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Abstract: In this paper we show how to use Fourier transform methods to an-
alyze the asymptotic behavior of kernel distribution function estimators. Exact
expressions for the mean integrated squared error in terms of the characteristic
function of the distribution and the Fourier transform of the kernel are employed
to obtain the limit value of the optimal bandwidth sequence in its greatest gener-
ality. The assumptions in our results are mild enough so that they are applicable
when the kernel used in the estimator is a superkernel, or even the sinc kernel, and
this allows to extract some interesting consequences, as the existence of a class
of distributions for which the kernel estimator achieves a first-order improvement
in efficiency over the empirical distribution function.
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1. Introduction

The kernel estimator of a distribution function was introduced indepen-
dently by Tiago de Oliveira (1963), Nadaraya (1964) andWatson and Lead-
better (1964) as a smooth alternative to the empirical estimator. It is
defined as the distribution function corresponding to the well-known ker-
nel density estimator. Precisely, given independent real random variables
X1, . . . , Xn with common and unknown distribution function F , assumed
to be absolutely continuous with density function f , the kernel estimator
of F (x) is

Fnh(x) = n−1
n

∑

j=1

K
(

h−1(x−Xj)
)

,

where h > 0 is the bandwidth and the function K will be referred to as
the integrated kernel, since it is assumed that K(x) =

∫ x

−∞ k(y)dy for some
integrable function k, called kernel, having unit integral over the whole real
line.
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Classical references on kernel distribution function estimators include
Yamato (1973), which provided mild necessary and sufficient conditions
for its consistency in uniform norm, Azzalini (1981), Swanepoel (1988)
and Jones (1990) on asymptotic squared error analysis of the estimator,
or Sarda (1993), Altman and Léger (1995) and Bowman, Hall and Prvan
(1998), and more recently Polansky and Baker (2000) and Tenreiro (2006),
on data-driven bandwidth selection. There are also other recent papers on
different aspects of kernel distribution function estimation, like Tenreiro
(2003), Swanepoel and Van Graan (2005), Janssen, Swanepoel and Ver-
averbeke (2007), Giné and Nickl (2009), Berg and Politis (2009), Chacón
and Rodŕıguez-Casal (2010) or Mason and Swanepoel (2012). See Servien
(2009) for a detailed survey on distribution function estimation, not limited
to kernel-type methods.
This paper is devoted to the study of the kernel distribution function

estimator from the point of view of the mean integrated squared error,

MISE(h) ≡ MISEn(h) = E

∫ ∞

−∞
{Fnh(x)− F (x)}2dx.

In this sense, the optimal bandwidth h0n is the value of h > 0 minimizing
MISE(h). The existence of such a bandwidth was proved in Theorem 1
of Tenreiro (2006) under very general assumptions, and Proposition 2 in
the same paper showed that h0n → 0 whenever the Fourier transform of
k is not identically equal to 1 on any neighbourhood of the origin. This
condition can be considered mild as well, since it is satisfied for any finite-
order kernel; however, it does not hold for a superkernel (see Chacón,
Montanero and Nogales, 2007).
The purpose of this note is to show how to use Fourier transform tech-

niques for the analysis of kernel distribution estimators. Particularly, ex-
pressing the MISE in terms of characteristic functions allows us to obtain a
result on the limit behavior of the optimal bandwidth sequence in its most
general form so that it also covers the case of a superkernel, and to explore
its consequences showing the peculiar properties of the use of superkernels
and the sinc kernel in kernel distribution function estimation. Precisely,
it is shown in Section 2 that in some situations the sequence h0n does not
necessarily tend to zero. Moreover, we exhibit a class of distributions for
which the kernel distribution estimator presents a first-order improvement
over its empirical counterpart, opposite to the usual situation, where only
second-order improvements are possible (see Remark 3). Our findings are
illustrated in Section 3 through two representative examples.
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2.Main results

Recall from Chacón and Rodŕıguez-Casal (2010) that the kernel distri-
bution function estimator admits the representation

Fnh(x) =

∫

Fn(x− hz)dK(z), (1)

where Fn denotes the empirical distribution function (here and below inte-
grals without integration limits are meant over the whole real line). Using
this, and standard properties of the empirical process, it is possible to
obtain a decomposition of MISE(h) = IV(h) + ISB(h), where the inte-
grated variance IV(h) =

∫

Var{Fnh(x)}dx and the integrated squared bias
ISB(h) =

∫

{E[Fnh(x)]− F (x)}2dx can be expressed in the following exact
form:

IV(h) = n−1

∫∫∫

{

F
(

x−h(y ∨ z)
)

− F (x−hy)F (x−hz)
}

dK(y)dK(z)dx,

(2)

ISB(h) =

∫∫∫

{F (x− hy)− F (x)}{F (x− hz)− F (x)}dK(y)dK(z)dx,

(3)

with y ∨ z standing for max{y, z}.
Note that the representation (1) and the exact expressions (2) and (3)

also make sense for h = 0, implying that the kernel distribution estima-
tor reduces to the empirical distribution function for h = 0, for which the
well-known MISE formula reads MISE(0) = IV(0) = n−1

∫

F (1−F ) when-
ever ψ(F ) =

∫

F (1 − F ) is finite. Moreover, it is not hard to check that
∫

|x|dF (x) <∞ and
∫

|y k(y)|dy <∞ ensure that MISE(h) is finite for all
h > 0, so those two minimal conditions will be assumed henceforth. Note
that the required condition that F have a finite mean is slightly stronger
than ψ(F ) < ∞ since ψ(F ) ≤ 2

∫

|x|dF (x).

2.1. Limit behavior of the optimal bandwidth sequence. Denote by
ϕg the Fourier transform of a function g, defined as ϕg(t) =

∫

eitxg(x)dx.
As in Chacón et al. (2007), the key to understand the limit behavior of the
optimal bandwidth sequence is to use Fourier transforms to express the
MISE criterion. Abdous (1993) provided a careful account of the necessary
conditions under which the MISE can be expressed in terms of Fourier
transforms. The proof of his Proposition 2 implicitly derives formulas for
ISB(h) and IV(h) in terms of ϕk and ϕf for h > 0. We reproduce this
result here for completeness, and show that it can be extended to cover the
case h = 0 as well.
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Theorem 1. If
∫

|x|dF (x) < ∞ and
∫

|y k(y)|dy <∞ then, for all h ≥ 0,
the IV and ISB functions can be written as

IV(h) = (2π)−1n−1

∫

t−2|ϕk(th)|2{1− |ϕf(t)|2}dt,

ISB(h) = (2π)−1

∫

t−2|1− ϕk(th)|2|ϕf(t)|2dt.

Particularly, note that for h = 0 the previous result yields a Parseval-like
formula for distribution functions,

ψ(F ) =

∫

F (1− F ) = (2π)−1

∫

t−2{1− |ϕf(t)|2}dt, (4)

which can be useful to compute errors in an exact way in cases where F
does not have a close expression but ϕf does, as it happens for instance for
the normal distribution (see also Section 3 below). Moreover, we show in
Lemma 1 that (4) remains valid for integrated kernelsK. In the following it
will be assumed that ψ(K) > 0, a property that immediately holds, using
(4), whenever ϕk(t) ∈ [0, 1] for all t. Note that, for density estimation,
admissible kernels are precisely those whose Fourier transform satisfies that
restriction (see Cline, 1988).
The limit behavior of the optimal bandwidth sequence h0n is determined

in its greatest generality by the following constants, depending on the
Fourier transforms of f and k: let Cf denote the smallest positive frequency
from which ϕf is null along a proper interval and Df the positive frequency
from which ϕf is identically null (so that Cf ≤ Df , both possibly being
infinite); also, denote Sk the greatest frequency such that ϕk is identically
equal to one on [0, Sk] and Tk the smallest frequency such that ϕk is not
identically equal to one on a subinterval of [Tk,∞), and note that Sk ≤ Tk
with both possibly being zero. In mathematical terms,

Cf = sup{r ≥ 0: ϕf(t) 6= 0 a.e. for t ∈ [0, r]},
Df = sup{t ≥ 0: ϕf(t) 6= 0},
Sk = inf{t ≥ 0: ϕk(t) 6= 1},
Tk = inf{r ≥ 0: ϕk(t) 6= 1 a.e. for t ≥ r}.

Finally, define h∗ = sup{h ≥ 0: ISB(h) = 0}. The following result shows
the limit of the optimal bandwidth sequence h0n in the common case where
Cf = Df and Sk = Tk.

Theorem 2. Assume that
∫

|x|dF (x) <∞,
∫

|y k(y)|dy <∞ and ψ(K) >
0, and suppose that Cf = Df and Sk = Tk. Then, h0n → Sk/Df as n→ ∞
and also h∗ = Sk/Df .
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A number of consequences can be extracted from Theorem 2:

Remark 1. A kernel k with Sk > 0 is called a superkernel (see Chacón,
Montanero and Nogales, 2007). If an integrated superkernel is used in
the kernel distribution function estimator and the density f is such that
Df <∞ (see Chacón et al., 2007, and Section 3 below for examples of such
distributions) then, contrary to the usual situation, the optimal bandwidth
sequence h0n does not tend to zero, but to the strictly positive constant
Sk/Df . Moreover, any positive constant can be the limit of an optimal
bandwidth sequence, because modifying the scale of the density by taking
fa(x) = f(x/a)/a, for any a > 0, it follows that Dfa = Df/a, and hence
the limit of the optimal bandwidth sequence equals aSk/Df .

Remark 2. Since h∗ = Sk/Df , the kernel estimator Fnh is unbiased for
any fixed (i.e., not depending on n) choice of h ∈ [0, Sk/Df ]. If either K
is not an integrated superkernel or the characteristic function ϕf does not
have bounded support, then the only kernel distribution estimator with
null ISB corresponds to h = 0, the empirical distribution function.

Remark 3. It is shown in the proof of Theorem 2 that for h ∈ [0, Sk/Df ]
the MISE of Fnh admits the exact expression MISE(h) = n−1ψ(F ) −
n−1ψ(K)h. From this, it follows that for any fixed h ∈ (0, Sk/Df ] the kernel
estimator Fnh presents an asymptotic first-order reduction in MISE over
the empirical estimator; that is, its MISE is of order n−1 as for the empirical
estimator, yet with a strictly smaller constant (namely, ψ(F ) − ψ(K)h <
ψ(F )). As a result, over the class of distributions with Df bounded by a
constant (say, Df ≤ M) the kernel estimator with bandwidth h = Sk/M
is strictly more efficient than the empirical distribution function Fn. This
is in contrast with the more common case (i.e., Sk = 0 or Df = ∞) where
it is well-known that the asymptotic improvement of Fnh over Fn is only
of second order, in the sense that MISE(h0n) admits the asymptotic rep-
resentation n−1ψ(F ) − cn−p + o(n−p) for some p > 1 and c > 0 (see, e.g.,
Jones, 1990, and Shao and Xiang, 1997).

2.2. Sinc kernel distribution function estimator. In this section we
consider the sinc kernel, defined by sinc(x) = sin(x)/(πx) for x 6= 0 and
sinc(0) = 1/π. This function is not integrable, so the sinc kernel density
estimator inherits this undesirable property, but such a defect can be cor-
rected as described in Glad, Hjort and Ushakov (2003). Nevertheless, the
sinc kernel is square integrable, and as such the sinc kernel density estima-
tor achieves certain optimality properties with respect to the MISE (Davis,
1977), that make the sinc kernel useful for density estimation (see Glad,
Hjort and Ushakov, 2007, or Tsybakov, 2009, Section 1.3).
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Abdous (1993, Section 3) provided a careful study showing that it also
makes sense to use the MISE criterion for kernel distribution function es-
timators based on the integrated sinc kernel. However, it is not so clear
from his developments how the sinc kernel distribution function estimator
is explicitly defined, nor the asymptotic properties of the optimal band-
width sequence in this case, since Theorem 2 above can not be directly
applied given that the sinc kernel is not integrable. This section contains
a detailed treatment of these issues.
First, note that the definition of the integrated kernelK(x)=

∫ x

−∞sinc(z)dz
has to be understood in the sense of Cauchy principal value, i.e. K(x) =
limM→∞

∫ x

−M sinc(z)dz, because the integral is not Lebesgue-convergent.

A simpler way to express such principal value is K(x) = 1
2 + Si(x), where

Si(x) =
∫ x

0 sinc(z)dz is the sine integral function (with the usual conven-

tion that
∫ b

a = −
∫ a

b if b < a). This yields the following explicit form for
the sinc kernel distribution function estimator:

F sinc
nh (x) = 1

2 + n−1
n

∑

j=1

Si
(

h−1(x−Xj)
)

. (5)

An alternative, and perhaps more natural, derivation of (5) is found
through the use of inversion formulas. The sinc kernel density estimator
with bandwidth h = 1/T is readily obtained from the inversion formula
f(x) = (2π)−1

∫

e−itxϕf(t)dt by replacing ϕf with the empirical charac-
teristic function ϕn(t) = n−1

∑n
j=1 e

itXj , conveniently truncated to get a

finite integral (2π)−1
∫ T

−T e
−itxϕn(t)dt (see for instance Chiu, 1992, p. 774).

An inversion formula relating F and ϕf is the so-called Gil-Pelaez formula
F (x) = 1

2 − 1
π

∫∞
0 t−1ℑ{e−itxϕf(t)}dt, with ℑ{z} standing for the imagi-

nary part of a complex number z, which is valid for a continuous F in the
principal value sense (Gurland, 1948). Reasoning as before, replacing ϕf

with ϕn and restricting the domain of integration to [0, 1/h], results in the
same sinc kernel distribution function estimator shown in (5).
As a square integrable function, the Fourier transform of the sinc kernel is

the indicator function of the interval [−1, 1]. In this sense, Abdous (1993)
showed that the IV and ISB formulas of Theorem 1 above remain valid for
the sinc kernel distribution estimator, as long as the square integrability of
f is added to its assumptions, leading to the following simple exact MISE
formula for h > 0:

MISE(h) = (nπ)−1

∫ 1/h

0

t−2{1− |ϕf(t)|2}dt+ π−1

∫ ∞

1/h

t−2|ϕf(t)|2dt. (6)
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Straightforward differentiation shows that the critical points of such a
MISE function are located at any value h⋄ such that |ϕf(1/h⋄)|2 = (n+1)−1.
This does not reveal, however, if such critical points are local minima or
maxima. The following result shows the existence of a global minimizer
h0n of (6), and that Theorem 2 above remains valid for the sinc kernel es-
timator. Note, again, that Theorem 2 of Tenreiro (2006) on the existence
of h0n can not be directly applied here because it relies on the assumption
that the kernel function is integrable.

Theorem 3. Assume that f is square integrable and
∫

|x|dF (x) < ∞.

Then, there exists a bandwidth h0n that minimizes the MISE of the sinc

kernel distribution function estimator. Moreover, if Cf = Df then h0n →
1/Df as n→ ∞ and also h∗ = 1/Df .

If it were integrable, the sinc kernel could be considered as a superkernel
with Ssinc = Tsinc = 1, so from Theorem 3 it follows that all the remarks
above about the limit behavior of h0n and the optimal MISE for superkernel
distribution function estimators can be equally applied to the sinc kernel
distribution estimator.

3. Numerical examples

In this section we present some examples to further illustrate the useful-
ness and consequences of Theorems 1, 2 and 3 above.

3.1. Example 1. In this example we consider the so-called Jackson-de la
Vallé Poussin distribution F , with density function

f(x) =
3

4π

(

sin(x/2)

x/2

)4

=
9 + 3 cos(2x)− 12 cos(x)

2πx4

and whose characteristic function is shown in Butzer and Nessel (1971, p.
516) to be

ϕf(t) =











1− 3t2/2 + 3|t|3/4, |t| ≤ 1

(2− |t|)3/4, 1 ≤ |t| ≤ 2

0, |t| ≥ 2

,

which implies that Cf = Df = 2.
As shown in Theorems 2 and 3, since Cf = Df < ∞ this distribution

(or any of its rescalings Fa(x) = F (x/a) with a > 0) represents a case
where superkernel distribution function estimators are asymptotically more
efficient than the empirical distribution function. To illustrate this fact,
we include here a numerical comparison using two different superkernels:
the sinc kernel and a proper superkernel, the trapezoidal superkernel given



8 J.E. CHACÓN, P. MONFORT AND C. TENREIRO

Figure 1. Optimal bandwidth sequence (left) and relative ef-
ficiency in MISE (right) for the estimation of the Jackson-de la
Vallé Poussin distribution, as a function of log10 n. The lines
show the limit values. Solid circles and solid lines correspond to
the trapezoidal superkernel and open circles and dashed lines
correspond to the sinc kernel.

by k(x) = (πx2)−1{cosx − cos(2x)}, for which Sk = Tk = 1 (see Chacón,
Montanero and Nogales, 2007).
It is not hard from Theorem 1 (for the trapezoidal kernel) and (6) (for

the sinc kernel) to come up with an explicit formula for the exact MISE
function in each case. These exact MISE calculations allow to numerically
compute the optimal bandwidth sequences h0n and the minimum MISE
values. The optimal bandwidth sequences for both superkernel estimators
are shown in Figure 1 (left) as a function of log10 n, where it is already
noticeable that they both have limit 1/2, as predicted from theory.
The right graph in Figure 1 shows the relative efficiency of both superker-

nel estimators using optimal bandwidths with respect to the empirical esti-
mator, namely MISE(h0n)/MISE(0), together with their asymptotic values,
given by MISE(Sk/Df)/MISE(0) = 1 − ψ(K)Sk/{ψ(F )Df}. Using (4) it
follows that ψ(F ) = (96 log 2− 43)/(8π), and ψ(K) equals (4 log 2− 2)/π
and 1/π for the trapezoidal and the sinc kernel, respectively, resulting in
asymptotic relative efficiencies of approximately 0.87 and 0.83 for the two
superkernel estimators, as reflected on Figure 1. For this distribution, the
trapezoidal kernel is more efficient than the sinc kernel up to about sample
size n = 3000, but asymptotically the sinc kernel is slightly more efficient.
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Both are markedly more efficient than the empirical distribution as was
to be expected from asymptotic theory; besides, the gains are even more
substantial for low and moderate sample sizes.

3.2. Example 2. In this second example we make use of the MISE expres-
sions in terms of characteristic functions to obtain exact MISE formulas
for the case-study in which F corresponds to the N(0, σ2) distribution and
the integrated kernel is either the standard normal distribution function
Φ, or the integrated sinc kernel, and we compare both estimators.
For this specific example the exact MISE formula for the density esti-

mation problem was provided in Fryer (1976) making use the convolution
properties of the normal density function, which are also useful for deriving
many other integral results for the normal density and its derivatives (see
Aldershof et al., 1995).
However, convolution techniques seem to be of little use to find exact

MISE expressions for kernel distribution function estimators in the normal
case, where not even the estimation goal F has an explicit formula. For
this problem, it is convenient to work with exact expressions in terms of
characteristic functions. For instance, using (4) it immediately follows
that the MISE for the empirical distribution function equals n−1π−1/2σ
and, similarly, it is not hard to show that for the kernel estimator with the
normal kernel

π1/2MISE(h) = n−1{(h2 + σ2)1/2− h}+ {(2h2 +4σ2)1/2− (h2 + σ2)1/2− σ}
and with the sinc kernel

πMISE(h) = (1+n−1)
{

he−σ2/h2

+2σ
√
πΦ

(

σ
√
2
/

h
)}

−n−1h−(2+n−1)σ
√
π.

In Figure 2 we show the relative efficiency MISE(h0n)/MISE(0) as a func-
tion of log10 n for σ = 1 for both kernel estimators with respect to the
empirical distribution function. Here, all the three estimators are asymp-
totically equally efficient, in the sense that the relative efficiency converges
to 1 as n → ∞. However, it is clear that this convergence is much slower
for the sinc kernel estimator, which is more efficient that the normal kernel
estimator for sample sizes as low as n = 50.

4. Proofs

For h > 0, the statement of Theorem 1 is contained within the proof
of Proposition 2 in Abdous (1993). Therefore, it only remains to show
the case h = 0; i.e., Equation (4). This formula is valid in the more
general situation where F is not necessarily a distribution function, but an
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Figure 2. Relative efficiency in MISE for the estimation of
standard normal distribution, as a function of log10 n. The line
shows the limit value. Solid circles correspond to the normal
kernel and open circles correspond to the sinc kernel.

integrated kernel with finite first order moment, as shown in the following
lemma.

Lemma 1. Suppose that K(x) =
∫ x

−∞ k(y)dy, where k is an integrable

function with
∫

k(y)dy = 1 and
∫

|yk(y)|dy <∞. Then,

∫

K(x){1−K(x)}dx = (2π)−1

∫

t−2{1− |ϕk(t)|2}dt.

Proof : It is not hard to show that

K(x){1−K(x)} =

∫

{I[y,∞)(x)−K(x)}2k(y)dy,

where IA stands for the indicator function of a set A. Moreover, reasoning
as in the proof of Proposition 2 in Abdous (1993), it follows that the
condition

∫

|yk(y)|dy <∞ guarantees that
∫

|I[y,∞)(x)−K(x)|dx <∞ for
all y, which implies that the function Gy(x) = I[y,∞)(x) − K(x) is square
integrable, since K is bounded (because |K(x)| ≤

∫

|k(y)|dy for all x).
Therefore, by Parseval’s identity,

∫

{I[y,∞)(x)−K(x)}2dx = (2π)−1

∫

|ϕGy
(t)|2dt.
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The Fourier transform of Gy is shown to be (−it)−1{eity − ϕk(t)}, since
splitting the integration region and using integration by parts,

−itϕGy
(t) = it

∫ y

−∞
eitxK(x)dx− it

∫ ∞

y

eitx{1−K(x)}dx

= K(y)eity −
∫ y

−∞
eitxk(x)dx+ {1−K(y)}eity −

∫ ∞

y

eitxk(x)dx

= eity − ϕk(t).

Thus,
∫

{I[y,∞)(x)−K(x)}2dx = (2π)−1

∫

t−2
[

1 + |ϕk(t)|2 − 2ℜ
{

e−ityϕk(t)
}]

dt,

where ℜ{z} denotes the real part of a complex number z. This finally leads
to

∫

K(x){1−K(x)}dx

=

∫∫

{I[y,∞)(x)−K(x)}2k(y)dxdy

= (2π)−1

∫∫

t−2
[

1 + |ϕk(t)|2 − 2ℜ
{

e−ityϕk(t)
}]

k(y)dydt

= (2π)−1

∫

t−2{1− |ϕk(t)|2}dt,

where the last line follows from the fact that
∫

e−ityϕk(t)k(y)dy = ϕk(−t)ϕk(t) = |ϕk(t)|2.

The proof of Theorem 2 is immediate from the following lemma.

Lemma 2. Assume that F and K satisfy the assumptions of Theorem 2.

Then,

Sk/Df ≤ inf
n∈N

h0n ≤ lim sup
n→∞

h0n ≤ h∗ ≤ min{Sk/Cf , Tk/Df}.

Proof : First notice that ISB(h) = 0 for all h ∈ [0, Sk/Df ], since using
Theorem 1

0 ≤ π ISB(h) =

∫ ∞

0

t−2|1− ϕk(th)|2|ϕf(t)|2dt

≤
∫ Sk/h

0

t−2|1− ϕk(th)|2|ϕf(t)|2dt+
∫ ∞

Df

t−2|1− ϕk(th)|2|ϕf(t)|2dt = 0,
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with the last equality due to the facts that ϕk(th) = 1 for t ∈ [0, Sk/h] and
ϕf(t) = 0 for t ≥ Df by definition of Sk and Df , respectively.
Therefore, for h ∈ [0, Sk/Df ] the MISE reduces to the IV, and admits

the exact expression MISE(h) = n−1{ψ(F )−ψ(K)h} because, again using
Theorem 1, noting the expression (4) for ψ(F ), taking into account the
definition of Sk and Df and making the change of variable s = th, we
obtain

IV(h) = (nπ)−1

∫ ∞

0

t−2|ϕk(th)|2{1− |ϕf(t)|2}dt

= (nπ)−1

∫ ∞

0

t−2{1− |ϕf(t)|2}dt

− (nπ)−1

∫ ∞

0

t−2{1− |ϕk(th)|2}{1− |ϕf(t)|2}dt

= n−1ψ(F )− (nπ)−1

∫ ∞

Sk/h

t−2{1− |ϕk(th)|2}dt

= n−1ψ(F )− n−1ψ(K)h.

Since the MISE function is linear in h with negative slope in [0, Sk/Df ],
its minimum has to be attached at some point greater than Sk/Df , hence
we obtain the first inequality.
On the other hand, reasoning as in Chacón et al. (2007) it is possible to

show that ISB(h) > 0 for h > Sk/Cf and for h > Tk/Df , thus yielding
the last inequality. Finally, denote hL = lim supn→∞ h0n and assume that
hL > h∗. Then, the continuity of ISB(h) with respect to h (Tenreiro,
2006, Proposition 1) entails that there is a subsequence h0nk

such that, as
k → ∞, ISB(h0nk

) → ISB(hL) with ISB(hL) > 0 since we are assuming
hL > h∗. But from (2) and (3) it immediately follows that, for every fixed
h, MISEnk

(h) → ISB(h) as k → ∞, so we obtain that the following chain
of inequalities

ISB(h) = lim
k→∞

MISEnk
(h) ≥ lim

k→∞
MISEnk

(h0nk
)

≥ lim
k→∞

ISB(h0nk
) = ISB(hL) > 0,

is valid for every fixed h, implying that limh→0 ISB(h) ≥ ISB(hL) > 0,
which contradicts Proposition 1 in Tenreiro (2006), where it is shown that
ISB(h) → 0 as h→ 0. Hence, it should be hL ≤ h∗, as desired.

Finally, we show the proof of Theorem 3. We focus only on the state-
ment about the existence of the optimal bandwidth sequence, since the
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arguments showing the limit behavior can be adapted from the proof of
Lemma 2 above.

Proof of Theorem 3: It is clear from (6) and (4) that limh→0MISE(h) =
n−1ψ(F ). Moreover, limh→∞MISE(h) = ∞, since ϕf(0) = 1 and by conti-
nuity it is possible to take δ > 0 such that |ϕf(t)|2 > 1

2 for all 0 ≤ t ≤ δ, so

this yields
∫∞
0 t−2|ϕf(t)|2dt ≥ 1

2

∫ δ

0 t
−2dt = ∞. These two limit conditions,

together with the fact that MISE(h) is a continuous function, imply that
the existence of a minimizer of the MISE is guaranteed if there is some
h1 > 0 such that MISE(h1) < n−1ψ(F ). But from (6) we have

MISE(h)− n−1ψ(F ) = −(nπ)−1h+ (1 + n−1)π−1

∫ ∞

1/h

t−2|ϕf(t)|2dt

so that using the Riemann-Lebesgue lemma and the dominated conver-
gence theorem, it follows that

lim
h→0

h−1{MISE(h)− n−1ψ(F )} = −(nπ)−1 < 0,

which entails that there is some h1 > 0 fulfilling the aforementioned desired
property.
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