 0c′,d and g0c,d = 0c,d′.

For ease of notation, we put 0c,c = 0c. For instance, every abelian category
is a category with 0. The most important example for us is the case where
S is a semigroup with zero and C is the Karoubi envelope K(S). Then
0e,f = (f, 0, e) is the zero morphism of K(S)(e, f). An object c of a category
with zero is said to be trivial if 1c = 0c. Notice then that the only morphisms
into and out of a trivial object are the zero morphisms.
Observe that if f ∈ C(c, d), then 0df = 0c,d. Thus the zero morphisms are

determined by the zero morphisms of local monoids. Since a zero element
of a monoid is unique, it follows that the zero morphisms of a category with
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zero are uniquely determined. From now on, we will drop the subscripts on
zero morphisms when convenient. Note that if F is a full functor between
categories with zero, then F (0) = 0. This enables us to register the following
remark, for later reference.

Remark 2.1. If F is a fully faithful functor between categories with zero then
F (x) = 0 if and only if x = 0.

2.4. Green’s relations and the Karoubi envelope. Throughout this
paper we shall use basic notions from semigroup theory that can be found
in standard texts [15, 49, 1, 31, 68]. Green’s (equivalence) relations, which
we next recall, are among them. The relation J is defined on a semigroup
S by putting s J t if s and t generate the same two-sided principal ideal,
that is, if S1sS1 = S1tS1, where S1 denotes the monoid obtained from S
adjoining an identity. We write s ≤J t if S1sS1 ⊆ S1tS1, that is, if t is a
factor of s. The relation ≤J thus defined is a preorder. Similarly, one defines
the R- and L-relations, as well as the preorders ≤R and ≤L, by replacing
two-sided ideals with right (respectively, left) ideals. The intersection of the
equivalence relations R and L is denoted by H. The maximal subgroups
of S are the H-classes containing idempotents. Finally, Green’s relation
D is the least equivalence relation containing R and L; it is known that
D = L ◦ R = R ◦ L. In the class of stable semigroups, which includes finite
and compact semigroups, one has D = J [68, Appendix A].
An element s of a semigroup S is regular if s = sxs for some x ∈ S. If K is

one of Green’s relation, then we say that a K-class is regular if its elements
are regular. An element is regular if and only if its D-class is regular.
Let H be an H-class of S. The set {x ∈ S1 : xH ⊆ H} is a submonoid of

S1, called the left stabilizer of H. The quotient of T by its left action on H is
a group known as the Schützenberger group of H. Exchanging right and left,
one obtains an isomorphic group. If H is a group (which occurs if and only if
it contains an idempotent), then it is isomorphic to its Schützenberger group.
TwoH-classes contained in the sameD-class have isomorphic Schützenberger
groups, hence the expression Schützenberger group of a D-class is meaningful.
See [16] for details.

Remark 2.2. Let S be a semigroup. If K is one of Green’s relations J , R or
L, then s ≤K t in LU(S) if and only if s ≤K t in S, for all s, t ∈ LU(S), and
the Schützenberger group of s ∈ LU(S) is the same in S as in LU(S).
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The following lemma concerning the Karoubi envelope K(S) of a semigroup
is well known and easy to prove [51, 68].

Lemma 2.3. Two objects e and f of K(S) are isomorphic if and only if
e and f are D-equivalent in S. Moreover, the automorphism group of e is
isomorphic to the Schützenberger group of the D-class of e.

2.5. The action of K(S). Recall that a (right deterministic) action of
a semigroup S on a set Q is a function µ : Q × S −→ S, with notation
µ(q, s) = q ·s = qs, such that q · (st) = (q ·s) · t. The action defines a function
ϕ from S to the set QQ of transformation of Q, given by ϕ(s)(q) = q · s. The
action is faithful if ϕ is injective.
A (right deterministic) action of a small category C on a set Q is a con-

travariant functor A : C −→ Set such that A(c) is a subset of Q for every
object c of C, i.e., a presheaf on C taking values in subsets of Q [53]. If
s : c −→ d is a morphism of C, we may use the notation q · s for A(s)(q),
where q ∈ A(d), and the notation A(d) · s for the image of the function
A(s) : A(d) −→ A(c). The notations q · s and A(d) · s may be simplified to
qs and A(d)s.

Definition 2.4 (Equivalent actions). Consider two actions A : C −→ Set

and A′ : D −→ Set. We say that A and A′ are equivalent, and write A ∼ A′,
if there is an equivalence F : C −→ D such that A and A′ ◦F are isomorphic
functors.

Remark 2.5. Note that the binary relation ∼ is an equivalence relation on
the class of actions. It is clearly reflexive; transitivity and symmetry fol-
low straightforwardly from the fact that, for small categories C and D, if
F : C −→ D and G : C −→ D are isomorphic functors, then FH and GH
are also isomorphic, for every functor H from a small category into C.

Definition 2.6. Consider an action of a semigroup S on a set Q. Let AQ be
the action of K(S) on Q such that AQ(e) = Qe for every object e of K(S),
and such that AQ((e, s, f)) is the function Qe −→ Qf mapping q to qs, for
every q ∈ Qe. That is, q · (e, s, f) = q · s.

Lemma 2.7 ([20]). If the action of the semigroup S on Q is faithful, then
the action AQ is faithful.
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3. Symbolic dynamics

3.1. Shifts. A good reference for the notions that we shall use here from
symbolic dynamics is [52]. To make the paper reasonably self-contained and
to introduce notation, we recall some basic definitions.
Let A be a finite alphabet, and consider the set AZ of all bi-infinite se-

quences over A. The shift on AZ is the homeomorphism σA : A
Z −→ AZ (or

just σ) defined by σA((xi)i∈Z) = (xi+1)i∈Z. We endow AZ with the product
topology with respect to the discrete topology on A. In particular, AZ is
a compact totally disconnected space (we include the Hausdorff property in
the definition of compact).
We assume henceforth that all alphabets are finite. A symbolic dynamical

system is a non-empty closed subset X of AZ, for some alphabet A, such
that σ(X ) = X . Symbolic dynamical systems are also known as shift
spaces, subshifts, or, more plainly, just shifts. We shall generally prefer the
latter option except when we are emphasizing that one shift is a subshift of
another. The orbit of x ∈ AZ is the set O(x) = {σn(x) : n ∈ Z}. Hence
X ⊆ AZ is a shift if and only if X contains the orbits of its elements and it
is topologically closed. When O(x) is finite then x is periodic, and O(x) is a
periodic shift.
We can consider the category of shifts, whose objects are the shifts and

where a morphism between two shifts X ⊆ AZ and Y ⊆ BZ is a continuous
function Φ: X −→ Y such that Φ ◦ σA = σB ◦ Φ. In this category, an
isomorphism is called a conjugacy. Isomorphic shifts are said to be conjugate.
The free semigroup and the free monoid over an alphabet A are denoted

by A+ and A∗, respectively. The length of an element w ∈ A∗ is denoted |w|.
Recall that a subset of A+ is in this context called a language.
A block of an element (xi)i∈Z ofAZ is a word of the form xixi+1 · · ·xi+n−1xi+n

(briefly denoted by x[i,i+n]), where i ∈ Z and n ≥ 0. If X is a subset of AZ

then we denote by L(X ) the language of blocks of elements of X . If X is
a subshift of AZ and x ∈ AZ, then x ∈X if and only if L({x}) ⊆ L(X ) [52,
Corollary 1.3.5].
A language L ⊆ A+ is factorial if it is closed under taking factors, and it

is prolongable if, for every element u of L there are elements a, b ∈ A such
that aub ∈ L. The correspondence X 7→ L(X ) is an order isomorphism
between the poset of subshifts of AZ and the poset of non-empty factorial,
prolongable languages in A+ [52, Proposition 1.3.4].
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3.2. The syntactic semigroup of a shift. We shall make use of several
well-known fundamental ideas and facts about the interplay between finite
automata, formal languages and semigroups which, with some variations, can
be found in several books, such as [24, 65].
If A is an alphabet, let A+

0 = A+ ∪ {0} be the free semigroup on A with
zero. The multiplication of A+ is extended to make 0 a zero element. Let
L ⊆ A+ be a language and let u ∈ A+

0 . The context of u in L, which we
denote by δL(u), is the set {(x, y) ∈ A∗ : xuy ∈ L}. Of course, δL(0) = ∅.
The relation ≡L on A+

0 defined by

u ≡L v ⇐⇒ δL(u) = δL(v)

is a semigroup congruence, and the quotient semigroup A+
0 /≡L is the syntac-

tic semigroup (with zero) of L, denoted S(L). Note that the class of 0 is the
zero element of S(L). Since u ≡L v if and only if δL(u) and δL(v) are equal,
we may identify u/≡L with δL(u), and so δL can be viewed as the syntactic
homomorphism A+

0 −→ S(L).
For all u, v, w ∈ S(L), if δL(u) ⊆ δL(v) then δL(wu) ⊆ δL(wv) and

δL(uw) ⊆ δL(vw). This motivates the more refined notion of syntactic or-
dered semigroup of a language [66], which in this paper is necessary only for
the discussion in Appendix A.
For a subshift X of AZ, we use the notations δX , S(X ), LU(X ) instead

of δL(X ), S(L(X )) and LU(S(X )) respectively. We say that S(X ) is the
syntactic semigroup of X . One has u ∈ A+

0 \L(X ) if and only if δX (u) = ∅.
If X ⊆ AZ and A ⊆ B, then the syntactic semigroups of X viewed as a
subset of AZ and of BZ coincide.

3.3. Labeled graphs and sofic shifts.

3.3.1. Labeled graphs. In this paper, graph will always mean a multi-edge
directed graph. By a labeled graph (over an alphabet A) we mean a pair
(G, λ) consisting of a graph G and a map λ : E(G) −→ A, where E(G) is
the set of edges of G, such that if e and f are distinct edges with the same
origin and the same terminus, then λ(e) 6= λ(f). The letter λ(e) is the label
of e. The labeled graph (G, λ) is right resolving if distinct edges with the
same origin have distinct labels. It is complete if, for every vertex q and
every letter a ∈ A, there is an edge starting in q with label a. Note that a
complete labeled graph over A may be viewed as an action of A+ over the
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set of vertices: the existence of an edge from q to r labeled a corresponds to
the equality q · a = r.

3.3.2. Minimal automaton. An automaton is just a labeled graph (G, λ)
together with some sets I and F of vertices of G, respectively the set of
initial vertices and the set of final vertices. A deterministic automaton is
a right resolving automaton with a single initial vertex. The set of words
labeling paths from vertices of I to vertices of F is the language recognized
by the automaton. We view a labeled graph as an automaton in which all
states are initial and final.
Consider a language L ⊆ A+. Let u be an element of A∗0 = A∗ ∪ {0}, the

free monoid with zero. The right context of u in L is the set

RL(u) = {w ∈ A
∗ | uw ∈ L}.

Viewing L as a language over the alphabet A ∪ {0}, we can consider its
minimal complete deterministic automaton, which is the terminal object on
the category of complete deterministic automatons, over the alphabetA∪{0},
recognizing L. This automaton, which we denote by M(L), can be realized
as follows: the states are the right contexts of L, the initial state is RL(1),
the final states are the right contexts RL(u) such that u ∈ L, and the action
of an element v of A+

0 on the set of states is given by RL(u) · v = RL(uv).
A sink in a labeled graph is vertex z such that all edges starting in z are
loops; the vertex RL(0) = ∅ has the particularity of being the unique sink
of M(L). The language L is recognizable if it can be recognized by a finite
automaton; L is recognizable if and only if M(L) is finite, if and only if S(L)
is finite [24, 65].
Note that u, v ∈ A+

0 have the same action over the states of M(L) if and
only if δL(u) = δL(v). In particular, we may consider the action of S(L) on
the set of states defined by RL(u) · δL(v) = RL(uv).
For a subshift X of AZ, we use the notation M(X ) instead of M(L(X )).

3.3.3. Sofic shifts. A graph G is essential if the in-degree and the out-degree
of each vertex is at least one. If the shift X and the essential labeled graph
(G, λ) are such that L(X ) is recognized by (G, λ), then we say that X is
the shift presented by (G, λ).
The shifts that can be presented by a finite labeled graph are called sofic [52,

Chapter 3]. The sofic shifts are the shifts X such that L(X ) is a recognizable
language. That is, X is sofic if and only if S(X ) is finite. The most studied
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class of sofic shifts is that of finite type shifts [52, Chapter 2]: a subshift X

of AZ is of finite type when L(X ) = A+ \A∗WA∗, for some finite subset W
of A+. An edge shift is a shift presented by a finite essential labeled graph
(G, λ) such that the mapping λ is one-to-one. One of the characterizations of
the shifts of finite type is that they are the shifts conjugate to edge shifts [52,
Theorem 2.3.2].
A subshift X of AZ is irreducible if for all u, v ∈ L(X ) there is w ∈ A∗

such that uwv ∈ L(X ). A sofic shift is irreducible if and only if it can be
presented by a strongly connected labeled graph [52, Proposition 3.3.11].

3.4. Synchronizing shifts. Let X be a shift. A word u of L(X ) is synchro-
nizing∗ if, whenever vu ∈ L(X ) and uw ∈ L(X ), we have vuw ∈ L(X ).
An irreducible shift X is synchronizing if L(X ) contains a synchronizing
word. Every irreducible sofic shift is synchronizing; this fact goes back to [26,
Lemma 2], where the terminology“synchronizing” is absent; a generalization
with that terminology appears in [9, Proposition 3.1].
The following lemma about synchronizing words can be useful.

Lemma 3.1. Let X ⊆ AZ be a synchronizing shift.

(1) The union of A+ \L(X ) with the set of synchronizing words of L(X )
is an ideal of A+.

(2) A synchronizing word u maps to an idempotent of S(X ) if and only
if u2 ∈ L(X ).

(3) If v is synchronizing, then uv ∈ L(X ) implies that RX (uv) = RX (v).

Proof : Suppose that u is synchronizing and let r ∈ A+. Then if vru, ruw ∈
L(X ), one has that (vr)uw ∈ L(X ) because u is synchronizing. Thus ru is
synchronizing. Similarly, ur is synchronizing and so the synchronizing words
form an ideal. This proves the first item.
Suppose that u maps to an idempotent of S(X ). Then trivially u2 ∈

L(X ). For the converse, suppose that u2 ∈ L(X ). If v, w ∈ A∗ with
vuw ∈ L(X ), then because vu, uu ∈ L(X ), we have vuu ∈ L(X ). But then
vuu, uw ∈ L(X ) implies that vu2w ∈ L(X ). Conversely, if vu2w ∈ L(X ),
then vu, uw ∈ L(X ) and so vuw ∈ L(X ) because u is synchronizing.
The final statement follows because vw ∈ L(X ) if and only if uvw ∈ L(X )

by the definition of a synchronizing word.

∗In [52], a synchronizing word is called an intrinsically synchronizing word. There is some
diversity of terminology in the literature (cf. [3, Remark 2.6]).
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The main results of this paper concern the Karoubi envelope of S(X ),
which has at least one object, namely 0. The following proposition estab-
lishes in particular that being synchronizing is a sufficient condition for the
existence of other objects.

Proposition 3.2. Let X be a synchronizing shift. If u is a synchronizing
word of L(X ), then there is an idempotent e ∈ S(X )\{0} such that RX (1) ·
e = RX (u).

Proof : Suppose that u is a synchronizing word of L(X ). Since X is irre-
ducible, there is a word v such that uvu ∈ L(X ). Then vu, uvu ∈ L(X ) im-
plies that vuvu ∈ L(X ). By Lemma 3.1, vu is synchronizing and e = δX (vu)
is a non-zero idempotent. Lemma 3.1 also yields RX (u) = RX (vu) =
RX (1) · e.

The condition given in Proposition 3.2 is not necessary for the existence
of idempotents in S(X ) \ {0}, as testified by the class of irreducible shifts
analyzed in Section 9. In the next lemma we state a necessary condition.

Lemma 3.3. If S(X ) contains a non-zero idempotent, then X contains a
periodic element.

Proof : If δX (u) is idempotent and δX (u) 6= 0, then un ∈ L(X ) for all n,
which implies that · · ·uuu.uuu · · · is a periodic element of X .

3.5. Krieger and Fischer covers. Denote the set of negative integers by
Z−, and the set of non-negative integers by N. Given an element x = (xi)i∈Z−

ofAZ−

and an element y = (yi)i∈N ofAN, denote by x.y the element z = (zi)i∈Z
of AZ for which zi = xi if i < 0, and zi = yi if i ≥ 0.
If x ∈ AZ−

and u = a1 · · · an ∈ A+, with ai ∈ A when 1 ≤ i ≤ n, then xu de-
notes the element ofAZ−

given by the left-infinite sequence · · · x−3x−2x−1a1 · · · an.
Similarly, if x ∈ AN then ux ∈ AN is given by the right-infinite sequence
a1 · · · anx0x1x2 · · · .
Let X be a subshift of AZ. We shall consider the sets

X
− = {x ∈ AZ−

| ∃y ∈ AN : x.y ∈X }

and
X

+ = {x ∈ AN | ∃y ∈ AZ−

: y.x ∈X }.

For each x ∈ AZ−

, let

CX (x) = {y ∈ AN : x.y ∈X }.
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Note that CX (x) 6= ∅ if and only if x ∈X
−.

If u ∈ A+, then CX (x) = CX (z) implies CX (xu) = CX (zu). This enables
the following definition.

Definition 3.4 (Krieger cover). Let Q(X ) = {CX (x) | x ∈ AZ−

} ∪ {∅}.
Denote by K0(X ) the right resolving complete labeled graph over A ∪ {0},
with vertex set Q(X ), defined by the action of A+

0 on Q(X ) given by

CX (x) · u = CX (xu) if u ∈ A+, CX (x) · 0 = ∅,

having ∅ as unique sink. The labeled graph K(X ) over A obtained from
K0(X ) by elimination of the vertex ∅ is the right Krieger cover of X (cf. [25,
Definition 0.11]).

Krieger introduced in [45] this cover for sofic shifts only. If X is sofic,
then the right Krieger cover of X embeds in the automaton M(X ) and it is
computable [5, Section 4]. There are examples of synchronizing shifts whose
Krieger graph is uncountable (cf., the example in the proof of [25, Corollary
1.3]). Hence, in the non-sofic case, the Krieger cover may not be a labeled
subgraph of M(X ), which is always at most countable.
It is convenient for what follows to describe the syntactic congruence of

L(X ) in terms of infinite words. Define, for u ∈ A+
0 ,

∆X (u) = {(x, y) ∈ AZ−

×AN : xu.y ∈X }

where we understand ∆X (0) = ∅. The next proposition shows that ∆X (u)
contains the same information as δX (u).

Proposition 3.5. Let u, v ∈ A+
0 . Then δX (u) ⊆ δY (v) if and only if

∆X (u) ⊆ ∆Y (v).

Proof : Suppose first that δX (u) ⊆ δY (v) and that xu.y ∈ X with x ∈ AZ
−

and y ∈ AN. Then x[−n,−1]uy[0,n] ∈ L(X ) for all n ≥ 1 and so by assumption
x[−n,−1]vy[0,n] ∈ L(X ) for all n ≥ 1. As n was arbitrary, it follows that
xv.y ∈X .
Conversely, suppose that ∆X (u) ⊆ ∆Y (v) and that rus ∈ L(X ) with

r, s ∈ A∗. Then xru.sy ∈ X for some x ∈ AZ−

and y ∈ AN. Thus by
hypothesis, we have xrv.sy ∈X and hence rvs ∈ L(X ), as required.

This proposition allows us to prove the following lemma, which will be put
to use in proving that S(X ) acts on the Krieger cover.



14 ALFREDO COSTA AND BENJAMIN STEINBERG

Lemma 3.6. Consider a subshift X of AZ, and let u, v ∈ A+ and x ∈ AZ−

.
If δX (u) ⊆ δX (v) then CX (xu) ⊆ CX (xv).

Proof : By Proposition 3.5, we have that ∆X (u) ⊆ ∆X (v). Suppose that
y ∈ CX (xu). Then xu.y ∈ X and hence xv.y ∈ X by definition of ∆X .
Thus y ∈ CX (xv) and so CX (xu) ⊆ CX (xv).

By Lemma 3.6, the action of S(X ) on the set of vertices of K0(X ) given by
CX (x) · δX (u) = CX (xu) is well defined. According to the next lemma, this
action is faithful; more precisely, it is faithful on the set of vertices of K(X ).

Lemma 3.7. Let u, v ∈ A+ be such that CX (xu) ⊆ CX (xv) for all x ∈X
−.

Then δX (u) ⊆ δX (v).

Proof : By Proposition 3.5, it suffices to prove ∆X (u) ⊆ ∆X (v). Suppose
that xu.y ∈ X . Then xv.y ∈ X because CX (xu) ⊆ CX (xv). This com-
pletes the proof.

We shall also consider sets of the following form, for a block u ∈ L(X ):

CX (u) = {y ∈ AN : uy ∈X
+}.

Note that if X is synchronizing, and u is a synchronizing block of L(X ),
then CX (u) = CX (xu) for all x ∈ A∗ with xu ∈ L(X ).
In a graph G, a subgraph H is terminal if every edge of G starting in a

vertex of H belongs to H. A strongly connected component of G is a maximal
strongly connected subgraph of G.
As a reference for the next definition, which we are ready to state, we give

Definition 0.12 in [25], and the lines following it in [25], for a justification
that it is well done.

Definition 3.8 (Fischer cover). Let X be a synchronizing shift. If u and
v are synchronizing words of L(X ), then CX (u) and CX (v) are vertices in
the same strongly connected component of K(X ). This strongly connected
component is terminal and it is a presentation of X . It is called the right
Fischer cover of X , and we denote it by F(X ).
We denote by F0(X ) the terminal complete labeled subgraph of K0(X )

obtained from F(X ) by adjoining the sink state {∅}. We denote by QF(X )
the vertex set of F0(X ).

Given a labeled graph (G, λ) over an alphabet A, one says that a word
u ∈ A+ is a synchronizing word for (G, λ) if u is recognized by (G, λ) and
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all paths in (G, λ) labeled by u end in the same vertex†. A labeled graph is
reduced if it has the following property: if p and q are vertices such that the
set of words labeling paths starting in p is equal to the set of words labeling
paths starting in q, then p = q. A finite labeled graph which is right resolving
and reduced has a synchronizing word [52, Proposition 3.3.16].
The following result is well known, cf. [25, Theorem 2.16] and [52, Corollary

3.3.19].

Theorem 3.9. If X is a synchronizing shift, then F(X ) is the unique la-
beled graph (up to isomorphism of labeled graphs) which is strongly connected,
reduced, right resolving and for which there is a synchronizing word.

The next result was proved in [8] for irreducible sofic shifts. The general-
ization for synchronizing shifts offers no additional difficulty, but we include
here its proof for the sake of completeness. We denote by M∗(X ) the labeled
graph obtained from M(X ) by eliminating the sink vertex ∅.

Proposition 3.10. Let X be a synchronizing shift. Then the labeled graph
M∗(X ) has a unique terminal strongly connected component, which is iso-
morphic with F(X ). Its vertices are the right-contexts of synchronizing
words.

Proof : Let u, v ∈ L(X ) with v synchronizing. Since X is irreducible, there is
w ∈ L(X ) such that uwv ∈ L(X ). Then RX (u)wv = RX (uwv) = RX (v)
by Lemma 3.1. Thus M∗(X ) has a unique terminal strongly connected
component G and RX (v) ∈ G for every synchronizing word v. Moreover,
since the synchronizing words form an ideal by Lemma 3.1, all vertices of G
are of this form.
To show that G is isomorphic with F(X ), we verify the conditions in

Theorem 3.9. That G presents X follows straightforwardly from X being
irreducible. Every labeled subgraph of M∗(X ) is right resolving. Clearly,
M∗(X ) is reduced. Since G is a terminal subgraph of M∗(X ), it inherits
the property of being reduced. Finally, if v is a synchronizing word of L(X ),
then all paths in G labeled by v end in RX (v), thus v is a synchronizing
word for G. Hence G and F(X ) are isomorphic by Theorem 3.9.

We have so far defined the right Krieger and Fischer covers. The left
Krieger and Fischer covers are defined analogously, changing directions when

†This terminology is from [52]. In [25], an important reference concerning synchronizing shifts,
a synchronizing word for (G,λ) is referred as a magic word of (G,λ).
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needed. Equivalently, we can use the approach used in [60, pages 568–569]
(see also [52, page 39]) to define the left Krieger and Fischer covers by means
of the transpose operator. The transpose or time reversal of a shift X is the
shift

X
T = {(xi)i∈Z | (x−i)i∈Z ∈X }.

The transpose of a labeled graph G is the labeled graph GT obtained from
G by reversing the directions of the edges, maintaining the labels. Then the
left Krieger and Fischer covers of a shift X (the latter if X is synchronizing)
are the labeled graphs K(X T )T and F(X T )T , respectively.

3.6. Flow equivalence. Fix an alphabet A and a letter α of A. Let ⋄ be a
letter not in A. Denote by B the alphabet A∪{⋄}. The symbol expansion of
A∗ associated to α is the unique monoid homomorphism E : A∗ −→ B∗ such
that E(α) = α⋄ and E(a) = a for all a ∈ A \ {α}. Note that E is injective.
The symbol expansion of a subshift X of AZ relatively to α is the least

subshift X ′ of BZ such that L(X ′) contains E(L(X )). A symbol expansion
of X is a symbol expansion of X relatively to some letter.
The mapping E admits the following natural extension of its domain and

range. If x ∈ AZ−

and y ∈ AN, then E(x) and E(y) are respectively the
elements of BZ−

and BN given by

E(x) = · · · E(x−3) E(x−2) E(x−1), E(y) = E(y0) E(y1) E(y2) · · · .

Moreover, E(x.y) denotes E(x).E(y) ∈ BZ. Note that X
′ is the least subshift

of BZ containing E(X ).
The flow equivalence is the least equivalence relation between shifts con-

taining the conjugacy and symbol expansion relations. The classes of finite
type shifts, of sofic shifts, and of irreducible shifts are all easily seen to be
closed under flow equivalence. See [52, Section 13.6] for motivation for study-
ing flow equivalence. Here, we just remark that the original definition of flow
equivalence (that two shifts are flow equivalent if their suspension flows are
topologically equivalent) was proved in [61] to be equivalent to the one we
use, explicitly for finite type shifts, but as pointed out in [56, Lemma 2.1],
implicitly for all shifts. See also [62, page 87].
Note that X and Y are flow equivalent shifts if and only if X T and Y T

are flow equivalent. Hence, for the purposes of our paper, it is not necessary
to translate results on right Krieger and Fischer covers to dual results on left
Krieger and Fischer covers.
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4. Statement of the main results

In this section we state the main results of this paper, deferring proofs to
the final sections.

Definition 4.1 (Karoubi envelope of a shift). If X is a shift, then the
Karoubi envelope K(X ) of X is by definition the Karoubi envelopeK(S(X ))
of its syntactic semigroup.

Note that the category K(X ) is a category with zero, since S(X ) is a
semigroup with zero. Our principal result is that the natural equivalence
class of K(X ) is a flow equivalence invariant of X .

Theorem 4.2. If X and Y are flow equivalent shifts, then the categories
K(X ) and K(Y ) are equivalent, i.e., S(X ) and S(Y ) are Morita equivalent
up to local units.

Theorem 4.2 is a direct consequence of a more detailed result which is
stated afterwards in Theorem 4.4. We remark that if X and Y are sofic
shifts given by presentations, then one can effectively determine whether
K(X ) is equivalent to K(Y ). This is because these categories are finite and
effectively constructible and so one can in principle check all functors between
them and see if there is one which is an equivalence.
The reader is referred back to Definition 2.6. For a shift X , denote by AX

the action AQ(X ) arising from the action of LU(X ) on Q(X ).

Remark 4.3. According to Lemma 3.7, the semigroup S(X ) acts faithfully
on Q(X ). In particular, the subsemigroup LU(X ) acts faithfully on Q(X ),
and so, by Lemma 2.7, the action AX is faithful. The faithfulness of AX is
used in the proof of the following theorem.

Theorem 4.4. If X and Y are flow equivalent shifts, then the actions AX

and AY are equivalent.

Note that Theorem 4.4 immediately implies Theorem 4.2, by the defini-
tion of equivalence of actions. The proof of Theorem 4.4 is carried out in
Section 12, after some preliminaries in Section 11.
Recall from Subsection 3.5 the definition of right Fischer cover and the

relationship between Q(X ) and QF(X ), when X is a synchronizing shift.
Recall in particular that the elements of the set QF(X )\{∅} are the vertices
in the unique strongly connected terminal component of the Krieger cover of
X . This motivates the following remark.
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Remark 4.5. If q ∈ QF(X ), then qs ∈ QF(X ), for every s ∈ S(X ).

Therefore, the action of LU(X ) on Q(X ) restricts in a natural way to an
action of LU(X ) on QF(X ), denoted A

F

X
.

Theorem 4.6. If X and Y are flow equivalent synchronizing shifts, then
the actions AF

X
and A

F

Y
are equivalent.

The proof of Theorem 4.6 is deferred to Section 13.
The minimal shifts — shifts not strictly containing another shift — are of

great importance, and in many aspects quite apart from sofic shifts (cf. [52,
Section 13.7]). A minimal shift is sofic if and only if it is periodic. It follows
from Lemma 3.3 that if X is a minimal non-periodic shift, then 0 is the
unique idempotent of S(X ). Hence, in that case our main results have no
applications. On the other hand, they do have meaningful consequences for
sofic, synchronizing, and other classes of shifts. In the next few sections we
examine some of these consequences.

5. The proper comunication graph

For a graph G, let PC(G) be the set of non-trivial strongly connected
components of G. Here we consider a strongly connected graph to be trivial
if it consists of one vertex and no edges (a single vertex with some loop edges
is deemed non-trivial). Consider in PC(G) the partial order given by C1 ≤ C2

if and only if there is in G a path from an element of C1 to an element of
C2. Following the terminology of [3], the proper communication graph of G
is the acyclic directed graph with vertex set PC(G) and edge set given by
the irreflexive relation <. It is proved in [3] that the proper communication
graph of the right (left) Krieger cover of a sofic shift is a flow equivalence
invariant. We shall see in this section that this result can naturally be seen as
a consequence of Theorem 4.4, and in the process of doing this, we generalize
it to arbitrary shifts.
Let q ∈ Q(X ). We say that s ∈ S(X ) stabilizes q if q · s = q. Denote by

Eq the set of idempotents that stabilize q. Note that, for every q ∈ Q(X ),
we have e ∈ Eq if and only if q ∈ Q(X )e. Let I(X ) be the set of vertices
q ∈ Q(X ) such that Eq is non-empty, i.e., I(X ) = Q(X )·E(S(X )). Endow
I(X ) with the preorder � defined by q � r if and only if there is a path from
q to r in K0(X ). That is, q � r if and only if r = ∅ or there is a path from
q to r in K(X ). Equivalently, q � r if and only if r ∈ qLU(X ). Denote by
∼ the equivalence relation defined by p ∼ q if and only if p � q and q � p.
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The quotient poset (I(X )/∼,≤) will be denoted by P (X ). We can identify
P (X ), when convenient, with the set {qLU(X ) : q ∈ I(X )} ordered by
inclusion. Note that ∅ · LU(X ) = ∅.

Proposition 5.1. For the shifts X and Y , suppose we have a natural
equivalence F : K(X ) −→ K(Y ) for which there is a natural isomorphism
η : AX ⇒ AY ◦ F . The following conditions hold:

(1) For every q ∈ Q(X ), if e ∈ Eq then F (e) ∈ Eηe(q). Hence, if q ∈ I(X )
and e ∈ Eq, then ηe(q) ∈ I(Y ).

(2) Let q, r ∈ I(X ). For every e ∈ Eq and f ∈ Er, one has q � r if and
only if ηe(q) � ηf(r).

(3) The mapping ψ : P (X ) −→ P (Y ), defined by ψ(qLU(X )) = ηe(q)LU(Y ),
where e ∈ Eq, is a well-defined isomorphism of posets.

Proof : First we prove (1). Let e ∈ Eq. Then ηe(q) ∈ Q(Y )F (e) and so
F (e) ∈ Eηe(q).
To prove (2), suppose that q � r. Then there is morphism (e, s, f) of

K(X ) such that q · (e, s, f) = r. This implies ηe(q) · F (e, s, f) = ηf(r),
thus ηe(q) � ηf(r). Conversely, suppose that ηe(q) � ηf(r). Recall from
(1) that F (e) ∈ Eηe(q) and F (f) ∈ Eηf (r). Therefore, there is a morphism
(F (e), t, F (f)) of K(Y ) such that ηe(q) · (F (e), t, F (f)) = ηf(r). Since F is
full, there is a morphism (e, s, f) of K(X ) such that ηe(q) ·F (e, s, f) = ηf(r).
That is, we have ηf(q ·(e, s, f)) = ηf(r). Since ηf is injective (as η is a natural
isomorphism), this shows that q � r, concluding the proof of (2).
To prove (3), we only need to show that ψ is onto, since the result is then

an immediate consequence of (2). Let p ∈ I(Y ). Take f ∈ Ep. Since F is
essentially surjective, there is an idempotent e ∈ S(X ) such that f and F (e)
are isomorphic. If (f, s, F (e)) is an isomorphism and r = p · (f, s, F (e)), then
p ∼ r. Note that r ∈ Q(Y )F (e). Since ηe is bijective, we may consider the
vertex η−1e (r) ∈ Q(X )e. Then, clearly ψ(η−1e (r)LU(X )) = pLU(X ), thus
showing that ψ is onto.

Corollary 5.2. The poset P (X ) is a flow equivalence invariant.

Proof : Let X and Y be flow equivalent shifts. By Theorem 4.4, the actions
AX and AY are equivalent. Therefore, P (X ) and P (Y ) are isomorphic, by
Proposition 5.1.

Remark 5.3. If X is a synchronizing shift then, by Proposition 3.10, the
elements of QF(X ) are the sink vertex ∅ and the vertices of the form RX (u),
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with u a synchronizing word. Therefore, by Proposition 3.2, every element
of QF(X ) belongs to I(X ). Moreover, clearly QF(X ) is the disjoint union
of two ∼-classes: the ∼-class QF(X ) \ {∅} of the vertices of F(X ), and the
∼-class {∅}. The ∼-class {∅} is the minimum element of the poset P (X ),
and QF(X ) \ {∅} is the minimum element of P (X ) \ {{∅}}. Therefore, it
follows from Proposition 5.1 that q ∈ QF(X ) if and only if ηe(q) ∈ QF(Y ),
for every e ∈ Eq.

The following simple fact will be useful to specialize to sofic shifts.

Lemma 5.4. Suppose that X is a sofic shift and q belongs to a non-trivial
strongly connected component of K0(X ). Then there is an idempotent e ∈
S(X ) such that q = q · e, i.e., q ∈ I(X ).

Proof : Since the strongly connected component to which q belongs is non-
trivial, there is a word u labeling a non-empty loop rooted at q. Then q =
q · δX (un) for all n ≥ 1. On the other hand, since S(X ) is finite, there is
m ≥ 1 such that δX (u)m is idempotent.

We can now add the following corollary to Proposition 5.1.

Corollary 5.5. The proper communication graph of the right (left) Krieger
cover of a sofic shift is a flow equivalence invariant.

Proof : Clearly, for every shift X , a ∼-class of I(X ) is contained in a non-
trivial strongly connected component of K0(X ). Conversely, by Lemma 5.4,
if X is sofic then every non-trivial strongly connected component of K0(X )
is contained in a ∼-class. Therefore, the posets P (X ) and PC(K0(X ))
are equal, and so PC(K0(X )) is a flow invariant by Corollary 5.2. Since
PC(K(X )) = PC(K0(X )) \ {{∅}}, this concludes the proof.

In [37] one finds a complete characterization of the acyclic graphs that can
be the proper communication graph of the left Krieger cover of an almost
finite type shift, a special type of irreducible sofic shift which will receive
some attention in Section 7.

6. The labeled preordered set of the D-classes of S(X )
In this section we use Theorem 4.4 and a result from [20] to obtain a flow

equivalence invariant (Theorem 6.3) which, as we shall observe, improves
some related results from [7, 17]. We close the section with some examples.
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6.1. Abstract semigroup setting. Given a semigroup S, let D(S) be the
set of D-classes of S. Endow D(S) with the preorder � such that, if D1

and D2 belong to D(S), then D1 � D2 if and only if there are d1 ∈ D1 and
d2 ∈ D2 such that d1 ≤J d2. Note that if D = J (for example, if S is finite),
then � is a partial order.
If we assign to each element x of a preordered set P a label λP (x) from some

set, we obtain a new structure, called labeled preordered set. A morphism
in the category of labeled preordered sets is a morphism ϕ : P −→ Q of
preordered sets such λQ ◦ ϕ = λP .
For a semigroup S, assign to each element D of D(S) the label λ(D) =

(ε,H) where ε ∈ {0, 1}, with ε = 1 if and only if D is regular, and H is
the Schützenberger group of D. We denote the labeled preordered set thus
obtained by Dℓ(S). By Remark 2.2, Dℓ

(
LU(S)

)
is obtained from Dℓ(S) by

removing the D-classes of S not contained in LU(S).

Theorem 6.1 ([20]). Let S and T be semigroups with local units. If K(S) and
K(T ) are equivalent, then Dℓ(S) and Dℓ(T ) are isomorphic labeled preordered
sets.

Suppose that the semigroup S acts on a set Q. Then each element of S can
be viewed as a transformation on Q. Recall that the rank of a transformation
is the cardinal of its image, and that J -equivalent elements of S have the
same rank, as transformations of Q. We modify the labeled preordered set
Dℓ

(
S) as follows: for each D-classD of S, instead of the label (ε,H), consider

the label (ε,H, r), where r is the rank in Q of an element of D, viewed as an
element of the transformation semigroup of Q defined by the action of S on
Q. Denote by DQ

(
S) the resulting labeled poset.

Theorem 6.2 ([20]). Let S and T be semigroups with local units. Suppose
that S acts on the set Q, and T acts on the set R. If AQ and AR are equivalent
actions, then DQ(S) and DR(T ) are isomorphic labeled preordered sets.

6.2. Application to shifts. Consider a shift X . Recall that S(X ) acts
faithfully as a transformation semigroup on the set Q(X ). We mention that
if X is sofic and irreducible, then the restriction of this action to QF(X ) is
also faithful [5, Proposition 4.8].
The sink state ∅ is not a vertex of the Krieger cover of X . That is why,

following analogous conventions found in [7, 17], we consider the rank of the
partial action of S(X ) on Q(X ) \ {∅}. Hence, in the labeled preordered set
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DQ(X )(LU(X )), we replace the label (ε,H, r) of each D-class D by the label
(ε,H, r− 1). We denote by KD(X ) the resulting labeled preordered set.
Similarly, if X is synchronizing, then we replace in DQF(X )(LU(X )) the

label (ε,H, r) of each D-class D by the label (ε,H, r − 1), and denote by
FD(X ) the resulting labeled preordered set.

Theorem 6.3. For every shift X , the labeled preordered set KD(X ) is a
flow equivalence invariant. If X is synchronizing then FD(X ) is also a flow
equivalence invariant.

Proof : This is an immediate consequence of Theorems 4.4 and 6.2.

Theorem 6.3 states in particular that Dℓ

(
LU(X )

)
is a flow equivalence

invariant, which could also be deduced by invoking Theorems 6.1 and 4.2.
In the doctoral thesis [19] one finds a quite long and technical proof of the
conjugacy invariance of Dℓ

(
LU(X )

)
. The invariance under conjugacy of

KD(X ) when X is sofic (and of FD(X ) if X is moreover irreducible) was
first proved in [17]. Forgetting the non-regularD-classes, we get from KD(X )
and FD(X ) weaker conjugacy invariants of sofic shifts, first obtained in [7].

6.3. Examples.

Example 6.4. Let X and Y be the irreducible sofic shifts on the 14-letter
alphabet {a1, . . . , a14} whose right Fischer covers are respectively represented
in Figure 1. The dashed edges are those whose label appears only in one
edge. Note that the right Fischer covers have the same underlying unlabeled

Figure 1. The irreducible sofic shifts X and Y in Example 6.4.

graph. The same phenomena occurs with the right Krieger covers of X

and Y , which are obtained from the labeled graphs in Figure 1 by glueing
to them the corresponding graphs in Figure 2 (the additional vertices 12,
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13 and 14 are represented by a square). In particular, they have the same
proper communication graph.

Figure 2. Edges added to obtain the right Krieger covers.

The labeled ordered sets KD(X ) and KD(Y ) are represented in Figure 3
by their Hasse diagrams, where within each node of the diagram we find
information identifying the D-class and its label. For example, in the first
diagram, the notation a2|(1, C2, 3) means the node represents the D-class
of δX (a2) and that its label is the triple (1, C2, 3), where, as usual, Cn de-
notes the cyclic group of order n. The computations were carried out using
GAP [30], more specifically the GAP packages sgpviz [22] and automata [23].
The labeled ordered sets KD(X ) and KD(Y ) are not isomorphic, hence

X and Y are not flow equivalent.

a2|(1, C2, 3) a1|(1, C2, 5)

a3|(1, C6, 6)a4|(0, C2, 3)

a5|(1, C1, 1)

a1a2|(1, C1, 0)

a2|(1, C2, 3) a3|(1, C6, 6)

a1|(1, C2, 5)a4|(0, C2, 3)

a5|(1, C1, 1)

a1a2|(1, C1, 0)

Figure 3. KD(X ) and KD(Y ).

Remark 6.5. Rune Johansen announced in his doctoral thesis [36] a result of
Boyle, Carlsen and Eilers [14] stating that if two sofic shifts are flow equivalent
then the edge shifts defined by the underlying unlabeled graphs of their right
(left) Krieger covers are also flow equivalent, in a canonical way (cf. [36,
Theorem 2.11 and Proposition 2.12]). In the case of irreducible sofic shifts,
the same happens with the edge shifts defined by the right (left) Fischer
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covers. The Bowen-Franks groups of a sofic shift, as introduced in [56, 57],
is encoded in the unlabeled graph underlying the Krieger cover. Information
about the flow equivalence class is lost by taking the edge shifts only. That is
what happens in Example 6.4, where the left (and also right) Krieger covers of
X and Y have the same underlying unlabeled graph and the same happens
with the Fischer covers.

Remark 6.6. The shifts from Example 6.4 appeared in the doctoral thesis of
the first author [19, Example 6.25], where flow equivalence was not consid-
ered, as an example of a pair of sofic shifts in which the fact that they are
not conjugate is revealed by the labeled preordered sets considered in Theo-
rem 6.3. Other relevant conjugacy invariants, which are not flow equivalence
invariants (like the zeta function [52, Section 6]) fail to separate them.

Example 6.7. Let X and Y be the irreducible sofic shifts respectively pre-
sented in Figure 4. The labeled graphs are clearly right resolving, strongly

1 2

3 4

b

a

a

a

a

b c

1 2

3 4

a

a

b

a

a

b c

Figure 4. Two irreducible shifts X and Y .

connected and reduced, whence they are right Fischer covers. Note that a2

fixes all vertices, therefore S(X ) and S(Y ) are monoids.
The eggbox diagrams of S(X ) and S(Y ) are respectively represented in

Figure 5, obtained with GAP package sgpviz [22]. The outer rectangles rep-
resent D-classes, rows represent R-classes, and columns represent L-classes.
The stars indicate idempotent elements. The lines linking D-classes rep-
resent consecutive D-classes in the ≤J -relation. The symbol [q1, q2, q3, q4]
represents an element s of S(X ) as a partial transformation of Q(X ) \ {∅},
with qj = if js = ∅, and qj = js otherwise, for 1 ≤ j ≤ 4. Note that the
flow equivalence invariants FD

(
S(X )

)
and FD

(
S(Y )

)
are equal. We turn

our attention to KD
(
S(X )

)
and KD

(
S(Y )

)
. Figure 6 depicts the Krieger

covers of X and Y , respectively. Note in particular they have isomorphic
proper communication graphs. The identity element a2 has rank 7 in K(X )
and rank 6 in K(Y ). Therefore, KD

(
S(X )

)
6= KD

(
S(Y )

)
, because they do
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*[ _, _, _, _ ]

*[ 1, _, _, _ ] [ 2, _, _, _ ] [ 3, _, _, _ ] [ 4, _, _, _ ]

[ _, 1, _, _ ] *[ _, 2, _, _ ] [ _, 3, _, _ ] [ _, 4, _, _ ]

[ _, _, 1, _ ] [ _, _, 2, _ ] *[ _, _, 3, _ ] [ _, _, 4, _ ]

[ _, _, _, 1 ] [ _, _, _, 2 ] [ _, _, _, 3 ] *[ _, _, _, 4 ]

[ 1, 4, _, _ ] [ 2, 3, _, _ ]

[ 4, 1, _, _ ] [ 3, 2, _, _ ]

*[ 1, 2, 3, 4 ]
[ 2, 1, 4, 3 ]

*[ _, _, _, _ ]

*[ 1, _, _, _ ] [ 2, _, _, _ ] [ 3, _, _, _ ] [ 4, _, _, _ ]

[ _, 1, _, _ ] *[ _, 2, _, _ ] [ _, 3, _, _ ] [ _, 4, _, _ ]

[ _, _, 1, _ ] [ _, _, 2, _ ] *[ _, _, 3, _ ] [ _, _, 4, _ ]

[ _, _, _, 1 ] [ _, _, _, 2 ] [ _, _, _, 3 ] *[ _, _, _, 4 ]

[ 3, _, _, 4 ] [ 4, _, _, 3 ]

[ _, 3, 4, _ ] [ _, 4, 3, _ ]

*[ 1, 2, 3, 4 ]
[ 2, 1, 4, 3 ]

Figure 5. Eggbox diagram of S(X ) and S(Y ).

Figure 6. Krieger covers of the shifts in Example 6.7.

not have the same label at the D-class of the identity, at the top of the Hasse
diagram. Hence, X and Y are not flow equivalent, by Theorem 6.3.

In Example 6.7 we used a general fact concerning sofic shifts whose syn-
tactic semigroup is a monoid: since the rank of the identity is invariant un-
der flow equivalence (by Theorem 6.3), it follows that flow equivalent shifts
whose syntactic semigroup is a monoid have the same number of vertices in
the Krieger cover, and also in the Fischer cover if they are synchronizing.
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Clearly, two equivalent categories have the same local monoids, up to iso-
morphism. Therefore, from Theorem 4.2, we immediately extract the follow-
ing criterion for sofic shifts whose syntactic semigroup is a monoid.

Proposition 6.8. Let X and Y be flow equivalent shifts. If S(X ) is a
monoid then S(X ) embeds into S(Y ). In particular, if S(X ) and S(Y )
are both finite monoids, then S(X ) and S(Y ) are isomorphic.

In fact, it is known that if M is a monoid and N is a semigroup with local
units, thenM is Morita equivalent to N if and only if there is an idempotent
e ∈ N with N = NeN and M ∼= eNe [70].

Example 6.9. We return to the shifts X and Y from Example 6.7. We claim
that the monoids S(X ) and S(Y ) are not isomorphic, which enables us to
apply Proposition 6.8 to show again that X and Y are not flow equivalent.
Let DX and DY be the unique non-regular D-classes of S(X ) and S(Y ),
respectively (see Figure 5). Then the set {d2 : d ∈ DX } is the R-class of
[1, , , ] in S(X ), while {d2 : d ∈ DY } contains pairs of elements which are
not R-equivalent in S(Y ), such as [3, , , ] and [ , , , 3]. This proves the
claim.

Next we give an example concerning non-sofic synchronizing shifts.

Example 6.10. The word bc is synchronizing for the two labeled graphs in
Figure 7; these labeled graphs are the Fischer covers of synchronizing shifts,
denoted respectively X and Y , over the alphabet {a, b, c} (cf. Theorem 3.9).
If u ∈ L(X ), then the action of δX (u) in F(X ) has rank one or infinite

Figure 7. Fischer covers of two synchronizing shifts.

rank, depending on whether c is a factor of u or not. On the other hand,
the idempotent δY (ac) has rank two. Therefore X and Y are not flow
equivalent, by Theorem 6.3, since FD(X ) 6= FD(Y ).
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7. Classes of sofic shifts defined by pseudovarieties of

semigroups

A pseudovariety of semigroups is a class of finite semigroups closed un-
der the formation of finite direct products, subsemigroups and homomorphic
images. This notion is a fundamental one in finite semigroup theory, as
pseudovarieties are considered to provide a correct framework to study fi-
nite semigroups, as well their connections to other subjects, such as formal
language theory [68, 24, 65].
Given a pseudovariety of finite semigroups V, we denote by S(V) the class

of shifts X , necessarily sofic, such that S(X ) belongs to V. Since the two-
element monoid U1 = {0, 1}, with the usual multiplication, is a subsemigroup
of S(X ) for every sofic shift, the class S(W) is non-empty if and only if the
pseudovarietyW contains the pseudovariety Sl generated by U1 (alternatively,
Sl is the pseudovariety of semilattices, that is, of commutative semigroups all
of whose elements are idempotents).

7.1. The localization of a pseudovariety. For a pseudovariety of finite
semigroups V, the localization of V, denoted by LV, is the pseudovariety of
finite semigroups S whose local monoids eSe (with e ∈ E(S)) belong to V.
We mention that it follows easily from known results that an irreducible shift
X is of finite type if and only if S(X ) ∈ LSl (cf. [18, Proposition 4.2]).

Theorem 7.1. If V is a pseudovariety of semigroups then the class S(LV)
is closed under flow equivalence.

Proof : Suppose that the sofic shifts X and Y are flow equivalent. By The-
orem 4.2, the semigroups S(X ) and S(Y ) have the same local monoids, up
to isomorphism. Hence S(X ) ∈ LV if and only if S(Y ) ∈ LV.

Theorem 7.1 provides a method to show that some natural classes of sofic
shifts are closed under flow equivalence. As an example, let us consider the
class of almost finite type shifts. For background and motivation see [52, Sec-
tion 13.1]. A comprehensive list of characterizations of almost finite shifts
can also be found in [3]. The shifts in Examples 6.4 and 6.7 are almost fi-
nite type shifts. Denote by SI(V) the intersection of S(V) with the class of
irreducible shifts. It turns out that the class of almost finite type shifts is
SI(LECom), where ECom is the pseudovariety of semigroups whose idempo-
tents commute [18]. Hence, from Theorem 7.1 we deduce the following result,
which was first proved in [28].
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Theorem 7.2. The class of almost finite type shifts is closed under flow
equivalence.

We give yet another example. In [4, 7] a class of sofic shifts called aperiodic
shifts is studied. In [7] it is proved that the class of irreducible aperiodic
shifts is the class SI(A), where A is the pseudovariety of aperiodic semigroups
(a semigroup is aperiodic if the H-relation is trivial), and that this class is
closed under conjugacy. Since A = LA, from Theorem 7.5 we obtain the
following improvement.

Theorem 7.3. The class of irreducible aperiodic shifts is closed under flow
equivalence.

7.2. The divisional equivalence class of K(X ). A category C divides
a category D if there are functors F : U −→ D and G : U −→ C such that
F is faithful and G is quotient (i.e., is bijective on objects and full). The
relation of division is a preorder. See [68], or [71], the latter being where
this notion was for the first time systematically applied in finite semigroup
theory. Equivalent categories are divisionally equivalent, hence we have the
following simple corollary of Theorem 4.2.

Proposition 7.4. The divisional equivalence class of K(X ) is a flow equiv-
alence invariant.

Note that we did not assume that X is sofic. We briefly describe an ap-
plication of Proposition 7.4 for sofic shifts. The semidirect product of pseu-
dovarieties, denoted by V ∗W, is the pseudovariety generated by semidirect
products of elements of V with elements of W, in this order. We refer the
reader interested in further details to [68]. Let D be the pseudovariety of
finite semigroups whose idempotents are right zeroes. Tilson’s Delay Theo-
rem [71] states that a finite semigroup S belongs to V ∗D if and only if K(S)
possesses a certain technical property‡ related with V which is invariant un-
der division of categories. Since the divisional equivalence class of K(X ) is
a flow invariant, from Tilson’s Delay Theorem we get the following.

Theorem 7.5. If V is a pseudovariety of semigroups then the class S(V ∗D)
is closed under flow equivalence.

‡Namely, a finite semigroup S belongs to V ∗ D if and only if K(S) divides an element of V; the
technicality amounts to define the meaning of a category dividing a semigroup.
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That S(V ∗ D) is closed under conjugacy when Sl ⊆ V was also proved
in [18]. Conversely, if S(V) is non-empty and closed under conjugacy, then
Sl ∗ D ⊆ V and S(V) = S(V ∗ D) [18].
In [18] one finds examples of non-empty classes of the form S(V ∗D) which

are not of the form S(LV). On the other hand, we mention that one has
LV = LV ∗D (see for example [1, Proposition 10.6.13]), and so the classes in
Theorem 7.1 are special cases of those in Theorem 7.5.

8. Subsynchronizing subshifts of a sofic shift

As a further application of our main results, we apply them to the poset
of subsynchronizing subshifts of a sofic shift considered in [40]. This poset,
whose definition is recalled in this section, provides information about the
structure of a reducible sofic shift.
Let X be a sofic subshift of AZ. We recall some definitions and remarks

from [40]. If m is a synchronizing word for X , then m is magic for X if
mum ∈ L(X ) for some u ∈ A∗. If m is magic for X , then the set

{v ∈ A+ | ∃x ∈ A∗ : mxv ∈ L(X )}

is the set of finite blocks of a sofic subshift of X . This shift is denoted S(m).
If M is a set of magic words for X , then S(M) denotes the sofic shift⋃

m∈M S(m). A subshift of X of the form S(M) is called a subsynchronizing
subshift of X . The set Subs(X ) of subsynchronizing subshifts of X is
finite; see Lemma 8.1 below. It may be empty. If X is irreducible, then
Subs(X ) = {X }.
Let X be a sofic shift. Say that s ∈ S(X ) is synchronizing if s = δX (u)

with u synchronizing. Note that s is synchronizing if and only if rs, st 6= 0
implies rst 6= 0, for all r, t ∈ S(X ). It follows from Lemma 3.1 that the
synchronizing elements of S(X ), together with 0, form an ideal and that a
synchronizing element s is idempotent if and only if s2 6= 0.
A synchronizing idempotent of S(X )\{0}will be called amagic idempotent

for X . Let e be a magic idempotent for X , and let u be a word such that
e = δX (u). Then u is a magic word for X . Clearly, if δX (u) = δX (v), then
S(u) = S(v). We may then define S(e) as being S(u). If M is a set of magic
idempotents for X , then S(M) denotes the sofic shift

⋃
e∈M S(e).

In the proof of the following lemma, Fac(X) denotes the set of non-empty
words which are factors of a language X.
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Lemma 8.1. If m is a magic word for X , then S(m) = S(e) for some magic
idempotent e for X .

Proof : Since m is a magic word for X , there is u ∈ L(X ) such that mum ∈
L(X ). We claim that e = δX (mu) is a magic idempotent for X such that
S(m) = S(e).
We first show that e is an idempotent. It follows from Lemma 3.1 that we

must show (mu)2 ∈ L(X ). But mum,mu ∈ L(X ) implies mumu ∈ L(X ).
Also mu is synchronizing by Lemma 3.1. Thus e is a magic idempotent.
We have L(S(m)) = Fac(RX (m)) and L(S(e)) = Fac(RX (mu)) by def-

inition. Clearly, Fac(RX (mum)) ⊆ Fac(RX (mu)) ⊆ Fac(RX (m)). But
RX (mum) = RX (m) by Lemma 3.1. This shows that L(S(m)) = L(S(e)),
thus S(m) = S(e).

Next we show that a regularD-class of S(X ) containing magic idempotents
determines a subsynchronizing subshift of X .

Lemma 8.2. If e, f are magic idempotents for X such that e D f , then
S(e) = S(f).

Proof : Since e D f , there are u, v ∈ A+ such that e = δX (uv) and f =
δX (vu). Then we have

L(S(e)) = Fac(RX (uvuv)) ⊆ Fac(RX (vu)) = L(S(f)),

whence S(e) ⊆ S(f). By symmetry, we obtain S(e) = S(f).

The following stream of results concerns the relationship between Subs(X )
and Subs(Y ) whenK(X ) andK(Y ) are equivalent. In some of the proofs, we
shall use the following property of a sofic shift X , which is a consequence of
every sofic shift being presented by a finite essential graph: if s ∈ S(X )\{0},
then there are r, t ∈ S(X ) and idempotents e, f ∈ S(X ) with erstf 6= 0.

Lemma 8.3. Let F : K(X ) −→ K(Y ) be an equivalence, where X and Y

are sofic shifts. If e is a magic idempotent for X , then F (e) is a magic
idempotent for Y .

Proof : Let s, t be elements of S(Y ) such that sF (e) 6= 0 and F (e)t 6= 0.
Since Y is sofic and F is essentially surjective, there are s′, t′ ∈ S(Y ) and
idempotents g and h of S(X ) such that F (g)s′sF (e) 6= 0 and F (e)tt′F (h) 6=
0. The fact that F is an equivalence guarantees that there are morphisms
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(g, u, e) and (e, v, h) of K(Y ) such that

F (g, u, e) = (F (g), F (g)s′sF (e), F (e)),

F (e, v, h) = (F (e), F (e)tt′F (h), F (h)),

and u 6= 0, v 6= 0 (recall Remark 2.1). Because e is synchronizing, we have
uv = uev 6= 0, and so F (g, uv, h) 6= (F (g), 0, F (h)) (again by Remark 2.1).
Since

F (g, uv, h) = (F (g), F (g)s′sF (e)tt′F (h), F (h)),

we then have sF (e)t 6= 0, showing that F (e) is a magic idempotent.

Lemma 8.3 guarantees that, in the following lemma, the set S(GF (M)) is
well defined.

Lemma 8.4. Let F : K(X ) −→ K(Y ) be an equivalence, where X and Y

are sofic shifts. If M is a set of magic idempotents for K(X ) and G is a
quasi-inverse of F , then S(M) = S(GF (M)).

Proof : It suffices to show that S(e) = S(GF (e)), when e is a magic idempo-
tent for X . Since e D GF (e), the result follows from Lemma 8.2.

In the following proposition we see what is the effect of an equivalence of
Karoubi envelopes on the poset Subs(X ).

Proposition 8.5. Let F : K(X ) −→ K(Y ) be an equivalence, where X and
Y are sofic shifts. Suppose M1 and M2 are sets of magic idempotents for
X . Then S(M1) ⊆ S(M2) if and only if S(F (M1)) ⊆ S(F (M2)).

Proof : Suppose first that S(F (M1)) ⊆ S(F (M2)). Take u ∈ L(S(M1)). Let
s = δX (u). Then, there are e ∈ M1 and t ∈ S(X ) such that ets 6= 0.
Moreover, since X is sofic, there are t′, f ∈ S(X ) such that etst′f 6= 0 and
f is idempotent. Therefore, (e, etst′f, f) is a morphism of K(X ) distinct
from (e, 0, f). Let (F (e), z, F (f)) be its image under F . Because F is an
equivalence, it follows from Remark 2.1 that z 6= 0. Since F (e)z 6= 0, we
have δ−1

Y
(z) ⊆ L(S(F (e))). As S(F (e)) ⊆ S(F (M1)) ⊆ S(F (M2)), there are

g ∈ M2 and r ∈ S(Y ) such that r = F (g)rF (e) and rz 6= 0. Since F is
an equivalence, there is a morphism (g, r′, e) ∈ K(X ) such that F (g, r′, e) =
(F (g), r, F (e)). Note that F ((g, r′, e)(e, etst′f, f)) = (F (g), rz, F (f)). There-
fore, we have gr′ets 6= 0 by Remark 2.1, and so u ∈ L(S(g)) ⊆ L(S(M2)).
This shows that L(S(M1)) ⊆ L(S(M2)), that is, S(M1) ⊆ S(M2).
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Conversely, suppose that S(M1) ⊆ S(M2). Let G be a quasi-inverse of F .
By Lemma 8.4, we have S(Mi) = S(GF (Mi)), for i = 1, 2. Applying to G
the “if” part of the proposition, proved in the previous paragraph, we obtain
S(F (M1)) ⊆ S(F (M2)).

Corollary 8.6. Let F : K(X ) −→ K(Y ) be an equivalence, where X and
Y are sofic shifts. Then the mapping ΨF : Subs(X ) −→ Subs(Y ) defined by
ΨF (S(M)) = S(F (M)), where M runs over the sets of magic idempotents,
is a well-defined isomorphism of posets. If G is a quasi-inverse of F , then
ΨG is the inverse of ΨF .

Proof : It follows immediately from Proposition 8.5 that ΨF is a well-defined
and order-preserving function. Moreover, we conclude from Lemma 8.4 that
ΨF and ΨG are mutually inverse.

As a direct consequence of Theorem 4.2 and Corollary 8.6, we deduce the
following.

Corollary 8.7. The order structure of the poset of subsynchronizing subshifts
of a sofic shift is invariant under flow equivalence.

The invariance of the order structure of Subs(X ) under conjugacy of sofic
shifts was proved in [40]. Several concrete examples were examined in that
paper. Actually a more general result concerning conjugacy was obtained
in [40] (although not used in the examples): viewing Subs(X ) as a labeled
poset, where the label of each element is its conjugacy class, one obtains a
conjugacy invariant. We shall not give a new proof of this fact using our
methods, since we would not obtain a significative simplification. However,
we do generalize it to flow equivalence, in the next theorem. For a sofic
shift X , its labeled flow poset of subsynchronizing subshifts is the labeled
poset obtained from Subs(X ) in which the label of each element of Subs(X )
is its flow equivalence class.

Theorem 8.8. The labeled flow poset of subsynchronizing subshifts of a sofic
shift is a flow equivalence invariant.

Proof : In view of the proof of Corollary 8.7 and the results from [40], it
suffices to show that if X ′ is the symbol expansion of X relatively to a letter
α, then there is an equivalence F : K(X ) −→ K(X ′) such that S(F (e)) is
the symbol expansion of S(e) relatively to α, for every magic idempotent e
for X . This is done in an appendix, in Proposition B.1, using some tools
introduced in Section 12.
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9.Markov-Dyck shifts

The examples we have given so far were all of sofic or synchronizing shifts.
In this section we apply Theorem 4.2 to classify with respect to flow equiva-
lence a class of shifts, introduced and studied byW. Krieger and his collabora-
tors [48, 47, 46, 44, 32] that in general are non-sofic and non-synchronizing.
These shifts, called Markov-Dyck shifts, are the main subject of the arti-
cle [48]. Previously, they had appeared as special cases of more general
constructions in [47, 46, 44, 32]. These shifts are defined in terms of graph
inverse semigroups.
An inverse semigroup S is a semigroup such that for all s ∈ S, there

is a unique element s∗ such that both ss∗s = s and s∗ss∗ = s∗ hold. Note
that ss∗, s∗s are then both idempotents. Idempotents of an inverse semigroup
commute and hence form a subsemigroup which is a semilattice, with ordering
given by e ≤ f if and only if ef = e. In an inverse semigroup, one has that
s L t (respectively, s R t) if and only if ss∗ = tt∗ (respectively, s∗s = t∗t).
Consequently, one has ss∗ D s∗s. See [50, 63] for more on inverse semigroups.
Graph inverse semigroups, in the special case of graphs with no multiple-

edges, were first considered by Ash and Hall [2]. They were considered in
greater generality in [63, 64]. The recent paper [38] is a useful reference.
Let G be a (directed) graph and let G∗ be the free category generated by

G. The objects of G∗ are the vertices of G and the morphisms are (directed)
paths, including an empty path at each vertex. Since we are adopting the
Category Theory convention for the composition of morphisms, in this con-
text a path of G should be understood as follows: a non-empty finite sequence
of edges x1 · · ·xn is a path of G if the domain of xi is the co-domain of xi+1,
for 1 ≤ i < n. Of course, the empty path at a vertex q, denoted 1q, is the
identity of G∗ at q. The domain and co-domain of a path u will be denoted
respectively by αu and ωu.
Associated to G is an inverse semigroup PG, called the graph inverse semi-

group of G. The underlying set of PG is the set of all pairs (x, y) of morphism
x, y ∈ G∗ such that x and y have a common domain, together with an extra
element 0, which is the zero element of PG. The pair (x, y) is usually denoted
xy−1. We think on y−1 as a formal inverse of the path y, obtained by revers-
ing the directions of the edges in y. We make the identifications y = (y, 1αy)
and y−1 = (1αy, y). Moreover, we have 1−1q = 1q, for every vertex q of G. The
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multiplication between elements of PG \ {0} is given by the following rules:

xy−1 · uv−1 =





xzv−1 if u = yz for some path z,

x(vz)−1 if y = uz for some path z,

0 otherwise.

The semigroup PG is an inverse semigroup in which (xy−1)∗ = yx−1 and
0∗ = 0. Its non-zero idempotents are the pairs of the form xx−1, with x ∈ G∗.
Note that 1q is idempotent, for every vertex q of G, and x−1x = 1αx for every
x ∈ G∗.
If the out-degree of each vertex is at least 1, then PG is generated as a

semigroup with zero by the set ΣG of elements of the form x or x−1, with
x an edge of G. (Note that if q is a vertex and e is an out-going edge from
q, then 1q = e−1e.) We may therefore consider the unique homomorphism
π : (ΣG)

+
0 −→ PG of semigroups with zero extending the identity map on ΣG.

The language π−1(PG \ {0}) is clearly factorial. It is prolongable because in
PG we have x = xx−1x and x−1 = x−1xx−1, for every edge x of G.
From now on we assume that the graph G, and hence ΣG, is finite. The

Markov-Dyck shift associated to the graph G is the subshift DG of (ΣG)
Z

such that L(DG) = π−1(PG \ {0}). In particular, the syntactic semigroup of
DG is a non-trivial homomorphic image of PG.
Let us now characterize when PG is the syntactic semigroup of DG. To

do this, we shall need a result about inverse semigroups that undoubtedly is
known to experts, but we cannot find it explicitly in the literature. Let us
call a congruence trivial if it is the equality relation. An inverse semigroup
S is called fundamental if every non-trivial congruence identifies some pair
of idempotents. A semilattice E with zero is called 0-disjunctive if for all
0 < e < f , there exists 0 < e′ < f such that ee′ = 0.

Lemma 9.1. Let S be an inverse semigroup with zero. Then the following
are equivalent:

(1) there is no non-trivial congruence on S separating S \ {0} and {0}
(i.e., S is the syntactic semigroup of S \ {0});

(2) S is fundamental and E(S) is 0-disjunctive.

Proof : Assume the first condition and suppose that ≡ is a non-trivial congru-
ence on S. Then s ≡ 0 for some s 6= 0 by hypothesis and hence ss∗ ≡ 0s∗ = 0.
Thus ≡ does not separate idempotents. It follows that S is fundamental.
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To see that E(S) is 0-disjunctive, for s ∈ S, let c(s) = {(u, v) ∈ S1 × S1 |
usv = 0} where S1 denotes S with an adjoined identity. Then the equivalence
relation ≡ such that s ≡ t ⇔ c(s) = c(t) is a congruence separating S \
{0} and {0} (it is the syntactic congruence of the subset {0}). Thus by
hypothesis, ≡ is trivial. Suppose 0 < e < f are idempotents. Then c(e) 6=
c(f). Note that ufv = 0 implies uev = uefv = uu∗uefv = ueu∗ufv = 0 and
so c(f) ⊆ c(e). Thus we can find u, v ∈ S1 with uev = 0, but ufv 6= 0. Let
e′ = u∗ufvv∗ ∈ E(S). Note that e′ ≤ f and ue′v = ufv 6= 0. Thus e′ 6= 0.
Moreover, ee′ = u∗uevv∗ = 0, and so in particular e′ 6= f as 0 < e = ef .
Therefore 0 < e′ < f and ee′ = 0 and so we have established that E(S) is
0-disjunctive.
For the converse, assume the second condition and let ≡ be a non-trivial

congruence on S. We must show that ≡ does not separate S \ {0} from {0}.
Because S is fundamental, we can find idempotents e 6= f with e ≡ f . If
either e or f is 0, we are done and so we may assume e 6= 0 6= f . If ef = 0,
then ef ≡ f and again we are done. If ef = f , then 0 < f < e, and so, as
E(S) is 0-disjunctive, there is and idempotent f ′ such that 0 < f ′ < e and
ff ′ = 0. Then f ′ = ef ′ ≡ ff ′ = 0 and we are done. So we may assume
that 0 < ef < f , which is the last case to be considered. Then, as E(S) is
0-disjunctive, we may find and idempotent e′ with 0 < e′ < f and efe′ = 0.
Then 0 = efe′ ≡ fe′ = e′ and so again, we are done. This completes the
proof.

Remark 9.2. Notice that this lemma implies the well known result that an in-
verse semigroup S is congruence-free if and only if it is fundamental, 0-simple
and E(S) is 0-disjunctive because for a 0-simple semigroup any congruence
which does not separate 0 from S \ {0} must collapse all of S to 0.

Lemma 9.3. Let G be a finite graph such that each vertex has out-degree at
least one. Then PG is the syntactic semigroup of DG if and only if G has no
vertex of in-degree exactly one.

Proof : Clearly, PG is the syntactic semigroup of DG if and only if each non-
trivial congruence on PG fails to separate PG \ {0} from {0}. By Lemma 9.1,
this occurs if and only if PG is fundamental and E(PG) is 0-disjunctive. The
inverse semigroup PG is always aperiodic and hence fundamental (cf. [38],
where aperiodic semigroups are called combinatorial). On the other hand, it
is shown in [38, Lemma 2.9] that E(PG) is 0-disjunctive if and only if G has
no vertex of in-degree exactly one. This completes the proof.
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It is easy to see that PG is finite if and only if G is acyclic. Therefore, the
above lemma implies that the shift DG is not sofic in general.
In view of our mains results and of Lemma 9.3, we are naturally interested

in investigating the Karoubi envelope of PG.
Recall that a morphism f : d −→ c of a category C is said to be a split

monomorphism if it has a left inverse, that is, if there is a morphism g : c −→
d such that gf = 1d. The composition of two split monomorphisms is a split
monomorphism, and so we can consider the subcategory LC of C formed by
the split monomorphisms of C. Note that an equivalence C −→ D restricts
to an equivalence LC −→ LD.
For a semigroup S, a morphism (e, s, f) of K(S) is a split monomorphism

if and only if s L f [55]. In particular, if S has a zero, then the only
split monomorphisms (e, s, f) with s = 0 are of the form (e, 0, 0). In other
words, if we consider the full subcategory L(S) of LK(S) whose objects are
the non-zero idempotents, then there are no morphisms of the form (e, 0, f)
in this subcategory. Note that an equivalence LK(S) −→ LK(T ) restricts to
an equivalence L(S) −→ L(T ) because 0 is the unique initial object of LK(S)

and similarly for LK(T ).
The argument for the following lemma is essentially contained in [69]

Lemma 9.4. For every graph G, the category L(PG) is equivalent to the free
category G∗.

Proof : An object of L(PG) is an idempotent of the form uu−1, with u ∈ G∗.
Since uu−1 D 1αu, the category L(PG) is equivalent to the full subcategory
L(PG)

′ whose objects are the idempotents of the form 1q. If u, v ∈ G∗ are such
that (1q, uv

−1, 1r) is a split monomorphism of K(PG), then 1r = xy−1uv−1 for
some x, y ∈ G∗, and so v = 1r by the rules defining the multiplication in G∗.
Therefore, L(PG)

′ is isomorphic to G∗.

It is well known that two free categories G∗ and H∗ on graphs G,H are
equivalent if and only if G and H are isomorphic. Since we don’t know a
precise reference, we sketch a proof.

Lemma 9.5. Suppose that G,H are graphs with G∗ equivalent to H∗. Then
G and H are isomorphic.

Proof : In a free category, there are no isomorphisms other than the identities.
Hence, two functors with codomain a free category are isomorphic if and only
if they are equal. It follows that any equivalence F : G∗ −→ H∗ is actually
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an isomorphism. A morphism u of a free category is an edge if and only if it
cannot be factored u = vw with v, w non-empty paths. Thus F must restrict
to a graph isomorphism G −→ H.

As a corollary of the preceding two lemmas, we deduce that Morita equiv-
alent graph inverse semigroups have isomorphic underlying graphs.

Corollary 9.6. Let G,H be graphs. Then PG is Morita equivalent to PH if
and only if G and H are isomorphic.

The case where G is a finite one-vertex graph with at least 2 loops has
received special attention in the literature and motivates the general case. If
N ≥ 2 is the number of loops of the one-vertex graph G, then the correspond-
ing Markov-Dyck shift is denoted DN , and is called the Dyck shift of rank
N . In [58] it is proved, by means of the computation of certain flow invariant
abelian groups, that if DN and DM are flow equivalent then N = M . This
is proved here again, as a special case of the next result.

Theorem 9.7. Let G and H be finite graphs such that the out-degree of each
vertex of G and H is at least one and the in-degree of each vertex of G and
H is not one. Then DG and DH are flow equivalent if and only if G and H
are isomorphic.

Proof : Sufficiency is obvious. Conversely, suppose that DG and DH are flow
equivalent. By Lemma 9.3, PG and PH are the syntactic semigroups of DG

and DH , respectively. They are inverse semigroups and hence have local
units. Theorem 4.2 implies that PG and PH are Morita equivalent. Corol-
lary 9.6 then yields G ∼= H.

Since on the one hand conjugacy of shifts implies flow equivalence of shifts,
and on the other if G ∼= H, then DG and DH are obviously conjugate, The-
orem 9.7 also yields a classification theorem for conjugacy between Markov-
Dyck shifts. Namely, DG and DH are conjugate if and only if G and H are
isomorphic (under the hypotheses of the theorem). This generalizes results
of Krieger [46, 47], who showed that if G and H are strongly connected and
each vertex of G and H has in-degree at least 2, then DG is conjugate to DH

if and only if G and H are isomorphic. On one hand, Krieger proved in [47]
that if G and H are finite graphs such that PG and PH are isomorphic, then
G and H are isomorphic. On the other hand, he used a property of shifts,
introduced by him [46], called Property (A), which is a conjugacy invariant.
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To shifts with such a property, he associated a semigroup whose isomorphism
class is a conjugacy invariant. It turns out that DG is a Property (A) shift
if G is strongly connected [33]. In [33] it is given a condition under which PG

is the semigroup associated to a Property (A) shift. This condition is sat-
isfied if G is strongly connected and each vertex of G has in-degree at least
two, in which case PG is actually associated to DG (cf. [46] and the paragraph
before [32, Lemma 4.1]). Also in [33], it is shown that the conjugacy class
of a Markov-Dyck shift defined by a strongly connected graph with at most
three vertices is determined by the isomorphism class of the graph. In view
of these results, it is natural to make the question (which is left open) of
whether a shift which is flow equivalent with a Property (A) shift is itself a
Property (A) shift with the same associated semigroup.

10. Eventual conjugacy

It remains a major open problem to determine whether conjugacy is de-
cidable for shifts of finite type. To attack this problem, a relation called
eventual conjugacy, also known as shift equivalence, was introduced, which
may be defined as follows (see [52, Chapter 7] for historical background and
other details around this notion). Let n be a positive integer. Recall that An

denotes the subset of A+ of words with length n. Considering the natural
embedding of (An)+ into A+, one defines the nth higher power of a subshift
X of AZ as the subshift X n of (An)Z such that L(X n) = L(X ) ∩ (An)+.
Two shifts X and Y are eventually conjugate if and only if X n and Y n

are conjugate for all sufficiently large n (cf. [52, Definition 1.4.4]). Kim and
Roush proved that eventual conjugacy for sofic shifts is decidable [41], but
the algorithm which is available is quite intricate. Another deep result by
Kim and Roush [42, 43] is that, for shifts of finite type, eventual conjugacy
is not the same as conjugacy.
It is easy to check that, for every shift X ⊆ AZ and u, v ∈ (An)+, we

have δX n(u) = δX n(v) if and only if δX (u) = δX (v), and so S(X n) embeds
naturally in S(X ). For sofic shifts, we have the following sort of converse.

Lemma 10.1 ([17, Lemma 5.1]). Let X be a sofic shift. For each idempotent
e ∈ S(X ), choose ue ∈ A+ such that δX (ue) = e. Let AX =

∏
e∈E |ue|.

Then, for every n ≥ 1, we have LU(X ) = LU(X nAX +1).

Remark 10.2. The proof of Lemma 10.1 depends only on S(X ) having a finite
set of idempotents. Lemma 10.1 shall be used to extract eventual conjugacy
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invariants. Since the motivation to study eventual conjugacy is basically
restricted to sofic shits, the restriction of our attention in this section to this
class of shifts is not very demanding.

Let N be such that X n and Y n are conjugate for all n ≥ N . Consider the
integer k = NAXAY +1. Then LU(X k) = LU(X ) and LU(Y k) = LU(Y )
by Lemma 10.1. Since X k and Y k are conjugate, this justifies the following
result, implicitly used in [17].

Corollary 10.3. If X and Y are eventually conjugate sofic shifts, then, for
every integer N , there is k ≥ N , with g.c.d.(k,N) = 1, and X

k and Y
k

conjugate, such that LU(X k) = LU(X ) and LU(Y k) = LU(Y ).

Remark 10.4. For a labeled graph G, let Gn be the labeled graph over An

defined as follows: the vertices are those of G, and an edge from a vertex
p to a vertex q, with label u ∈ An, is a path in G from p to q with label
u. It is easy to see that, up to isomorphism, the Krieger cover of X n is the
labeled graph K(X )n, and, if X is synchronizing, the Fischer cover of X n

is F(X )n. Moreover, the action of S(X n) on Q(X n) is the restriction to
S(X n) of the action of S(X ) on Q(X ).

For sofic shifts, we have the following consequence of the invariance under
conjugacy of the actions AX and A

F
X
.

Theorem 10.5. Suppose that X and Y are eventually conjugate sofic shifts.
Then the actions AX and AY are equivalent. The same happens with the ac-
tions AF

X
and A

F

Y
if X and Y are irreducible. In particular, the equivalence

class of K(X ) is an eventual conjugacy invariant of sofic shifts.

Proof : By Corollary 10.3, there is k such that X
k is conjugate to Y

k,
K(X k) = K(X ) and K(Y k) = K(Y ). The result follows then from Theo-
rems 4.4 and 4.6 in view of Remark 10.4.

We next apply Theorem 10.5 to show that several flow equivalence invari-
ants of sofic shifts, which were obtained in the previous sections, are also
invariants of eventual conjugacy. In particular, the invariant in Theorem 8.8
will be adapted to this context, and so we define, for a sofic shift X , the
labeled eventual poset of subsynchronizing subshifts of X as the labeled poset
obtained from Subs(X ) by labeling each element of Subs(X ) with its even-
tual conjugacy class.
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Corollary 10.6. Suppose that X and Y are eventually conjugate sofic
shifts. Then:

(1) the proper communications graphs of X and Y are isomorphic;
(2) if W is a pseudovariety of semigroups of the form W = LV, or, more

generally, of the form W = V ∗ D, then S(X ) ∈ W if and only if
S(Y ) ∈ W;

(3) the labeled preordered sets KD(X ) and KD(Y ) are isomorphic; more-
over, FD(X ) and FD(Y ) are also isomorphic if X and Y are irre-
ducible;

(4) the labeled eventual posets of subsynchronizing subshifts of X and Y

are isomorphic.

Proof : In view of the proof of Corollary 5.5, to show item (1) it suffices to
check that the posets P (X ) and P (Y ) are isomorphic. Since K(X ) and
K(Y ) are equivalent by Theorem 10.5, the proof given in Corollary 5.2 also
yields that fact.
Similarly, the proofs of Theorems 7.1 and 7.5 also yeld item (2).
Item (3) follows immediately from Theorems 10.5 and 6.2.
It remains to show (4). Let k be an integer as in Corollary 10.3. We already

know that the labeled eventual poset of subsynchronizing subshifts of a sofic
shift is invariant under conjugacy (by Theorem 8.8, see also comments in the
paragraph before it). Hence, it suffices to show that the labeled eventual
posets of subsynchronizing subshifts of X and X

k are the same. Note that
if e is a magic idempotent for X , then it is also a magic idempotent for
X

k. Let m ∈ (Ak)+ ⊆ A+ be a magic word for X
k such that e = δX k(m).

Consider the languages

L = {v ∈ A+ | ∃x ∈ A∗ : mxv ∈ L(X )}

and

K = {v ∈ (Ak)+ | ∃x ∈ (Ak)∗ : mxv ∈ L(X k)}.

The word m ∈ A+ is also magic for X , as e = δX (m). Therefore, since
K(X ) = K(X k), in view of Corollary 8.6, it suffices to show that L∩(Ak)+ =
K. Clearly K ⊆ L. Let v ∈ L ∩ (Ak)+, and let x ∈ A∗ be such that
mxv ∈ L(X ). Since g.c.d.(k,N) = 1, there are positive integers a, b such
that a|m| + |x| = bk, thus max ∈ (Ak)+. Hence m(max)v ∈ (Ak)+. On
the other hand, we have m(max)v ∈ L(X ), since δX (m) is idempotent and
mxv ∈ L(X ). Therefore, we have m(max)v ∈ L(X k), thus v ∈ K.
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Items (2) and (3) of Corollary 10.6 are from [18] and [17], respectively.

11. Preliminaries for the proof of Theorem 4.4

In this section we introduce some preliminary tools to be used in the proof
of Theorem 4.4, which do not concern directly the syntactic semigroup of a
shift. Most of the section is about symbolic dynamics, except for some facts
about actions of categories.

11.1. Some categorical preliminaries. Recall that a category can be
viewed as a graph by considering the objects as vertices and the morphisms
as edges. Hence we can talk about graph morphisms between categories.

Definition 11.1. Let C and D be small categories, and let A and B be
faithful actions of C andD, respectively. Denote by Obj(C) the set of objects
of C. Consider a graph morphism F : C −→ D and a family η = (ηc)c∈Obj(C)

of functions satisfying the following conditions:

(1) for each c ∈ Obj(C), ηc is a bijection from A(c) to B(F (c));
(2) if s ∈ C(c1, c2) then ηc1(q · s) = ηc2(q) · F (s), for every q ∈ A(c2).

We say that (F, η) is a link between the actions A and B.

Property 2 in Definition 11.1 asserts the commutativity of the following
diagram.

A(c2)
ηc2

//

·s
��

B(F (c2))

·F (s)
��

A(c1) ηc1

// B(F (c1)).

Lemma 11.2. If (F, η) is a link, then F is a faithful functor and η : A ⇒
B ◦ F is a natural isomorphism.

Proof : Let s ∈ C(c2, c3) and t ∈ C(c1, c2). Then st ∈ C(c1, c3). Let p ∈
B(F (c3)). Then there is q ∈ A(c3) such that p = ηc3(q). Applying several
times Property 2 from Definition 11.1, we obtain

p · F (st) = ηc1(q · st) = ηc1((q · s) · t) = ηc2(q · s) · F (t) = (p · F (s)) · F (t).

Therefore, we have p · F (st) = p · (F (s)F (t)) for every p ∈ B(F (c3)). From
the faithfulness of B, we deduce F (st) = F (s)F (t), whence F is a functor.
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In particular, we may consider the functor B ◦ F . In this context, proper-
ties 1 and 2 in Definition 11.1 mean that η is a natural isomorphism from A

to B ◦ F .
Suppose now that s, t are elements of C(c1, c2) such that F (s) = F (t). Let

q ∈ A(c2). Since F (s) = F (t), we have ηc1(q ·s) = ηc1(q ·t). As ηc1 is injective,
we have q · s = q · t, for every q ∈ A(c2). However, A is a faithful action and
so s = t, thereby establishing that F is faithful.

11.2. Sliding block codes. A sliding block code Φ between subshifts X

of AZ and Y of BZ is a function Φ: X −→ Y for which there are integers
k, l ≥ 0 and a mapping from Ak+l+1 ∩ L(X ) to B such that

Φ(x) = (φ(x[i−k,i+l]))i∈Z, for all x ∈X .

It will be convenient to extend φ to some function Ak+l+1 −→ B. This
extension will also be denoted by φ, since it will not be important to know
which extension we are choosing. We say that φ : Ak+l+1 −→ B is a block
map of Φ, with memory k and anticipation l. To describe these data, we use
the notation Φ = φ[−k,l] : X −→ Y .
Note that the sliding block code Φ: X −→ Y extends to a sliding block

code AZ −→ BZ, which we shall also denote by Φ, having φ : Ak+l+1 −→ B
as block map with memory k and anticipation l. This extension depends
only on how is done the extension of the domain of φ, from Ak+l+1 ∩ L(X )
to Ak+l+1.
If n ≥ l, m ≥ k and ψ : Am+n+1 −→ B is defined by

ψ(a−ma−m+1 · · · an−1an) = φ(a−ka−k+1 · · · al−1al),

with ai ∈ A, then ψ is a block map of Φ with memory m and anticipa-
tion n. In particular, one can choose a block map with equal memory and
anticipation.
The following is a well-known and very useful result in symbolic dynamics.

Theorem 11.3 ([34]). The sliding block codes are precisely the morphisms
between shifts.

We shall say that a sliding block code with memory and anticipation zero is
a 1-block code. A conjugacy which is a 1-block code is a 1-conjugacy. These
special types of sliding block codes are of special interest, because of the next
lemma.
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Lemma 11.4 (cf. [52, Proposition 1.5.12]). Let Φ: X −→ Y be a sliding
block code with a block map φ having memory and anticipation k. Then there
are 1-block codes Φ1 : Z −→X and Φ2 : Z −→ Y with block maps φ1 and φ2
(respectively) such that Φ1 is a conjugacy, Φ = Φ2◦Φ

−1
1 (cf. Diagram (11.1)),

and Φ−11 has a block map ζ with memory and anticipation k such that φ =
φ2 ◦ ζ.

Z
Φ1

}}{{
{{
{{
{{ Φ2

!!B
BB

BB
BB

B

X
Φ

// Y

(11.1)

For the reader’s convenience, we give below a proof of Lemma 11.4 (which
is formulated in a slightly different way than in [52, Proposition 1.5.12]). The
proof is based in the following construction. Let N be a positive integer and

define βN : AZ −→ (AN)
Z
by

βN((xi)i∈Z) = ([x[i,i+N−1]])i∈Z.

Given a subset X of AZ, denote by X
[N ] the set βN(X ). If X is a subshift

of AZ, then X [N ] is a subshift of (AN)
Z
and the map βN : X −→ X [N ] is

a conjugacy [52, Example 1.5.10]. Notice that βN is given by a block map
with memory 0 and anticipation N − 1.

Proof of Lemma 11.4: We are considering X and Y as subshifts of AZ and
BZ, respectively.
Let C = A2k+1, and let Z be the subshift X [2k+1] of CZ. Let Φ1 be

the inverse of the conjugacy β2k+1 ◦ σ
−k
A : X −→ Z . Consider the map

φ1 : C −→ A defined by sending an element w of A2k+1 to its middle letter;
so if w = uav, with a ∈ A and |u| = |v| = k, then φ1(w) = a. Since

β2k+1 ◦ σ
−k
A ((xi)i∈Z) = ([x[i−k,i+k]])i∈Z,

the map φ1 is a block map for Φ1 with memory and anticipation zero.
Let Φ2 : Z −→ Y be the sliding block code having the map φ : C −→ B

as a block map with memory and anticipation zero. Then Φ2 ◦ Φ
−1
1 = Φ2 ◦

(β2k+1 ◦ σ
−k
A ) = Φ.

Finally, note that the identity 1C on C = A2k+1 can be viewed as a block
map for β2k+1◦σ

−k
A with memory and anticipation k. Therefore, we may take

φ2 = φ and ζ = 1C .
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Lemma 11.4 allows us to deduce the existence of a conjugacy invariant
by looking only at 1-conjugacies. This strategy will be used in the proof
of Theorem 4.4. Indeed, since flow equivalence is the least equivalence rela-
tion between shifts containing the conjugacy and symbol expansion relations,
Lemma 11.4 permits us to register the following fact.

Lemma 11.5. Flow equivalence is the least equivalence relation between shifts
containing all pairs (X ,Y ) such that there is either a 1-conjugacy X −→ Y

or a symbol expansion X −→ Y .

11.3. Application of block maps to finite and infinite words. For
alphabets A and B, and a positive integer N , let φ be a map from AN to B.
We define a map φ̄ : A∗ −→ B∗ such that if u is a word of length less than N
then φ̄(u) = 1, and if u is a word of length at least N , with a factorization
u = u1 · · ·um such that ui ∈ A for all i ∈ {1, . . . , m}, then

φ̄(u) = φ(u[1,N ])φ(u[2,N+1]) · · ·φ(u[m−N,m−1])φ(u[m−N+1,m]),

where u[i,j] = uiui+1 · · · uj−1uj (1 ≤ i ≤ j ≤ m). Note that |φ̄(u)| = |u|−N+1
if |u| ≥ N .
Given a non-negative integer k, denote by tk the function taking a word

u ∈ A∗ to its suffix of length k if |u| ≥ k; if |u| < k, we put tk(u) = u.
Replacing “suffix” by “prefix”, we obtain the mapping denoted ik. Note that
i0(u) = t0(u) = 1.

Remark 11.6. For all u, v ∈ A∗ we have the following equalities:

φ̄(uv) = φ̄(u) · φ̄(tN−1(u)v) = φ̄(u iN−1(v)) · φ̄(v). (11.2)

Moreover, if N = 2k + 1 then the equality

φ̄(uv) = φ̄(u ik(v)) · φ̄(tk(u)v), (11.3)

also holds, see for instance [18, Lemma 2.5].

Remark 11.7. Consider sliding block codes Φ = φ[−k,k] : X −→ Y and Ψ =
ψ[−l,l] : Y −→ Z , with X ⊆ AZ, Y ⊆ BZ and Z ⊆ CZ. Then the map
ζ : A2k+2l+1 −→ C such that ζ(u) = ψ ◦ φ̄(u) is a block map for Ψ ◦ Φ with
memory and anticipation k + l, and ζ̄ = ψ̄ ◦ φ̄.

Given alphabets A and B, a positive integer N and a map φ : AN −→ B,
we extend φ̄ to right-infinite and left-infinite words as follows. Define, for
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x ∈ AZ−

and y ∈ AN, elements φ̄(x) ∈ BZ−

and φ̄(x) ∈ BN by:

φ̄(x) = · · · φ(x[−(N+2),−3])φ(x[−(N+1),−2])φ(x[−N,−1]),

φ̄(y) = φ(y[0,N−1])φ(y[1,N ])φ(y[2,N+1]) · · · .

For x ∈ AZ, the sequences · · ·xi−2xi−1xi and xixi+1xi+2 · · · are respectively
denoted by x]−∞,i] and x[i,+∞,[.

Remark 11.8. Let Φ = φ[−k,k] : AZ −→ BZ be a sliding block code. If x ∈ AZ

then Φ(x) = φ̄(x]−∞,−1+k]).φ̄(x[−k,+∞[).

Next we list a couple of simple facts about a sliding block code of the form
Φ: X −→ Y with block map φ, which we shall use without reference:

(1) φ̄(L(X )) ⊆ L(Y ) ∪ {1}.
(2) φ̄(X −) ⊆X − and φ̄(X +) ⊆X +.

For a subshift X of AZ, we denote byMN(X ) the set of elements of A+ all
of whose factors of length less than or equal to N belong to L(X ). The set
MN(X ) is factorial and prolongable, and so it defines a subshift XN such
that L(XN) =MN(X ). A shift X is of finite type if and only if X = XN

for some N ≥ 1 (cf. [52, Proposition 2.1.7]).

Lemma 11.9. Let Φ = φ[−k,k] : X −→ Y be a conjugacy and let Φ−1 =
ψ[−l,l] : Y −→ X be its inverse. Take x ∈ AZ, where X ⊆ AZ. For every
i ∈ Z, we have

x]−∞,i+k+l] ∈X
−
2k+2l+1 =⇒ ψ̄φ̄(x]−∞,i+k+l]) = x]−∞,i],

and
x[i−(k+l),+∞[ ∈X

+
2k+2l+1 =⇒ ψ̄φ̄(x[i−(k+l),+∞[) = x[i,+∞[.

Proof : It suffices to consider the case x]−∞,i+k+l] ∈ X
−
2k+2l+1, the other case

being entirely similar. Replacing x by σi(x) if necessary, we may assume that
i = 0.
Let z = φ̄(x]−∞,k+l]). Then z is the element of BZ−

given by

zj = φ(x[l−k+j+1,l+k+j+1]), for all j ≤ −1. (11.4)

On the other hand, we have

ψ̄(z) = · · ·ψ(z[−(2l+1)−2,−3])ψ(z[−(2l+1)−1,−2])ψ(z[−(2l+1),−1]). (11.5)

From (11.4) we obtain, for all j ≤ 0, the following equality:

ψ(z[−(2l+1)+j,−1+j]) = ψφ̄(x[j−(k+l),j+k+l]). (11.6)
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For every j ≤ 0, the word wj = x[j−(k+l),j+k+l] of length 2k + 2l + 1 belongs

to L(X ). According to Remark 11.7, the mapping ψφ̄ : A2k+2l+1 −→ A is a
block map for the identity on X and so, ψφ̄(wj) = xj. Therefore, from (11.5)
and (11.6) we obtain ψ̄φ̄(x]−∞,k+l]) = x]−∞,0].

We conclude this section with a couple of easy lemmas, respectively about
infinite and finite words, which are related with Lemma 11.9.

Lemma 11.10. Let Φ = φ[−k,k] : X −→ Y be a conjugacy whose inverse
has a block map with memory and anticipation l. Suppose that X ⊆ AZ and
let x ∈ AZ. Then the following properties hold:

(1) If we have x]−∞,i+k+l] ∈ X
−
2k+2l+1 and φ̄(x]−∞,i+k+l]) ∈ Y −, then we

have x]−∞,i] ∈X −.
(2) If we have x[i−(k+l),+∞[ ∈X

+
2k+2l+1 and φ̄(x[i−(k+l),+∞[) ∈ Y +, then we

have x[i,+∞[ ∈X
+

(3) Let Φ̂ be the sliding block code AZ −→ BZ extending Φ, having φ : A2k+1 −→

B as a block map. If we have x ∈ X2k+2l+1 and Φ̂(x) ∈ Y , then we
have x ∈X .

Proof : We first show (1). Let ψ be the block map such that Φ−1 = ψ[−l,l]. Ap-
plying Lemma 11.9 to x]−∞,i+k+l] ∈X

−
2k+2l+1, we obtain x]−∞,i] = ψ̄φ̄(x]−∞,i+k+l]).

Therefore, since ψ̄(Y −) ⊆X
−, from the hypothesis φ̄(x]−∞,i+k+l]) ∈ Y

− we
get x]−∞,i] ∈X

−. The proof of item (2) is similar.

Finally, suppose that x ∈ X2k+2l+1 and Φ̂(x) ∈ Y . Let Φ̂−1 = ψ[−l,l] be
the sliding block code BZ −→ AZ extending Φ−1. Then, by Remarks 11.7
and 11.8, we have

Φ̂−1(Φ̂(x)) = ψ̄φ̄
(
x]−∞,−1−(k+l)]).ψ̄φ̄(x[−(k+l),+∞[

)
.

Hence Φ̂−1(Φ̂(x)) = x, by Lemma 11.9. Since Φ̂−1(x) ∈ Y and the restriction

of Φ̂−1 to Y is Φ−1, from Φ̂(x) ∈ Y we conclude that x ∈X .

Lemma 11.11. Let Φ = φ[−k,k] : X −→ Y be a conjugacy, and let Φ−1 =
ψ[−l,l] : Y −→ X be its inverse. Consider an element v of A+, where X ⊆
AZ. If r and s are words of length k + l such that rvs ∈ M2k+2l+1(X ) then
v = ψ̄φ̄(rvs); in particular, if φ̄(rvs) ∈ L(Y ) then v ∈ L(X ).

Proof : Since rvs ∈ M2k+2l+1(X ), there is x ∈ X2k+2l+1 such that rvs =
x[−(k+l),m+k+l], where m = |v| − 1. By Lemma 11.9, and since |s| = k + l, we
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have
ψ̄φ̄(x]−∞,m+k+l]) = x]−∞,m] = x]−∞,−1]v.

On the other hand, the right infinite sequence ψ̄φ̄(x]−∞,m+k+l]) ends in the
word ψ̄φ̄(rvs), with length |rvs| − 2(k+ l) = |v|. Therefore ψ̄φ̄(rvs) = v.

12. Proof of Theorem 4.4

12.1. Interplay between block maps and the syntactic congruence.

The content of the next lemma is very similar to that of [17, Proposition 4.2],
a result about sofic shifts only. Throughout this section, X will be a subshift
of AZ and Y is a subshift of BZ. If w is a word and w = uv, then we put
u−1w = v and wv−1 = u.

Lemma 12.1. Let Φ = φ[−l,l] : X −→ Y be a conjugacy. Suppose Φ−1 has
memory and anticipation k. Let u, v ∈ A+ be words of length greater or equal
than 2l such that

i2l(u) = i2l(v), t2l(u) = t2l(v). (12.1)

Let p, q be words such that puq ∈ L(X ) and |p| = |q| = 2k + 2l. If δX (u) ⊆
δX (v), then δY φ̄(p

′uq′) ⊆ δY φ̄(p
′vq′) whenever p′ ∈ A∗p and q′ ∈ qA∗.

Proof : First, we want to prove the following inclusion:

δY φ̄(puq) ⊆ δY φ̄(pvq). (12.2)

Let ψ be a block map such that Φ−1 = ψ[−k,k]. Let (x, y) ∈ δY φ̄(puq). Since
L(Y ) is prolongable, there are words x′ and y′ of length k + l such that
x′xφ̄(puq)yy′ belongs to L(Y ). Let z ∈ {u, v}. The words φ̄(p) and φ̄(q)
have length 2k, whence they are respectively the prefix and the suffix of
length 2k of φ̄(pzq), by formula (11.2) in Remark 11.6. Therefore, also by
formula (11.2) in Remark 11.6, we have

ψ̄(x′xφ̄(pzq)yy′) = ψ̄(x′xφ̄(p)) · ψ̄φ̄(pzq) · ψ̄(φ̄(q)yy′) (12.3)

The word puq belongs to L(X ), and so does pvq because δX (u) ⊆ δX (v).
By Lemma 11.11, we then have for each z ∈ {u, v} the equality

ψ̄φ̄(pzq) = ik+l(p)
−1p · z · q tk+l(q)

−1. (12.4)

For each z ∈ {u, v}, denote the word

ψ̄(x′xφ̄(p)) · ik+l(p)
−1p · z · q tk+l(q)

−1 · ψ̄(φ̄(q)yy′).

by wz. Putting equality (12.3) together with equality (12.4), we get

ψ̄(x′xφ̄(pzq)yy′) = wz. (12.5)
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Since x′xφ̄(puq)yy′ ∈ L(Y ), we know that wu ∈ L(X ). Hence, since
δX (u) ⊆ δX (v), we also have wv ∈ L(X ). By formula (11.2) in Remark 11.6,
we have

x′xφ̄(pvq)yy′ = x′x · φ̄(p i2l(v)) · φ̄(v) · φ̄(t2l(v)q) · yy
′.

The words φ̄(p i2l(v)) and φ̄(t2l(v)q) have length 2k+2l, therefore every factor
of length 2k + 2l + 1 of x′xφ̄(pvq)yy′ is a factor of at least one of the words

x′xφ(p i2l(v)), φ̄(p i2l(v)) · φ̄(v) · φ̄(t2l(v)q), φ̄(t2l(v)q) · yy
′.

By (12.1), the first and the last of these three words belong to L(Y ), since
they are factors of x′xφ̄(puq)yy′, itself an element of L(Y ). The second word
also belongs to L(Y ), since it equals φ̄(pvq) and pvq ∈ L(X ). Therefore
x′xφ̄(pvq)yy′ belongs to M2k+2l+1(Y ). Then, as wv ∈ L(X ), from (12.5)
and Lemma 11.11 we deduce that xφ̄(pvq)y ∈ L(X ). This concludes the
proof of the inclusion (12.2).
Using formula (11.2) in Remark 11.6, we obtain

φ̄(p′zq′) = φ̄(p′p−1 · pzq · q−1q′)

= φ̄(p′p−1 · i2l(p)) · φ̄(pzq) · φ̄(t2l(q) · q
−1q′).

Hence, multiplying both sides in (12.2) on the left by δY φ̄(p
′p−1 · i2l(p)) and

on the right by δY φ̄(t2l(q) · q
−1q′), we get δY φ̄(p

′uq′) ⊆ δY φ̄(p
′vq′).

The following definition and subsequent technical lemmas will be later
used to build an equivalence K(X ) −→ K(Y ) starting from an 1-conjugacy
X −→ Y .

Definition 12.2. Let Φ = φ[−l,l] : X −→ Y be a conjugacy. Let e be
an idempotent of S(X ) \ {0}. For each positive integer N , define the set
Wφ,N(e) as the set of words w ∈ A+ such that |w| > N , δX (w) = e and
δY φ̄(tl(w)w

n il(w)) is an idempotent of S(Y )\{0} for every positive integer n.

Lemma 12.3. The set Wφ,N(e) is non-empty.

Proof : Let u be a word such that δX (u) = e. Suppose that Φ−1 has mem-
ory and anticipation k. Let v = umax{N,2l,l+2k}. Then δX (vn) = e for ev-
ery n ≥ 1. Since e 6= 0, the word vn belongs to L(X ). Its length is at
least 2l. Note also that tl(v) v and v il(v) have length greater than or equal
to l + (l + 2k) = 2k + 2l. Then, for every n ≥ 3, we may apply Lemma 12.1
to the inclusions δX (vn−2) ⊆ δX (v2n−2) and δX (v2n−2) ⊆ δX (vn−2), with the
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words tl(v) v and v il(v) playing the role of p′ and q′, respectively. We deduce
that δY φ̄(tl(v) v

n
il(v)) = δY φ̄(tl(v) v

2n
il(v)) for every n ≥ 3. Since we have

φ̄(tl(v) v
m
il(v)) = φ̄(tl(v) v il(v))

m for every m (cf., (11.3) of Remark 11.6),
it follows that δY φ̄(tl(v) v

n il(v)) is idempotent whenever n ≥ 3. This idem-
potent is not 0, because vm ∈ L(X ) and so φ̄(vm) ∈ L(Y ), for all m ≥ 1.
Therefore v3 ∈ Wφ,N(e).

Lemma 12.4. Consider a 1-conjugacy Φ = φ[0,0] : X −→ Y whose inverse
has memory and anticipation k. Let e, f ∈ S(X )\{0}. Given we ∈ Wφ,2k(e)
and wf ∈ Wφ,2k(f), let u, v be elements of weA

+wf ∩ L(X ). Then δX (u) ⊆
δX (v) if and only if δY φ̄(u) ⊆ δY φ̄(v).

Proof : Suppose that δX (u) ⊆ δX (v). Note that δX (u) = δX (weuwf), be-
cause u ∈ weA

+wf and δX (we), δX (wf) are idempotents. Therefore, from
u ∈ L(X ) we get weuwf ∈ L(X ). As |we|, |wf | > 2k, from Lemma 12.1
we deduce δY φ̄(weuwf) ⊆ δY φ̄(wevwf). Since u, v ∈ weA

+wf and δY φ̄(we),
δY φ̄(wf) are idempotents, we in fact have δY φ̄(u) ⊆ δY φ̄(v).
Conversely, suppose that δY φ̄(u) ⊆ δY φ̄(v). Let ψ be a block map of

Φ−1 with memory and anticipation k. Note that i2k(φ̄(u)) = i2k(φ̄(v)) =
i2k(φ̄(we)) and t2k(φ̄(u)) = t2k(φ̄(v)) = t2k(φ̄(wf)). Since weuwf ∈ L(X ),
we have φ̄(t2k(we)u i2k(wf)) ∈ L(Y ). Then, as |φ̄(we)| = |we| > 2k and
|φ̄(wf)| = |wf | > 2k, it follows from Lemma 12.1 that

δX ψ̄φ̄(t2k(we)u i2k(wf)) ⊆ δX ψ̄φ̄(t2k(we)v i2k(wf)). (12.6)

We have already observed that weuwf ∈ L(X ). Using the same arguments,
we get wevwf ∈ L(X ). We may then apply Lemma 11.11 to deduce, for
each z ∈ {u, v}, the equality ψ̄φ̄(t2k(we)z i2k(wf)) = tk(we)z ik(wf). There-
fore (12.6) translates to

δX (tk(we)u ik(wf)) ⊆ δX (tk(we)v ik(wf)). (12.7)

If we multiply both sides of (12.7) on the left by δX (we · (tk(we))
−1) and on

the right by δX ((ik(wf))
−1 · wf), we obtain δX (weuwf) ⊆ δX (wevwf), that

is, δX (u) ⊆ δX (v).

12.2. Invariance of the action AX under 1-conjugacies. The following
definition introduces our standing notation.

Definition 12.5. Let Φ = φ[0,0] : X −→ Y be a 1-conjugacy. We define
a graph morphism FΦ : K(X ) −→ K(Y ) as follows. If Φ−1 = ψ[−k,k] has
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memory and anticipation k, choose for each e ∈ E(S(X )) \ {0}, an element
we of Wφ,2k(e). For each morphism (e, s, f) of K(X ) such that s 6= 0, let
W(e,s,f) be the non-empty set weA

+wf ∩ δ
−1
X
(s). Then we define:

(1) FΦ(0) = 0;
(2) FΦ(e) = δY φ̄(we) for every object e ∈ E(S(X )) \ {0};
(3) FΦ(e, 0, f) = (FΦ(e), 0, FΦ(f)) for all objects e, f of K(X );
(4) for every morphism (e, s, f) with s ∈ S(X ) \ {0} put

FΦ(e, s, f) =
(
FΦ(e), δY φ̄(u), FΦ(f)

)

where u ∈ W(e,s,f) (this is well defined by Lemma 12.4).

We shall see later that FΦ is an equivalence of categories.
The following lemma is a step towards the construction of an isomorphism

AX ⇒ AY ◦ FΦ. The setup for the lemma is that of Definition 12.5.

Lemma 12.6. Let e ∈ S(X ) \ {0} and x ∈ AZ. Suppose that xwe ∈ X
−

and ywe ∈X
−
2k+1. Then we have the following equivalence:

CX (xwe) ⊆ CX (ywe) ⇐⇒ CY (φ̄(xwe)) ⊆ CY (φ̄(ywe)).

Proof : Suppose CX (xwe) ⊆ CX (ywe). Let z ∈ CY (φ̄(xwe)). Because
δY φ̄(we) is idempotent, we have CY (φ̄(xwe)) = CY (φ̄(xwewe)), and so

φ̄(xwewe).z ∈ Y .

Therefore,
ψ̄φ̄[xweik(we)].ψ̄

[
φ̄(tk(we)we)z

]
∈X (12.8)

by Remark 11.6 Since xwe ∈ X − and δX (we) is idempotent, we also have
xwewe ∈X

−. Therefore, ψ̄φ̄[xweik(we)] = xwe by Lemma 11.9. From (12.8)
and the hypothesis CX (xwe) ⊆ CX (ywe), we obtain

ywe.ψ̄
[
φ̄(tk(we)we)z

]
∈X .

Hence
φ̄(ywe).φ̄ψ̄

[
φ̄(tk(we)we)z

]
∈ Y . (12.9)

As φ̄(wewe)z ∈ Y
+, from Lemma 11.9 we get φ̄ψ̄

[
φ̄(tk(we)we)z

]
= φ̄(we)z.

Therefore (12.9) is the same as z ∈ CY (φ̄(ywewe)). Since CY (φ̄(ywe)) =
CY (φ̄(ywewe)), this proves CY (φ̄(xwe)) ⊆ CY (φ̄(ywe)).
Conversely, suppose CY (φ̄(xwe)) ⊆ CY (φ̄(ywe)). Let z ∈ CX (xwe). Then

xwe.z ∈ X and φ̄(xwe).φ̄(z) = Φ(xwe.z) ∈ Y . By the hypothesis, we get
φ̄(ywe).φ̄(z) ∈ Y . Since ywe ∈ X

−
2k+1, wez ∈ X + and |we| ≥ 2k, we know
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that ywe.z ∈X2k+1. Applying Lemma 11.10(3), we obtain ywe.z ∈X . This
proves CX (xwe) ⊆ CX (ywe).

Definition 12.7. Let e be an idempotent of S(X ) \ {0}. Note that every
element of Q(X )e is of the form CX (xwe), where x ∈ AZ−

. We define a
mapping

ηe : Q(X )e −→ Q(Y )FΦ(e)

by ηe(∅) = ∅ and ηe(CX (xwe)) = CY (φ̄(xwe)) whenever CX (xwe) 6= ∅. Note
that ηe is a well-defined and injective mapping by Lemma 12.6. If e = 0,
then ηe is defined as the unique mapping {∅} −→ {∅}.

Lemma 12.8. For each idempotent e of S(X ), the mapping ηe is bijective.

Proof : We assume e 6= 0. Since ηe is injective and ηe(∅) = ∅, it remains to
show that the set Q(Y )FΦ(e) \ {∅} is contained in the image of ηe.
An element ofQ(Y )FΦ(e)\{∅} is of the formCY (yφ̄(we)), for some y ∈ BZ−

such that yφ̄(we) ∈ Y −. For such an element, let y′ = yφ̄(we ik(we)). As
FΦ(e) = δY φ̄(we) is idempotent, we have

CY (yφ̄(we)) = CY (yφ̄(wn
e )),

for all n ≥ 2, which implies that y′ ∈ Y −, since CY (yφ̄(we)) is non-empty.
Let x = ψ̄

(
y′). By Lemma 11.9, we have φ̄(x) = yφ̄(we), whence

CY (yφ̄(we)) = CY (φ̄(x)). (12.10)

We claim that xwe ∈ X
−. Since CY (yφ̄(w3

e)) 6= ∅, we know that y′′ =
yφ̄(w2

e ik(we)) belongs to X −. Therefore x′′ = ψ̄(y′′) belongs to X . Note
that x′′ = xψ̄φ̄[tk(we)we ik(we)]. Hence x′′ = xwe by Lemma 11.11, which
establishes the claim.
Since xwe ∈ X −, we have ηe(CX (xwe)) = CY (φ̄(xwe)). Therefore, from

equalities (12.10) and CY (yφ̄(we)) = CY (yφ̄(w2
e)), we obtain the equality

ηe(CX (xwe)) = CY (yφ̄(we)). This concludes the proof that ηe is onto.

We wish to show that FΦ is a functor and that η is a natural isomorphism
AX −→ AY ◦FΦ. This is done in the following proposition, via Lemma 11.2.
We can apply Lemma 11.2 because AX is faithful (Remark 4.3).

Proposition 12.9. Suppose there is a 1-conjugacy Φ: X −→ Y . Take all
data from Definitions 12.7 and 12.5. The pair (FΦ, η) is a link between the
faithful actions AX and AY , and FΦ is an equivalence.
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Proof : Throughout the proof, FΦ is denoted simply by F . Otherwise, we
retain the notation and assumptions of Definition 12.7.
We begin by showing that if q ∈ Q(X )e, then

ηf(q · (e, s, f)) = ηe(q) · F (e, s, f). (12.11)

The cases in which q = ∅ or s = 0 are immediate, since ηe(∅) = ηf(∅) = ∅
and F (e, 0, f) = (F (e), 0, F (f)). Suppose that q 6= ∅ and s 6= 0. We may
take an element x ∈ AZ

−

such that xwe ∈ X − and q = CX (xwe), and an
element u ∈ W(e,s,f). Then

q · (e, s, f) = CX (xwe) · δX (u) = CX (xweu)

and

ηe(q) · F (e, s, f) = CY (φ̄(xwe)) · δY (φ̄(u)) = CY (φ̄(xweuwf)),

where the last equality holds because δY (φ̄(u)) = δY (φ̄(uwf)) by Lemma 12.4.
Suppose ηe(q) · F (e, s, f) 6= ∅. Then we have φ̄(xweuwfwf) ∈ Y

−. Since
xwe ∈ X −, weuwfwf ∈ L(X ) and |we| > 2k, we also have xweuwfwf ∈
X
−
2k+1. We then get xweuwftk(wf)

−1 ∈ X − by Lemma 11.10(1). In partic-
ular, CX (xweu) 6= ∅. We have therefore proved that q · (e, s, f) = ∅ implies
ηe(q) · F (e, s, f) = ∅. In the case q · (e, s, f) 6= ∅, we have

ηf(q · (e, s, f)) = CY (φ̄(xweu)) = ηe(q) · F (e, s, f),

which establishes (12.11) in all cases.
Therefore, by Lemma 11.2, we know that F is a faithful functor and that

η is a natural isomorphism AX ⇒ AY ◦ F .
Next, we show that F is essentially surjective. Let f be an idempotent

of S(Y ) \ {0}. By Lemma 12.3, there is w ∈ B+ such that |w| > 2k,
δY (w) = f and e = δX ψ̄(tk(w)w ik(w)) is an idempotent of S(X ) \ {0}. Let
v = ψ̄(tk(w)w ik(w)). We have e = δX (we) = δX (v). Since e is idempotent
and e 6= 0, we deduce that (v∗w∗e)

∗ \ {1} ⊆ L(X ). We may then apply
Lemma 12.1 to the equality δX (we) = δX (v), first with p′ = q′ = v, and
second with p′ = q′ = we, to deduce that

δY φ̄(vwev) = δY φ̄(v
3) and δY φ̄(w

3
e) = δY φ̄(wevwe). (12.12)

Note that φ̄(v) = w by Lemma 11.11. Therefore, what we have in (12.12) is
fF (e)f = f and F (e) = F (e)fF (e), thus f R fF (e) L F (e). By Lemma 2.3,
this implies that f and F (e) are isomorphic objects of K(Y ).
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It remains to show that F is full. Let e and f be idempotents of S(X )\{0}.
Let µ be a morphism of K(Y ) from F (f) to F (e). We want to show that
µ = F (ν) for some morphism ν of K(X ) from f to e. Since F (e, 0, f) =
(F (e), 0, F (f)), we may suppose that µ = (F (e), δY (v), F (f)) for some v ∈
L(Y ). Let v′ be the word

φ̄(tk(we)w
2
e) v φ̄(w

2
f ik(wf)).

Note that v′ is a factor of v′′ = φ̄(we)
3 v φ̄(wf)

3, and because µ is a morphism
of K(Y ), we have δY (v′′) = δY (v). Since v ∈ L(Y ), we conclude that v′′

and v′ belong to L(Y ). Hence ψ̄(v′) ∈ L(X ). Let ze = φ̄(tk(we)we ik(we))
and zf = φ̄(tk(wf)wf ik(wf)). Observe that ψ̄(v′) ∈ ψ̄(ze)A

+ψ̄(zf). Note also
that tk(we)we ik(we) and tk(wf)wf ik(wf) belong to L(X ), thus ψ̄(ze) = we

and ψ̄(zf) = wf by Lemma 11.11. Hence, if s = δX ψ̄(v′) then (e, s, f) is a
morphism of K(X ) and ψ̄(v′) ∈ W(e,s,f). Then

F (e, s, f) = (F (e), δY φ̄ψ̄(v
′), F (f)).

Since the words φ̄(tk(we)) and φ̄(ik(wf)) have length k, by Lemma 11.11 we
have φ̄ψ̄(v′) = φ̄(we)

2 v φ̄(wf)
2, hence

F (e, s, f) = (F (e), F (e) δY (v)F (f), F (f)) = µ,

thus showing F is full.

12.3. Invariance of the action AX under symbol expansion. The
reader should review the definitions and notation from Subsection 3.6.

Remark 12.10. Using induction on the length of words, one verifies that

E(A∗) = B∗ \
(
⋄B∗ ∪B∗α ∪

⋃

x∈A\{⋄}

B∗αxB∗ ∪
⋃

x∈A\{α}

B∗x ⋄ B∗
)
.

Remark 12.10 justifies several simple and useful facts, like the following.

Lemma 12.11. Let v ∈ A+. For x, y, u ∈ B∗, if xE(v)y = E(u) then
x, y ∈ E(A∗) and u = E−1(x)vE−1(y). Consequently, if E(v) ∈ L(X ′) then
v ∈ L(X ).

Proof : The first part of the lemma follows from Remark 12.10 and the fact
that E is injective. If E(v) ∈ L(X ′) then there is u ∈ L(X ) and x, y ∈ B∗

with E(u) = x E(v) y. From u = E−1(x) v E−1(y), we deduce v ∈ L(X ).

A direct consequence of Lemma 12.11 is the following analog.
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Lemma 12.12. Let x ∈ AZ. If E(x) ∈X ′ then x ∈X .

Proof : If u is a finite block of x, then E(u) ∈ L(X ′). By Lemma 12.11, we
have u ∈ L(X ). Hence x ∈X .

In this subsection we prove the invariance of the action AX under symbol
expansion following a script which differs slightly from the proof of the in-
variance under 1-conjugacy given in Subsection 12.2. The difference stems
from the next proposition, in which we obtain a special homomorphism from
S(X ) to S(X ′), called a local isomorphism, a result with some independent
interest. This proposition immediately yields an equivalence F : K(X ) −→
K(X ′). The construction of a natural isomorphism AX ⇒ AX ′◦F will come
later.
In [51], a semigroup homomorphism θ : S −→ T is termed a local isomor-

phism if the following conditions are satisfied:

(1) θ|eSf is a bijection of eSf with θ(e)Tθ(f);
(2) if e′ ∈ E(θ(S)), then there is an idempotent e ∈ S with θ(e) = e′;
(3) for each idempotent e ∈ T , there is an idempotent f ∈ θ(S) with

e D f .

(Actually, Lawson only defines the notion for semigroups with local units.)
It is immediate from the definition (cf. [51]) that if θ : S −→ T is an isomor-
phism, then θ induces an equivalence Θ: K(S) −→ K(T ) given by Θ(e) =
θ(e) on objects and Θ(e, s, f) = (θ(e), θ(s), θ(f)) on morphisms.

Proposition 12.13. There is a well-defined homomorphism E ′ : S(X ) −→
S(X ′) sending δX (u) to δX ′(E(u)) and 0 to 0. Moreover, E ′ is a local iso-
morphism.

Proof : We begin by showing that δX (u) ⊆ δX (v) if and only if δX ′(E(u)) ⊆
δX ′(E(v)) for u, v ∈ A+. Suppose that δX (u) ⊆ δX (v) and let x and y
be words such that x E(u) y belongs to L(X ′). There are words x′ and y′

such that x′x E(u) yy′ belongs to L(X ′)∩E(A+). By Lemma 12.11, we have
E−1(x′x) u E−1(y′y) ∈ L(X ). Since δX (u) ⊆ δX (v), it follows that the word
z = E−1(x′x) v E−1(y′y) also belongs to L(X ). Hence x E(v) y belongs to
L(X ′), since it is a factor of E(z). Therefore δX ′E(u) ⊆ δX ′E(v). Let
z ∈ A+ \L(X ). Then E(z) /∈ L(X ′), again by Lemma 12.11. Therefore, we
have E ′(δX (z)) = 0 = E ′(0).
This proves E ′ is a well-defined homomorphism.
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On the other hand, if δX ′E(u) ⊆ δX ′E(v) then, for every x, y ∈ A∗, we have
the following chain of implications, where the last one uses Lemma 12.11:

xuy ∈ L(X )⇒ E(xuy) ∈ L(X ′)⇒ E(xvy) ∈ L(X ′)⇒ xvy ∈ L(X ).

This proves that δX (u) ⊆ δX (v). It follows that E ′ is injective.
The second condition in the definition of a local isomorphism is clearly

satisfied by E ′ because it is injective.
Suppose that f = δX ′(w) is an idempotent of S(X ′) with f /∈ E ′(S(X )).

Then w /∈ E(A+) on the one hand, and w ∈ L(X ′), on the other hand (the
latter because f 6= 0). Since w ∈ L(X ′), there is v ∈ L(X ) such that E(v) =
pwq for some p, q. Let u be a (possibly empty) word of maximal length such
that E(u) is a factor of w, and let a, b be words such that w = a E(u) b. Since
E(v) = pa E(u) bq, it follows that pa, bq ∈ E(A+) by Lemma 12.11. By the
maximality of u, we have a, b ∈ {1, α, ⋄}. Note also that {a, b} 6= {1}, because
w /∈ E(A+). Since δX ′(w) is idempotent, the word w2 = a E(u) ba E(u) b
belongs to L(X ′), thus ra E(u) ba E(u) bs ∈ E(A+) for some words r, s. Then
ba belongs to E(A+) by Remark 12.10. The only possibility is ba = α⋄, thus
w = ⋄ E(u)α. Then, we have:

δX ′E(αu)2 = δX ′(α ⋄ E(u)α ⋄ E(u)) = δX ′(αw ⋄ E(u)).

On the other hand, since δX ′(w) is idempotent, we also have:

δX ′(αw ⋄ E(u)) = δX ′(αw3 ⋄ E(u)) = δX ′((α ⋄ E(u))4) = δX ′E(αu)4.

Therefore, δX ′E(αu)2 is an idempotent in the image of E ′. Denote this idem-
potent by e. Let x = δX ′(αw) and y = δX ′(w2 ⋄ E(u)). Then xy = e and
yx = f , thus e D f .
It remains to show that E ′(eS(X )f) = E ′(e)S(X ′)E ′(f), whenever e, f ∈

E(S(X )). Let u and v be elements of A+ such that e = δX (u) and f =
δX (v). Clearly, 0 ∈ E ′(eS(X )f). Let w ∈ L(X ′) be such that δX ′(w) ∈
E ′(e)S(X ′)E ′(f). Since δX ′(w) = δX ′(E(u)w E(v)), there are words p and
q such that p E(u)w E(v) q belongs to L(X ′) ∩ Im E . From Remark 12.10
it follows that w = E(w′) for some w′ ∈ A+. Moreover, w′ ∈ L(X ) by
Lemma 12.11. Clearly, δX (uw′v) ∈ eS(X )f . Furthermore, E ′δX (uw′v) =
E ′(e) δX ′(w) E ′(f) = δX ′(w), completing the proof.

Definition 12.14. Consider the mapping FE : K(X ) −→ K(X ′) defined as
follows:

(1) FE(e) = E
′(e) if e is an object of K(X );
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(2) FE(e, s, f) =
(
E ′(e), E ′(s), E ′(f)

)
if (e, s, f) is morphism of K(X ).

It follows immediately from Proposition 12.13 and the remarks preceding
it that that FE is an equivalence. We record this here.

Proposition 12.15. The functor FE : K(X ) −→ K(X ′) is an equivalence.

Remark 12.16. Propositions 12.9 and 12.15 respectively establish the invari-
ance of K(X ), up to natural equivalence, under 1-conjugacies and symbol
expansions. By Lemma 11.5, this means that at this point, with the proof of
Theorem 4.4 not yet concluded, we have proved the invariance of K(X ), up
to natural equivalence, under flow equivalence (Theorem 4.2).

We proceed with the proof of Theorem 4.4, by steps in order to produce a
natural isomorphism AX ⇒ AX ′ ◦ FE .

Lemma 12.17. We have

CX (x) ⊆ CX (y) ⇐⇒ CX ′(E(x)) ⊆ CX ′(E(y)),

for every x, y ∈ AZ−

.

Proof : Suppose that CX ′(E(x)) ⊆ CX ′(E(y)). Let z ∈ CX (x), that is x.z ∈
X . Then E(x).E(z) = E(x.z) ∈ X

′. Hence E(y).E(z) = E(y.z) ∈ X
′, by

hypothesis. By Lemma 12.12, we have y.z ∈ X . We have therefore proved
CX (x) ⊆ CX (y).
Suppose now that CX (x) ⊆ CX (y). Let z ∈ CX ′(E(x)), that is E(x).z ∈

X ′. By Remark 12.10, we have z = E(t) for some unique t ∈ AN. Moreover,
x.t ∈ X by Lemma 12.12. Since CX (x) ⊆ CX (y), we obtain y.t ∈ X ,
whence E(y).z ∈X

′. Therefore, CX ′(E(x)) ⊆ CX ′(E(y)).

Consider the map h : Q(X ) −→ Q(X ′) such that h(CX (x)) = CX ′(E(x)),
for every x ∈ AZ−

By Lemma 12.17, this is a well-defined injective function.

Lemma 12.18. We have h(q · s) = h(q) · E ′(s), for every q ∈ Q(X ) and
s ∈ S(X ).

Proof : Take u ∈ A+ such that s = δX (u), and let x ∈ AZ−

be such that
q = CX (x). Then q · s = CX (x) and

h(q · s) = CX ′(E(xu)) = CX ′(E(x)) · δX ′(E(u)).

Since E ′(s) = δX ′(E(u)), this concludes the proof.
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Lemma 12.19. The equality h(Q(X ) · s) = Q(X ′) · E ′(s) holds for every
s ∈ S(X ).

Proof : By Lemma 12.18, we have h(Q(X ) · s) ⊆ Q(X ′) · E ′(s). Conversely,
let q ∈ Q(X ′) · E ′(s). We want to show that q ∈ h(Q(X ) ·s). Since ∅ = ∅ ·0,
by Lemma 12.18 we have h(∅) = h(∅) · 0 = ∅. Therefore, we may suppose
q 6= ∅. Take u ∈ A+ such that s = δX (u). Then, there is y ∈ BZ−

such that
q = CX ′(y E(u)). The assumption q 6= 0 means that y E(u) ∈ (X ′)−, and so
by Remark 12.10 there is ỹ ∈ BZ−

such that y = E(ỹ). Then h(CX (ỹu)) = q.
Since CX (ỹu) ∈ Q(X ) · s, this concludes the proof.

We are now ready to exhibit a natural isomorphism AX ⇒ AX ′ ◦ FE .

Proposition 12.20. For each idempotent e ∈ S(X ), let ηe be the function
Q(X )e −→ Q(X ′) E ′(e) such that ηe(r) = h(r) for every r ∈ Q(X )e. Let
η = (ηe)e∈E(S(X )). Then η is a natural isomorphism AX ⇒ AX ′ ◦ FE .

Proof : By Lemma 12.19, the co-domain of ηe is correctly defined, and ηe is
bijective (as h is injective). On the other hand, by Lemma 12.18, the family
η is a natural transformation from AX to AX ′ ◦ FE .

12.4. Conclusion.

Conclusion of the proof of Theorem 4.4: Let θ, ϑ and τ be the binary rela-
tions on the class of shift spaces defined as follows:

(1) X θ Y if and only if there is a 1-conjugacy from X onto Y ;
(2) X ϑ Y if and only if Y is a symbol expansion of X ;
(3) X τ Y if AX ∼ AY (recall Definition 2.4).

Note that Propositions 12.9 and 12.20 entail respectively θ ⊆ τ and ϑ ⊆ τ .
By Lemma 11.5, flow equivalence is the least symmetric transitive relation
containing θ and ϑ. Hence, to conclude the proof of Theorem 4.4 it suffices
to observe that τ is an equivalence relation in the class of shift spaces, since
∼ is itself an equivalence relation (Remark 2.5).

13. Proof of Theorem 4.6

In the proof of the following lemma we apply some results from Section 5
which were proved independently from Theorem 4.6.

Lemma 13.1. Let X and Y by synchronizing shifts. Consider a nat-
ural equivalence F : K(X ) −→ K(Y ). If e is an object of K(X ) then
ηe(QF(X )e) = QF(Y )F (e).
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Proof : Let q ∈ QF(X )e, where e is an idempotent of S(X ). Then q = qe ∈
QF(X ). By Remark 5.3, we have ηe(q) ∈ QF(Y ). As noted in Proposi-
tion 5.1(1), we have ηe(q)F (e) = ηe(q), whence ηe(QF(X )e) ⊆ QF(Y )F (e).
Conversely, suppose that p ∈ QF(Y )F (e). Then p = ηe(q) for some unique
q ∈ Q(X )e. Again by Remark 5.3, we have q ∈ QF(X )e. Therefore
ηe(QF(X )e) = QF(Y )F (e).

Conclusion of the proof of Theorem 4.6: Let X and Y be flow equivalent
synchronizing shifts. By Theorem 4.4, there is an equivalence F : K(X ) −→
K(Y ) for which there is a natural isomorphism η : AX −→ AY ◦ F . Hence,
the following diagram commutes, for every arrow (e, s, f) of K(Y ):

Q(X )e
ηe

//

·(e,s,f)
��

Q(Y )F (e)

·F (e,s,f)
��

Q(X )f
ηf

// Q(Y )F (f).

By Lemma 13.1, we may consider the bijective function η′e : QF(X )e −→
QF(Y )F (e) obtained by restriction and co-restriction of ηe. Therefore, we
have the following commutative diagram:

QF(X )e
η′e

//

·(e,s,f)
��

QF(Y )F (e)

·F (e,s,f)
��

QF(X )f
η′f

// QF(Y )F (f).

That is, the family (η′e)e∈E(S(X )) is an isomorphism A
F
X
⇒ A

F
Y
◦ F .

Appendix A.A remark on ordered semigroups

Recall that the underlying set of the semigroup S(X ) can be viewed as
the set of syntactic contexts. The semigroup S(X ), was investigated in [18]
enriched with this partial order, making it the ordered syntactic semigroup
of L(X ); see [66] for an introductory text on ordered semigroups. At the
category level, one considers ordered categories as in [67]: briefly, a partial
order compatible with composition is defined in each hom-set. The category
K(X ) was considered in [18] as an ordered category, with order inherited
from that of S(X ), that is, one has (e, s, f) ≤ (e, t, f) if and only if s ⊆ t,
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whenever (e, s, f) and (e, t, f) are arrows of K(X ). We remark that Theo-
rem 4.2 generalizes to ordered categories (Theorem A.1 below). This gener-
alization demands a definition of what an equivalence of ordered categories
is, something not in the literature we know. The notion of functor of ordered
categories appears in [67], as well the related notions of full and essentially
surjective (which coincide with those used for categories) and faithful (which
is more demanding in this new setting: for such a functor F and arrows s and
t with the same domain and the same co-domain, one has s ≤ t if and only if
F (s) ≤ F (t)). It is an easy exercise to prove that a faithful functor of ordered
categories is an equivalence as a functor of (usual) categories if and only if
it has a quasi-inverse which is also a faithful functor of ordered categories.
This leads to the following definition: two ordered categories C and D are
equivalent if there is a faithful functor of ordered categories C −→ D that is
also an equivalence of (usual) categories.

Theorem A.1 (“Ordered” version of Theorem 4.2). If X and Y are flow
equivalent shifts, then the ordered categories K(X ) and K(Y ) are equivalent.

Proof : The functor FΦ from Definition 12.5 and Proposition 12.9 is a faithful
functor of ordered categories, that is, we have (e, s, f) ≤ (e, t, f) if and only
if FΦ(e, s, f) ≤ FΦ(e, t, f): this is clearly true if s = 0 because FΦ(e, 0, f) =
(FΦ(e), 0, FΦ(f)), and also if s 6= 0 (which implies t 6= 0) by Lemma 12.4
and the definition of FΦ. On the other hand, according to what is written at
the beginning of Proposition 12.13, we also know that the functor FE from
Definition 12.14 is a faithful functor of ordered categories. This concludes
the proof, in view of Lemma 11.5 and Propositions 12.9 and 12.15.

Theorem A.1 originates more refined invariants than Theorem 4.2, as seen
in [18], but Theorem 4.2 seems rich enough, and more simple to handle.

Appendix B.Symbol expansion and subsynchronizing sub-

shifts

Now that we have the tools developed in Subsection 12.3, we are able to
show the proposition needed to conclude the proof of Theorem 8.8.

Proposition B.1. Let X be a sofic shift, and let e be a magic idempo-
tent of S(X ). Consider a symbol expansion X

′ of X , defined by a symbol
expansion homomorphism E . If e is a magic idempotent for X , then the
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subsynchronizing subshift S(FE(e)) of X
′ is the symbol expansion of S(e)

defined by E .

Proof : Let u ∈ L(X ) be such that e = δX (u).
Consider an element of L(S(e)′) of the form E(v), with v ∈ L(S(e)). Then

uwv ∈ L(X ) for some word w, and so E(uwv) ∈ L(X ′). Since FE(e) =
δX ′E(u), this shows that E(v) is a finite block of S(FE(e)). Every finite
block of S(e)′ is a factor of a word such as E(v). Therefore, we proved that
S(e)′ ⊆ S(FE(e)).
Conversely, let v be a finite block of S(FE(e)). Then E(u)wvw′E(u′) ∈

L(X ′) for some words w,w′, u′, with u′ a non-empty word over the alphabet
of X . By Remark 12.10, the words E(u)wvw′E(u′) and wvw′ belong to
ImE , and so u E−1(wvw′)u′ ∈ L(X ). This shows that E−1(wvw′) ∈ S(e).
Therefore, wvw′ belongs to L(S(e)′), and hence so does its factor v. This
shows that S(FE(e)) ⊆ S(e)′.
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Universidade do Porto, 2007.

[20] A. Costa and B. Steinberg. The Schützenberger category of a semigroup. In preparation.
[21] A. Costa and B. Steinberg. Profinite groups associated to sofic shifts are free. Proc. London

Math. Soc., 102:341–369, 2011.
[22] M. Delgado, S. Linton, and J. Morais. Automata: A GAP package on finite automata.

http://www.gap-system.org/Packages/automata.html.
[23] M. Delgado and J. Morais. SgpViz: A GAP package to visualize finite semigroups, 2008.

http://www.gap-system.org/Packages/sgpviz.html.
[24] S. Eilenberg. Automata, Languages and Machines, volume B. Academic Press, New York,

1976.
[25] D. Fiebig and U.-R. Fiebig. Covers for coded systems. In Symbolic dynamics and its applica-

tions (New Haven, CT, 1991), volume 135 of Contemp. Math., pages 139–179. Amer. Math.
Soc., Providence, RI, 1992.

[26] R. Fischer. Sofic systems and graphs. Monatsh. Math., 80:179–186, 1975.
[27] J. Franks. Flow equivalence of subshifts of finite type. Ergodic Theory Dynam. Systems,

4(1):53–66, 1984.
[28] M. Fujiwara and M. Osikawa. Sofic systems and flow equivalence. Math. Rep. Kyushu Univ.,

16(1):17–27, 1987.
[29] J. Funk, M. V. Lawson, and B. Steinberg. Characterizations of Morita equivalent inverse

semigroups. J. Pure Appl. Algebra, 215(9):2262–2279, 2011.
[30] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4, 2006.

(http://www.gap-system.org).
[31] P.-A. Grillet. Semigroups, An introduction to the structure theory, volume 193 of Monographs

and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1995.
[32] T. Hamachi, K. Inoue, and W. Krieger. Subsystems of finite type and semigroup invariants of

subshifts. J. Reine Angew. Math., 632:37–61, 2009.
[33] T. Hamachi and W. Krieger. Title: A construction of subshifts and a class of semigroups,

2013. arXiv:1303.4158v1 [math.DS].
[34] G. A. Hedlund. Endomorphims and automorphisms of the shift dynamical system. Math. Syst.

Theory, 3:320–375, 1969.
[35] D. Huang. Automorphisms of Bowen-Franks groups of shifts of finite type. Ergodic Theory

Dynam. Systems, 21, 2001.
[36] R. Johansen. On flow equivalence of sofic shifts. PhD thesis, University of Copenhagen, 2011.
[37] R. Johansen. On the structure of covers of sofic shifts. Doc. Math., 16:111–131, 2011.
[38] D. G. Jones and M. Lawson. Graph inverse semigroups: their characterization and completion,

2011. arXiv:1106.3644v1 [math.CT].
[39] N. Jonoska. Sofic systems with synchronizing representations. Theoret. Comput. Sci., (158):81–

115, 1996.
[40] N. Jonoska. A conjugacy invariant for reducible sofic shifts and its semigroup characterizations.

Israel J. Math., (106):221–249, 1998.



62 ALFREDO COSTA AND BENJAMIN STEINBERG

[41] K. H. Kim and F. W. Roush. An algorithm for sofic shift equivalence. Ergodic Theory Dynam.
Systems, 10:381–393, 1990.

[42] K. H. Kim and F. W. Roush. Williams conjecture is false for reducible subshifts. J. Amer.
Math. Soc., 5:213–215, 1992.

[43] K. H. Kim and F. W. Roush. The Williams conjecture is false for irreducible subshifts. Ann.
of Math., 149(2):545–558, 1999.

[44] W. Krieger. On the uniqueness of the equilibrium state. Math. Systems Theory, 8(2):97–104,
1974/1975.

[45] W. Krieger. On sofic systems I. Israel J. Math., 48:305–330, 1984.
[46] W. Krieger. On a syntactically defined invariant of symbolic dynamics. Ergodic Theory Dynam.

Systems, 20:501–516, 2000.
[47] W. Krieger. On subshifts and semigroups. Bull. London Math. Soc., 38(4):617–624, 2006.
[48] W. Krieger and K. Matsumoto. Zeta functions and topological entropy of the Markov-Dyck

shifts. Münster J. of Math., 4:171–184, 2011.
[49] G. Lallement. Semigroups and Combinatorial Applications. Wiley, New York, 1979.
[50] M. V. Lawson. Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 1998.

The theory of partial symmetries.
[51] M. V. Lawson. Morita equivalence of semigroups with local units. J. Pure Appl. Algebra,

215(4):455–470, 2011.
[52] D. Lind and B. Marcus. An introduction to symbolic dynamics and coding. Cambridge Uni-

versity Press, Cambridge, 1996.
[53] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Universitext. Springer-Verlag,

New York, 1994. A first introduction to topos theory, Corrected reprint of the 1992 edition.
[54] S. MacLane. Categories for the Working Mathematician. Number 5 in Grad. Texts in Math.

Springer-Verlag, New York, 2nd edition, 1998.
[55] S. Margolis and B. Steinberg. Quivers of monoids with basic algebras. Compositio Mathemat-

ica, to appear.
[56] K. Matsumoto. Bowen-Franks groups as an invariant for flow equivalence of subshifts. Ergodic

Theory Dynam. Systems, 21(6):1831–1842, 2001.
[57] K. Matsumoto. Bowen-Franks groups for subshifts and Ext-groups for C∗-algebras. K-Theory,

23(1):67–104, 2001.
[58] K. Matsumoto. A certain synchronizing property of subshifts and flow equivalence, 2011.

arXiv:1105.3249v1 [math.DS].
[59] M. Nasu. Topological conjugacy for sofic systems. Ergodic Theory Dynamic. Systems, 6:265–

280, 1986.
[60] M. Nasu. Topological conjugacy for sofic systems and extensions of automorphisms of finite

subsystems of topological markov shifts. In Proceedings of Maryland Special Year in Dynamics
1986-87, volume 1342 of Springer-Verlag Lect. Notes in Math., pages 564–607, 1988.

[61] B. Parry and D. Sullivan. A topological invariant of flows on 1-dimensional spaces. Topology,
14(4):297–299, 1975.

[62] W. Parry and S. Tuncel. Classification problems in ergodic theory, volume 67 of London Mathe-
matical Society Lecture Note Series. Cambridge University Press, Cambridge, 1982. Statistics:
Textbooks and Monographs, 41.

[63] A. L. T. Paterson. Groupoids, inverse semigroups, and their operator algebras, volume 170 of
Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1999.

[64] A. L. T. Paterson. Graph inverse semigroups, groupoids and their C∗-algebras. J. Operator
Theory, 48(3, suppl.):645–662, 2002.



A CATEGORICAL INVARIANT OF FLOW EQUIVALENCE OF SHIFTS 63

[65] J.-E. Pin. Varieties of formal languages. Foundations of Computer Science. Plenum Publishing
Corp., New York, 1986. With a preface by M.-P. Schützenberger, Translated from the French
by A. Howie.

[66] J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors, Handbook of Lan-
guage Theory, chapter 10. Springer, 1997.

[67] J.-E. Pin, A. Pinguet, and P. Weil. Ordered categories and ordered semigroups. Comm. Alge-
bra, 30(12):5651–5675, 2002.

[68] J. Rhodes and B. Steinberg. The q-theory of finite semigroups. Springer Monographs in Math-
ematics. Springer, New York, 2009.

[69] B. Steinberg. Strong Morita equivalence of inverse semigroups. Houston J. Math., 37(3):895–
927, 2011.

[70] S. Talwar. Morita equivalence for semigroups. J. Austral. Math. Soc. Ser. A, 59(1):81–111,
1995.

[71] B. Tilson. Categories as algebra: an essential ingredient in the theory of monoids. J. Pure
Appl. Algebra, 48:83–198, 1987.

Alfredo Costa
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra

E-mail address : amgc@mat.uc.pt

Benjamin Steinberg
Department of Mathematics, City College of New York, NAC 8/133, Convent Ave at
138th Street, New York, NY 10031

E-mail address : bsteinberg@ccny.cuny.edu


