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1. Introduction

Consider the general linear group G L, (K) where K is an infinite field, and
let B* be the Borel subgroup of GL,(K) consisting of all upper triangular
matrices in GL,, (K). The Schur algebras S(n,r) and S(B") := S(B*,n,r)
corresponding to GL,(K) and BT, respectively, are powerful tools in the
study of polynomial representations of GL,(K) and B*. In particular, the
simple modules of S(B™) labelled by partitions induce to Weyl modules for
S(n,r), and Weyl modules are central objects of study. In the recent pa-
per [8], Borel-Schur algebras were crucial to construct resolutions of Weyl
modules. Therefore one would like to understand homological properties of
S(BT).

Auslander-Reiten sequences, also known as almost split sequences, are an
important invariant of the module category of a finite-dimensional algebra.
They provide part of a presentation of the module category: one takes isomor-
phism classes of indecomposable modules; then one takes homomorphisms f
between indecomposables that do not have any non-trivial factorisations,
that is if f = g o h then one of g or h must be split. Such homomorphisms
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are called irreducible, and they are precisely the components of maps occur-
ing in Auslander-Reiten sequences. Hence if one knows the Auslander-Reiten
sequences, then one knows all maps which can be obtained as compositions
of irreducible maps, and further more, one obtains some relations between ir-
reducible maps which come from the short exact sequences. These are known
as ‘'mesh relations’, and for many algebras of finite type, this gives a complete
presentation of the module category in this sense.

Auslander-Reiten sequences have many applications, such as understanding
distinguished modules. To do so, one would to like to know their position in
the Auslander-Reiten quiver.

In this paper, we determine Auslander-Reiten sequences for a large class
of simple S(B7)-modules. For this we use the first two steps of a mini-
mal projective resolution for these modules, which were found in [7]. Then
we construct the Auslander-Reiten sequence as a pushout, by following the
methods explained in [2, 4]. We are able to do this, for an arbitrary n, under
some combinatorial conditions. We note that when these are satisfied, the
relevant simple module does not occur in the socle of S(B™).

On the way, we investigate functors between Borel-Schur algebras of dif-
ferent ranks. We obtain that Auslander-Reiten sequences are not usually
preserved by induction.

The paper is organized as follows. Section 2 recalls the definitions of the
algebras, and some basic background. In Section 3, we construct Auslander-
Reiten sequences ending in a simple module Ky where \ satisfies a condition
given in (3.4). As a by-product we see that this condition imples that K, does
not occur in the (left) socle of the algebra. The main result is Theorem 3.6.

In Section 4 we consider n = 2 and find Auslander-Reiten sequences ending
in an arbitrary simple module, that is we deal with the cases missing in
Section 3. As an easy consequence of the results in this section we can obtain
a necessary and sufficient condition for a simple module to occur in the socle
of S(B*,2,r). Section 5 considers some cases not covered in Section 3 when
n = 3.

In Section 6 we discuss reduction of rank. This may be of more general
interest. In fact, we prove that if m < n, then the induction functor from
S(B*,m,r) to S(B*,n,r) is exact and preserves irreducible and indecom-
posable modules. Section 7 summarizes what we have obtained about the
socle of the Borel-Schur algebra.
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2. Notation and basic results

In this section we establish the notation we will use and give some basic
results. We will follow [7] and any undefined term may be found in this
reference.

K is an infinite field of arbitrary characteristic, n and r are arbitrary fixed
positive integers and p is any prime number.

For any natural number s, we denote by s the set {1,...,s} and by X
the symmetric group on s. Define the sets of multi-indices I (n,r) and of
compositions A(n,r) by

I(n,r)={i=(i1,...,i)|i, €nall per}
Anr)={A=\,...,\) M EZ, A >0(wen), Y A\ =1}

ven

We will often write I instead of I(n,r) and A instead of A(n,r).

Given ¢ € I and A\ € A, we say that ¢ has weight \ and write ¢ € X if
N=H#{per|i,=v} forven.

The group X, acts on the right of I and of I x I, respectively, by im =
(ix1y---,inr) and (4,7)m = (im,jm), all m € ¥, and ¢, j € I. If 7 and j are in
the same Y,-orbit of I we write i ~ j. Also (i,5) ~ (i, ') means these two
pairs are in the same Y,-orbit of I x I. We denote the stabilizer of 7 in X, by
Y, that is 3; = {m € X, |ir =i}. We write £;;, = 3, NY;. Given i, j € I,
then ¢ < j means i, < j, for all p € r, and 7 < j means ¢ < j and 7 # j.

We use < for the “dominance order” on A, that is a < g if > _ «a, <

P _ By for all u € n. Obviously if i € a and j € 8 (where «, § € A), then
1 < 7 implies 8 < a.

Given A € A, we consider in [ the special element

[=1N)=(1,...,1,2,...,2,....n,...,n).
—— N——

——
AL A2 An

Clearly ) is the parabolic subgroup associated with A
Y= 200 X D00 el X X D e A1)
For each v € n — 1, and each non-negative integer m < \,.1, we define
AMv,m)= (A, A Fmy A1 —my .. \) €A,

and write [(v,m) for [ (A (v,m)). We have l(v,m) <.
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For the notation of A-tableaux the reader is referred to [7]. Given A =
(A1, ..., A\n) € A, we choose the basic A-tableau

1 2 ..\
o A+ 1 MAE2 o At
M+ N+ 1 N

The row-stabilizer of T?, i.e. the subgroup of 3, consisting of all those 7 € &,
which preserve the rows of T? is the parabolic subgroup X;.
Given i € I, we define the A-tableau T} as

5 lo ... Ty
T)\_ I\ +1 [ P 2 Y v
=
7:)\14_“_)\”71_;’_1 - e - i?"'
Then Tl)‘ has only 1’s in the first row, 2’s in the second row, ..., n’s in row

n. Notice also that Tz?y m) differs from T} only by the first m entries of row
v + 1: these entries are all equal to v.
We say that a A-tableau T} is row-semistandard if the entries in each row

of T} are weakly increasing from left to right. We define
I(\):={iel|i<l(\) and T} is row-semistandard }
and
JA) ={jelI ‘ j>1(\) and Tj”\ is row-semistandard } .
The following obvious fact will be used later in this paper:
IfA, #0and m < \,,then J(\)={je€J(An—1,m))|j>1(N)}.
(2.1)
Next we recall the definition of Schur algebra and of Borel-Schur algebra as
they were introduced in [5].
The general linear group GL,,(K) acts on K" by multiplication. So GL,, (K)
acts on the r-fold tensor product (K")" by the rule
g ® - Qu) =g ®- - gu,, all g € GL, (K), vy, ..., v, € K"

Extending by linearity this action to the group algebra KGL,, (K), we obtain
a homomorphism of algebras

T: KGL, (K) — Endxk (K")*").
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The image of T, i.e. T (KGL, (K)) is called the Schur algebra for K, n, r
and is denoted by S (n,r). Let BT = By (n,r) denote the Borel subgroup of
GL,, (K) consisting of all upper triangular matrices in GL,, (K). The Borel-
Schur algebra S (BT) = S (B*,n,r) is the subalgebra T (KB™) of S (n,r).

Associated with each pair (7, j) € I x I, there is a well defined element &; ; of
S(n,r) (see [5]). These elements have the property that & ; = &, if and only
if (4,7) ~ (k,h). If we eliminate repetitions in the set {& ;| (7,j) € I x I}
then we obtain a basis of S(n,r). Also S (B") =K{&,|i <7, (i,j) € I x I}.

If ¢ has weight a € A, we write §;; = &,. The set {{,|a € A} is a set of
orthogonal idempotents and 1g;,,) = > ca Sa-

A formula for the product of two basis elements is the following (see [5]):
& i&kn =0, unless j ~ k; and

§ij€jn = Z Bioh : Ligjnl Cion (2.2)

where the sum is over a transversal {o} of the set of all double cosets ¥; j03;
n Zj
Observation 2.1. (1) £.&; = & j or zero, according to i € a or i & a.
Similarly, & ;s = & j or zero, according to j € B or j & 5.
(2) If ¥; ;3 = X, then the product is a scalar multiple of & .

Here we are particularly interested in products of the type & )85, for
l=1(\),and j € J (), for some A\ € A.

Lemma 2.2. Let \€e A, ven—1,0<m < A\,yq, and j € J(N). If the
v+ 1-st row of Tj)‘ is constant then X,y 12515 = 2.

Proof: We have ¥; = ¥,. Now we know that >, ) differs from X, only in
factors v and v + 1 and in these it is

where £ = Ay +---+ A, _1. It follows that the intersection Y, ), differs from
Y2y only in factor v + 1 and this is

We can write ¥;; = Uy x --- x Uy, where Uy is a subgroup of X . Therefore
the product 3 (,,,),%;,; = X; when the product of the two (v 4 1)-st factors
is ¥),,,- This holds if U,y1 = X,,,,, ie., if the (v + 1)-st row of TjA is
constant. [ |
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Lemma 2.3. Let A€ A, ven—1,0<m < \,;1. Givenj € J()\), suppose
that the (v + 1)-st row of Tj’\ is constant with all entries equal to c, and that
c occurs exactly a times in row v. Then

a—+m
gl(u,m),l&,j - < )gl(z/,m),j'

m
If v =n — 1 then the hypothesis holds for all j € J()).

Proof: From Lemma 2.2 and Observation 2.1, we know that

Suwama8Li = [Siwam).j * D) 13] Sitwam) -
Now X,,m),; and Xy, ) j; differ only in factors v and v + 1. If the entries of

row v of 7" where ¢ occurs in Tj)‘ are tq, ..., ty, then factors v and v + 1 of
Yiwm),; and Xy,m)1; are, respectively,

C X Nt A A A L A A m) X
and
- X E{tl ..... ta} X Z{)q ..... AoAL A4 A A Am)E X
Therefore [El(y,m)vj : El(V,m),l,j} _ (a+m)_ .

Given A € A, let K, denote the one-dimensional S (B*)-module K, where
&) acts as identity and all the other basis elements, &; ;, where ¢ < j and
(i,7) 7 (1,1), act as zero. It is well known (see [7]), that:

(1) {Ky| A € A} is a full set of irreducible S (B")-modules.

(2) S(BT)&, is a projective cover of K.

(3) S(B*) &) has a K-basis {11 € 1 (N)}.

(4) K, is a projective S (B*)-module if and only if A = (r,0,...,0). This
assertion follows from the fact that #17 (\) = 1 if and only if A =
(r,0,...,0).

To calculate an Auslander-Reiten sequence ending with Ky, we need to know
the first two steps of a minimal projective resolution of K. For this, define

@D S(BT)&Ew if char K = 0;

L + . L ven—1
PO = S (B ) 5/\7 Pl = @ @ S (B+> gA(V,pdV)7 lf CharK =p.
ven—1 1§pdl/§)\u+1
Then (see [7, (5.4)]) the first two steps of a minimal projective resolution
of K, are

P2 P2 Ky — 0. (2.3)
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Here py is the S(B™)-homomorphism defined on the generator by py(£)) = 1.
Furthermore, p; is the S(B™)-homomorphism defined on generators, by

P1(éxrwr)) = Swa)y
when char(K) = 0, and

P1 (5)\(1/,]9[‘”)) - gl(u,pdl'),l
when char(K) = p.

3. Auslander-Reiten sequences

In this section we give an overview of some results and definitions connected
to the notion of Auslander-Reiten sequences. Let A be a finite dimensional
algebra over K.

A short exact sequence

(E) 0N B2 8550

is said to be Auslander-Reiten if
(i) (E) is not split;
(ii) S and N are indecomposable;

(iii) If X is an indecomposable A-module and h: X — S is a non-invertible
homomorphism of A-modules, then h factors through g.

Alternatively, (E) satisfies (i) and (ii), and if X is an indecomposable A-
module then any non-invertible A-module homomorphism h: N — X factors
through f.

Theorem 3.1 ([1]). Given any non-projective indecomposable A-module S,
there is an Auslander-Reiten sequence (E) ending with S. Moreover, (E) is
determined by S, uniquely up to isomorphism of short exact sequences.

Several recipes where given in the end of the 80’s for the construction
of Auslander-Reiten sequences. In this paper we will follow such a recipe
due to M. Auslander described in the article [2] of M.C.R. Butler, and we
will construct an Auslander-Reiten sequence ending with K, for many \ €
A(n,r). The same results can be obtained using J.A. Green’s recipe [4]. We
will use two contravariant functors

D, (\)': modS(B*) — modS(B1)”
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where for every X € modS(B™)

X" := Homgp+)(X, S(B)), D (X) := Homg (X, K).
Recall that S(B") acts on the right of X' and D (X), respectively, by
(¢¢) (z) = ¢ (x) &, (€) () =4 (€x)

where ¢ € X', ¢p € D(X), £ € S(B*Y), and z € X.
Consider the Nakayama functor [3, p.10]

D(-)': modS(B*) — modS(BY).
This is a covariant right exact functor which turns projectives into injectives.
Fix A\ € A(n,r), A # (r,0,...,0). Then K, is indecomposable and non-
projective. Consider the first two steps of the minimal projective resolu-
tion (2.3) of K,
P p 2K, 0.
Applying the Nakayama functor we get from this the exact sequence

0 — 7Ky — DP! 2 ppt 2% DKt s 0, (3.1)

where 7K, = KerDp{ = D (Cokerp}), that is 7 is the Auslander-Reiten
translation.

Given an S (B™T)-homomorphism #: K, — DP}, consider the short exact
sequence obtained from (3.1) by pullback along 6:

0— 1Ky L5 E(0) -5 K,y — 0. (3.2)

Here E (0) = {(z,¢) € DP} ® K, | Dp! () =60 (c)} is an S(B™)-submodule
of DP} & K,, and f, g are the homomorphisms of S(B™)-modules defined by
g(z,¢)=c, f(v)=(v,0), for all z € Dpl, v € TK,, and ¢ € K.

If we choose 0 according to Green’s or Auslander’s recipe, then (3.2) is an
Auslander-Reiten sequence. Note that DP} has simple socle isomorphic to
the 1-dimensional module K, so one can take for § any non-zero S(B™)-ho-
momorphism. Before constructing such sequences, we will determine K-bases
of Py and P; adapted to our calculations.

Notice first that (S (B*)&,)" and &, (B*) are isomorphic right S (B*)-
modules for every o € A. So we will identify these two S (B™)-modules. We
will also identify (€D, S (BY) &) with @,y &S (BY), for every family
A’ of elements in A.

Lemma 3.2. Let « € A. Then { &) |7 € J (a)} is a K-basis of £,.5 (BT).
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Proof: We know that £,S (B™) is spanned by { i(a).j ‘j el(n,r), j>1(a)}.
As &) = &i(a),i if and only if 7 = j, for some 7 in the stabilizer of I («)
in Y, and this stabilizer coincides with the row stabilizer of T%, the result
follows. |

Fix A € A (n,r) and consider the result of the application of (-)! to (2.3).
Then

(n—1
@D Ewn)S (BT, if char K = 0
v=1

Plt = < n—1

@ @ SA(V,pdV)S (B+) , if char K = p.

\ v=1 1§pd” S)\V+1

Thus a K-basis of P} is given by
Bi:={&un;li€e (A1), ven—1}, ifcharK=0,

j € J(\w.p"), | (3:3)
By = &upt), p , if charK = p.
1 < p < AI/Jrla ven—1

With the above identifications of the projective modules, the map p}: P} —
P} becomes

(

n—1
> 1(w,1),0M5 if charK =0
v=1

n—1
> 2 Supryms ifcharK=p,

L r=l1<p?’ <A

where n € Py.

To construct an Auslander-Reiten sequence ending with K, it is convenient
to obtain, from B; and Bs, new bases for P! containing p! (fz(A),j), jeJ(N).
Suppose \ satisfies conditions

{)\n # 0, if char K = 0,

3.4
A £ 0, M1 < p™1 —1, if charK = p and p? <\, < p?tl. (34)

Given j € J(A), as j > 1 = [(A), the nth row of Tj)‘ is constant with all
entries equal to n, and its (n — 1)st row has a entries equal to n and \,,_1 —a
entries equal to n — 1, for some 0 < a < \,,_1.
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We shall look first at the case char K = 0. Then by Lemma 2.3

§in-1,1)2815 = (@ + 1) §n-1.1),,
and a + 1 # 0. Using this, we shall show that we can replace &,
by pi(&;) in By and obtain a new basis for Pj. Notice that J(\)
J(A(n—1,1)), and so &g,-11); € Bi. On the other hand, &; € Fj
&S (BT), and

1),5

I N

n—2 n—2
Py (&) = En-1.1)065 + Z Sy = (@+1)§m-11),; + Z §1w,1),060,5 -
r=1 r=1

Now &,,1),&.,; is a linear combination of basis elements of the type &, 1) jx,
for some 7w € 3. As, forv=1,...,n—2, we have that [ (v,1) % [ (n—1,1),
we get that &g,—11),; is always different from &, 1y;, for any 7 € I (n,r).
Therefore, we can replace §,_11); in By by p{ (&) and still get a basis for
P}. We have proved the following:
Proposition 3.3. If char K = 0 and X\, # 0, then

Bi={&u,liclOw)), v=1,...,n—2}

UL &man i€ T —=11)\ TN FU{p(&,)|i€ TN}

is a basis of P{. In particular, p| is a monomorphism.

Suppose now that char K = p and that \ satisfies condition (3.4). We will
apply Lemma 2.3, together with the following well known consequence of
Lucas’ Theorem:

Proposition 3.4. Assume m and q are positive integers and that
m:m0+m1p+---+mtpt
¢=q+qp+---+qp°

are the p-adic expansions of m and q. Then p divides (TC’;) of and only of

m, < q, for some v.

Given j € J ()A), we denote by a = a (j) the number of entries equal to n
in the (n — 1)st row of T7. Let ay, ..., ag be the coefficients in the p-adic
expansion of a, with ag possibly equal to zero. As a < A\, < p®™! — 1, and
all the coefficients in the p-adic expansion of p?*! — 1 are equal to p — 1, we
get that there is some a; # p — 1. Let

m(j) :==min{t|a <p—1} (3.5)
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and define
JNd)Y={jeJN)|m(()=d}.
Obviously J (A) = Upegeg (A, d).
Proposition 3.5. Suppose that charK = p and that A\ € A(n,r) satisfies
condition (3.4). Then
By ={ &y |7 € TOWP) 10" <Nt v=1,...,n— 2}

SRE A )j € JAn = 1,p")\ T\ d), 0<d <d}

U{n (&) ]i€ TN}
is a K-basis for P}. In particular, p| is a monomorphism.

Proof: Let j € J(A). Just like in the characteristic zero case, we consider
the basis element & ; of P} and look at

n—1

pi (&,j) - Z Z fl(u,pd/>7l€laj'

v=11<p? <\, 1
By Lemma 2.3 for any d’ such that 0 < p¢ < \, we have

a-l—pd/

gl(n—l,pdl’),z&d:( ! >§l(n—17pd/>aj'

Here a is the number of times n occurs in row n — 1 of TJ-A. It follows from
Proposition 3.4 and the deﬁmtlon of m (j) (see (3.5) ), that p does not divide

(a+p (;)) and divides all (a+p ) for ' < m (j). Therefore

.
Ph (&) Z Do Gt D <a;f )fz(n—md’)d (3.6)

v=11<pd' <\, pm()<pd <\,
and the coefficient of gl(nflpm(ﬂ)) j in this sum is non-zero. As, for v # n —1,

we have [ (n —1,pmU ) Al (1/ P ) it follows that &, ,m@) ; does not appear
in the basis expansion of fz( o), &, for any b€ J(A). Also, if d' # m (j),

then [ (n —1,p? ) Al (n —1,pmU )) and so Sl(n—l,pd ) + fl(nilvpm(j))vj for all
h e J(N).
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Finally, suppose h € J () satisfies

(I = 1,p™D), ) ~ (Un = 1,p™"), h).

Then h = j7 for some m € ZA( But, since both A, 7 > [, we can

n—me(j))'
not move any entry n — 1 in row (n — 1) of Tj”\ to row n to obtain T;. This
implies that 7 belongs to the row stabilizer of T*. As both TjA and T} are

row semistandard we get h = j. Therefore Sl(n_lpm(j))j appears only once in

Bs: in the expression (3.6) of p! (& ;) with the coefficient (a;£zgj)). Hence,
L) by pl (§;) in By for all j € J (\) and still have a

basis for P;. m

we can replace fl(

It is now easy to obtain an Auslander-Reiten sequence ending with K
for A satisfying (3.4). Denote, respectively, by B; and Bj the K-basis of
D (P}) dual to By and Bs. For j € J ()\), we denote by 2 ; the element in B}
(respectively, in Bj) that is dual to pf (§;;). Let Uy be the subspace of D (P})
with K-basis Bf \ {#,]|j € J(A)} if charK =0or B5\{#,;|j€J\}if
char K = p. Then U, is in fact a S(B")-submodule. Define

E\) ={(zc) eD(P)®Ky\|zec (Ur+cau)}.
Then we have the following result.

Theorem 3.6. Suppose that A € A (n,r) satisfies (3.4). Then the sequence

0= Uy -5 E0) -5 Ky -0, (3.7)
where f and g are defined by
f(z)=1(2,0), Vz € Uy; g(Z,¢)=¢c, V(,¢c) e E(N),
is an Auslander-Reiten sequence.

Proof: Notice first that since A # (r,0,...,0), we have that K, is not pro-
jective. Hence an Auslander-Reiten sequence ending with K exists.
Now we will prove the theorem in the case char K = 0. The case of char K =
p is similar. To do this we will follow Auslander’s recipe given in [2].
Transferring Butler’s notation to our setting, we have C' = K,, A = S (B™),
rad (End5(3+)(K)\)) = 0, and Cy = 0. Choose g = &, € Py and s =
idg, € D (K,). Notice, that idg, satisfies idg, (Cy) = 0 and idg, (po(&))) =
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idg, (1x) # 0. Now it is sufficient to take # € Homgg+(Ky, D (Fj)) such
that

0(c)(n) = idk, ((&xn)c) = ne for all n € Py = £,5(B7) and all ¢ € K.

Note that as P} has K-basis { & ;|j € J(\)}, and & ;c = ¢ or 0, according
to j =1 or j # [, we have that 6 is completely determined by saying that

c, ifg=1
0, itj#l,

where j € J()\) and ¢ € K,. Given z € D (P}) we can write z as a linear
combination of the elements of Bf. Then for any ¢ € K,, we have D(p!)(z) =
6(c) if and only if zp} = 6(c), which in turn holds if and only if for all j € J ()
there holds

0(c) (&) = { (3-8)

c, ifj=1
Zptl(&,j)—{o 41

Thus z = cz;; + u for some v € Uy. Hence
E(0) ={(z,c) € D(P)®K\|Dp|(z) =0(c)} = E(\).

In a similar way, we see that z € 7K, = ker (Dp!) if and only if zp{ = 0, that
is if and only if z € U,. Therefore 7K, = U,. u

4. The case n =2

In this section we study the construction of an Auslander-Reiten sequence
ending with K, in the particular case of n = 2. We will show that it is very
easy to obtain such sequences with no restriction on A or the characteristic
of K.

Let A = (A1, A9). Since K, is non-projective if and only if Aoy # 0, all
compositions we are interested in satisfy this condition. So in this section
we assume that Ay # 0. In particular, the construction of Auslander-Reiten
sequences in the characteristic zero and n = 2 case is completely answered
in Theorem 3.6.

Suppose now that char K = p and d is such that p? < Xy < p?*!l. Given
j € J (), recall that a (j) is the number of 2s in the first row of 7. If

d+1

a=a(f)=@-1)+@-Dp+--+@@-1p"+... (4.1)
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is the p-adic expansion of a then, by Proposition 3.4, for all 0 < d’ < d the

. . . a,—|—pd/ . o e .
binomial coefficient ( pd, ) is divisible by p. Hence

flj Zgllpd/ lfl; Z(a;p ){l(lpd/)-zo.

=0

Next we suppose that a = a (j) has p-adic expansion

a=ag+ap+---+agp’ (4.2)
with a; # p — 1 for some 0 <t < d. Define

m(j) =min{¢|t <dand a; <p—1}
and
N={jieJN|al)#@-D+@-p+--+@-1p'+...}.

For 0 < d’ < d we denote by J(\, d’) the subset of those j € J()\) such that
m(j) = d'. Then J( ) = Uogd/<d<](>‘ d") and J()\ d) c JA(1 ,p*)). Now
with a proof completely analogous to the proof of Proposition 3.5, we see
that, for j € J(A,d'), the element & ,m@)) ; in By can be replaced by ph (&)

and the resulting set By is a new basis for P{. This proves the following
result.

Proposition 4.1. Suppose that charK = p and A = (A, A2), with Ay # 0.
Then

By Z{&(l,pdf)J ‘j e JAL,p"N\J\ ), 0<d < d}
U {Pﬁ (&) ‘j C f()\)}
is a K-basis for Pf.
We also have that {fl,j ‘j cJ(A)\ j()\)} is a K-basis for ker(pl). In

particular, pt is injective if and only if p? < Xo < p@™! and N\, < p?tt — 1,
i.e., if and only if A satisfies condition 3.4.

Denote by Bj the basis of D (P}) dual to By. We write z;; for the element
dual to pt(& ), where j € J(X). Let Uy be the S(B™)-submodule of D(P})

with K-basis Bj \ { 2 ‘j € j(A)} and
E\) ={(zc) eD(P)®K\|ze€ (Ur+cau)}.
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Then, adapting the proof of Theorem 3.6, we can conclude the following
result

Theorem 4.2. Suppose that char K = p and A = (A, A\2), with Ay # 0. Then
the sequence

00Uy E0) S Ky =0,
where
F(2) = (2,0), g(#,0) = ¢, V2 € Uy, (#,¢) € E(N)

is an Auslander-Reiten sequence.

5. Some results in the case n = 3

We will consider fields of characteristic p, n = 3, and A € A(3,7) with A3 #
0. Define d by p? < A3 < p™1. If Ay < p?*! — 1, we know from Theorem 3.6
an Auslander-Reiten sequence ending with K. In this section we study the
construction of Auslander-Reiten sequences for A with Ay = 2p9*t! — 1.

In this case p| may not be injective. Our first step will be again to determine
a basis for P}, which contains a basis of Im(p}). Recall that

B2 = { gl(y,pd’)’j ‘] €J <)\(Vapd/)) ) 1 S pdl S )\l/—l-la V= 172}

is a K-basis of P{. We will end this section by explaining how to replace
some of these elements &, ,») ; by elements of the form pi (&) and obtain a
new basis of P}. The construction of the Auslander-Reiten sequence ending
with K is then similar to the one in the previous sections.

Given j € J(A), suppose that the number of entries equal to 3 in the
second row of Tj)‘ is a = a(j). Let ag, ..., agy1 be the coefficients of the
p-adic expansion of a. If a; # p — 1, for some t < d, let m = m(j) =
min {¢|a; < p—1}. Then

d+1
fl,J Zgl 1p?) zfld + Z ( )51(2;; @),
demm

a—i—pm(J)
pm(j)

and p does not divide ( ) Now, like in the proof of Proposition 3.3, it is
simple to see that if we replace &5 ,m)) ; by pi (&) in By for all j’s satisfying
these conditions, we obtain a new basis B} for P}.

The problem arises when the p-adic expansion of a is

a:(p—l)—l—(p—1)p—|—-~-—|—(p—1)pd—|—cpd+1, c=0,1. (5.1)
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If @ = a(j) satisfies (5.1), we say that j is a critical element of J (\). In this

case we have
d+1

ptl (gl,j) = Z fl(l,pd/)ngaj'
d'=0

If ¢ = 0, then the second row of TjA is not constant and we can not use the
multiplication formula in Lemma 2.3 to calculate &4 ;& We will use a
different version of the multiplication formula (2.2) to study these products
(see [5, (2.7)]). Given i, j, k € I(3,r) the double cosets ¥; 0%, in ¥,
correspond one-to-one to the 3 ;-orbits of i¥;. So (2.2) becomes

§ii&ik = Z [Enk 0 Znjik] Snks (5.2)
h
where the sum is over a transversal {h} of the 3, ;-orbits in the set i¥;. Now
we fix a critical j € J ()\) such that a = a (j) = p?™ — 1. Suppose that the
number of entries equal to 2 and the number of entries equal to 3 in the first
row of T are ty =ty (j) and t3 = t3(j), respectively. Thus we have

2 i
1...12...... 2% ... 3
A
T = 2..... 23........ EETPeey 3 (5.3)
3., 3

Applying (5.2) in the case of our composition, we obtain

51(1,pd')’l§l7j = Z <t2 ;r S) <t3 : t) En,;j (5.4)

h
where
h=(1,...,1,2,...,2,1,...,1,2,...,2,3,...,3)
——
A1+s Ao—a—S t a—t A3
that is
| 1
Th= 1..... 1227, . 129,
— \T/
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and s+t = p?, t < p®*'. Note that all the &n,; in (5.4) are distinct.

Remark 5.1. Suppose that ji and jo are critical elements of J (X\). Then
(h,j1) ~ (B, j2) implies ji ~ jo. Hence if ji o jo all the basis elements &, j,
appearing in the Ba-expansion of pt (&.j,) are distinct from those appearing
in the By-expansion of Pl (&.5,)-

Thus given j defined by (5.3), we only have to study the linear indepen-
dence of {p! (&;), P} (&)}, where j' is a critical element of J (\) and j" ~ j.
Hence

to+pT*! ts—p™*!
1...12......... 2% ... 3
A
Th= 3.............. 3 . (5.5)
3. 3

Note that if t3 < p®™ then j' and p! (£ ;) are not defined. Thus we will
assume that t3 > p?tl.
Recall that, from Lemma (2.3), we have

v AS
Pi&y) = Z <t3 Ty )51(17pd’)7j/- (5.6)

d’
0<d'<d+1 p

Before we proceed we need a technical result. Its proof is an easy consequence
of Proposition 3.4.

Lemma 5.2. Let 0 < m < d+1. Then p divides all the products (tQ:S) (t?’:t)

with s+t = p? and 0 < d' < m if and only if the p-adic expansions of to and
t3 have the form

ta=(p-1+@-—1p+-+@-1)p"+, 0" +...

i N (5.7)
ts=(p—1+@—Dp+-+{@—-1p" + " +....

Proof: Suppose p divides all the products (t"’:s) (t3jt) with s +¢ = p? and

0 <d < m. Taking s = p? and t = 0 we get (tS;H) = 1. Thus, (tr‘;fd) is
divisible by p for any 0 < d’ < m. It follows from Proposition 3.4 that the
coefficient of p? in the p-adic expansion of ¢, is (p — 1) for any 0 < d’ < m.
The case of t3 is proved similarly.

Now, suppose that t5 and t3 satisfy (5.7) and 0 < d’' < p™, s+t = p?. If

s =0, then t = p? and (t?’;ﬁd) is divisible by p by Proposition 3.4. Suppose
s # 0 and s; is the first non-zero coefficient in the p-adic expansion of s. Then
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the ith coefficient of t5 4+ s in its p-adic expansion is s; — 1. Since s; — 1 < s;,
we get, from Proposition 3.4, that (t28+5) is divisible by p. |

As an immediate consequence of Lemma (5.2) we get the following result.
Lemma 5.3. Given j and j' as above we have:

(i) i (&) = 0 if and only if the p-adic expansions of ty and t3 are
tr={p—1)+@—Dp+-+p—p™ + ™+
ty=p—1)+@—p+-+ - p" + ™+

(ii) p% (&) = 0 if and only if the p-adic expansion of t3 is of the form

p—D+@—1p+-+@-—1p"+0-p™ ...

Suppose now that pf (§;) # 0. Let

b= b(j) := min { 0<d <d+1 ‘ it 0} ,

Then p divides all the products (tfs) (t3:rt) with s +¢t =p% and 0 < d’ < b,

and there are s and t such that s +¢ = p’ and (t2:5) (t?’:t) is non-zero in K.

From Lemma 5.2, we obtain that the p-adic expansions of 5 and t3 should

be of the form
to=(p—1)+--+@—-p" +ep"+... 58)
ts=@—-1)+-+@-Dp" " +p"+.... ’

where either ¢} or ¢ is different from p — 1.

Lemma 5.4. Given j, ' and b = b(j) as above, we have §l(1pd/> & =0, if
d <b, and

(tQ;’pb)él(l,pb),j + (t3+pb)£¢7j, Zfb <d+1

pb

Si1p0)0805 =

d+1 .
(tQ;}L )fl(l,pdﬂ),ja ifb=d+1,
where
1......... 1
T — 2...... 21...... 12......... 2
Z pz:l ;9"(
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Proof: In the conditions of the lemma, we see that ¢ and t3 are as in (5.8).
Suppose b < d + 1. Given 0 < s < p, if s; is the first non-zero coefficient
in the p-adic expansion of s, then the ith coefficient in the p-adic expansion
of to + s is s; — 1. Therefore p divides (tfs). Hence, when we apply (5.4)
to §(1,pv),1€1,5, only the summands corresponding to s = p’,t=0and s =0,
t = p® remain.

If b=d+ 1 a similar argument applies. Only this time, the condition ¢ <
p?*tin (5.4) implies that we are left only with the summand that corresponds
tos=7pl t=0. u

Lemma 5.5. Given j, j' and b = b(j) as above we have:

(i) if b < d+1 and pt (&) # 0, then p! (&) and pi (&) are linearly
independent;
(ii) if b=d+ 1, then p (&;) and p' (&) are linearly dependent.

Proof: Suppose b < d + 1. Using Lemma 5.4, we only have to make sure
that & ), is different from & ) ; and & ;. Note first that j' # jm for any
T € Yy Infact, mof Xy ») can move at most p’ 2’s from the second row
of Tj/\ to its first row. But Tﬁ is obtained from Tj/\ by moving exactly p™! 2’s
from the second to the first row. As p?*! > p? this can not be achieved by
application of m € X\ »). Thus (l (l,pb) ,j) b (l (l,pb) ,j’). In a similar
way, we see that (l(l,pb),j’) # (i, 7), since no o satisfying jo = j' can move
the p® 1’s from the second row of T to the first p* positions of this row.

Now consider the case b = d + 1. In this case, the permutations that
permute the p™! 2’s in the second row of Tj/\ with the first p?™! 3’s in the
first row belong to EA(ljderl). So gl(lvderl),j/ = gl(ljderl)’j.

Notice also that b = d + 1 implies that

ty=(p—1)+-+ (=" + ™ + ...
Thus

i

ts—p™ " = (o -+ (= D"+ ™

Hence

ts3 ts
pi (51,1") = (pd+1>€l(1,pd“),j’ = <pd+1>§l(1,pd“),j'
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At this point, we should remark that if ¢t3 # 0, then j &€ J ()\ (1,pb))

b
for any b, since TjA(l’p )

is not row semistandard. But &0 = §1p0),jms
for any 7 in the row stabilizer of T LP") , and we can choose 7w such that

jm € J(A1,p%). So &1 1p = &, j= € Bo. In the particular case of
b=d+ 1, we have (1pitl)) = gl(l P
The follovvmg is the main result of this section.

Proposition 5.6. Let char K = p, d a natural number, and A = (A1, A2, A3) €
A(3,7) with p? < X3 < p?tt. Suppose Ao = 2p?*1—1. Let By be the basis (3.3)
of Pl. Then we obtain from By a new basis By of P} in the following way:

given j € J (X), suppose the p-adic expansion of a(j) is Zdﬂ agp?. Then:

(a) If ag # p — 1 for some q < d, we replace & yminy ; by pi(&;) i Bs.
(b) If a(j) = p™! — 1, let ty and t3 be the number of 2’s and 3’s in the first
row of TJ-A, respectively.
(i) If the p-adic expansions of to and t3 are:
tr=(p—1) -+ + -1 +cp’+..
ty=(p— 1)+ +(p—1)p" +C’b’pb+
A(p—-1)+-+(p—1)p +0-pd+1+...

and ¢, # p—1 or ¢} #p—lforeomeb < d+ 1, then in By, we
replace §1 0 ; and fl (1 pieny o by pY(&y) and pi(&y), respectively.

(ii) If the p—adz’c expansions of to and t3 are:
to=(p—1)+--+{@-p" "+’ +...
ts=@p—1)+--+@p—p"+0-p™ 4 ...

for some b < d+ 1 such that ¢ # p — 1, then p! (§) = 0 and we
replace &1 05 by P1(&14) in B,

(1ii) If the p-adic expansions of ta and ts are:
b= (p— 1)+t (= Do+ ™
ty=(p—1)+-+(p-1)p" + ™ +..

with ¢, 7é 0, then we replace & parry; by pi(&j0) in By In this
case § 1 piny; = 1ty and pi(& ;) is a multiple of pi (&)
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(iv) If the p-adic expansions of ty and ts are:
to=p—1)+-+(@p—p*+cpp™+. ..
ts=@—-1)+ -+ @-p"+0-p™" +...

with ¢y, # p — 1, then pi(§) = 0 and we replace & yasry j by
pi(&,5) in Bs
(c) If a(j) = 2p™! — 1 with t, < p*L.
(i) If the p-adic expansion of t3 is:
ts=p—1D+-F+@-p""+eap"+...

with b < d+1 and ¢, # p — 1, then we replace & ;5 by pi (&) in
Bs.

(ii) If the p-adic expansion of ty is

t3=@-1)+--+@-p+...,
then pi(&,;) = 0.

Proof: Putting together Lemma 5.3, Lemma 5.5, and the result obtained for
J not a critical element of J (\), we obtain (a) and (b).

If a(j) = 2p?*t —1 and t, > p?*!, then thereis 7 € J(\) with a(j) = ptt -1
such that j = 7. Thus this case is considered in (b). Now suppose that
ty < p?*l. By the formula similar to (5.6), we get

t3+pd/
&)= ) ( o )fm,pdq,j- (5.9)

0<d’'<d+1
If the p-adic expansion of 3 is of the form
ts=@p—-1)+-+@-Dp"+...,

then (5.9) implies that pf(& ;) = 0. Otherwise, let b be the first coefficient of
the p-adic expansion of ¢3 different from zero. Then the coefficient of &y ;) ;
in (5.9) is non-zero. Thus we can replace & ) ; by pi(&.;) in Bs. |

To construct an Auslander-Reiten sequence ending with K, we repeat the
procedure used in the previous cases. Let B} be the basis of D(P}) dual to
Bs. Define U, as the S(B™)-submodule of D(P}) spanned by the elements

of B} which do not correspond to p(&,). If E()\), f, and g are defined as in
Theorem 3.6, then an Auslander-Reiten sequence ending with K is

0= Uy B0 -5 Ky — 0.
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6. The functors S (B;)-mod = S (B;")-mod

Let m be a positive integer with m < n and write S(B,") for S(B*,n,r) and
S(B;}) for S(B*,m,r). In this section we consider a pair of exact functors

S (B;)-mod % S (B;})-mod ,

which are useful in the construction of short exact non-split sequences.

Given A € A(n,r), suppose A\, Z 0 and Ay =+ =X, =0. As A\, =0,
we do not know how to construct an Auslander-Reiten sequence ending with
K. But, since )\, # 0, we can use Theorem 3.6 to construct an Auslander-
Reiten sequence ending with Ky = F (K,) in S(B;})-mod. Then using G
we lift this sequence to S(B;")-mod. We obtain an exact non-split sequence,
which ends with K, and starts with an indecomposable module, but which,
in general, is not an Auslander-Reiten sequence. We do not know at the
moment when this is an Auslander-Reiten sequence in S(B,)-mod.

Denote by A*(m,r) the image of A(m,r) in A(n,r) under the natural em-
bedding, i.e. the elements of A*(m,r) are of the form (aq,...,qn,0,...,0).
Define the idempotent e € S(B,") by

e:= Z o

acN*(m,r)

As n > m, we may regard I(m,r) as a subset of I(n,r). As a consequence,

S(B;}) can be regarded as a subalgebra of S(B;) (see [6, § 6.5]). In fact, we
have that

S(Bt) = eS(Be.
Therefore we have an exact functor (cf. [6, § 6.2])
F: S(B,)-mod — S(B;)-mod
VeV
O:V = V') 0.y.
Suppose that A € A*(m, r) satisfies A, # 0 and, moreover, A1 < pttl — 1 if
char K = p and p? < \,, < p!. We write X for the preimage of X in A(m, 7).
As A, = 0 we do not know how to construct an Auslander-Reiten sequence
ending with K. But if we consider the S(B,!)-irreducible module Ky, we

have Ky = F (K)) and, from Theorem 3.6, we know an Auslander-Reiten
sequence in S(B;})-mod:
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0—Us = E(\) = K5z — 0. (6.1)
We want to lift this sequence to S(B;)-mod. For this we consider the functor
G := S(B)e Rg(pt) — S(B!)-mod — S(B;)-mod.
It is well known (see [6, 6.2d]) that for M € S(B;)-mod there holds eG(M) =
{e®@m|m € M} and the map
M — eG(M) = F(G(M))
m—exm

gives an isomorphism of S(B;)-modules. We will prove next that, in our
particular setting, G is an exact functor, and takes indecomposable modules
into indecomposable ones.

Lemma 6.1. Given an S(B;)-module M, we have:

(i) ev = v, for allv € G(M);

(ii) dimg M = dimg G(M).
Proof: (i) We know that G(M) is the K-span of the set

{fme@m‘z S]; Za] € I(Tl,T), m & M}
Given i, j € I(n,r), with i < j, we get ;e =0,if j & I(m,r). If j € I(m,r),
then for every p € r, we have i, < j, < m. Therefore ¢ € I(m,r) and
& € S(B;)). Hence
§ije@m =¢§j; @m=1& §;m.
This shows that G(M) is the K-span of the set
{1@m|me M}.

Obviously, we have e(1®@m) =1®em =1®m for all m € M. Thus ev = v
for all v € G(M).
(ii) We may define linear maps

M — G(M) GM)— M
m— 1®m ERm — eém.

Using (i) it is immediate to see that these two maps are inverse to each other.
Hence M and G(M) are isomorphic as K-vector spaces. u

Proposition 6.2. The functor G s exact.
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Proof: Let
t t
O—>M2—1>M1—O>MO—>O (62)

be an exact sequence in the category of S(B;)-modules. As G is a right
exact functor, we have that

0 — ker G(t)) — G(Ms) <™ aar) <™ G(My) — 0
is an exact sequence in the category of S(B;)-modules. Therefore
dimg ker G(t1) = dimg G(M;) — dimg G(M;) + dimg G(M,).

Applying Lemma 6.1 and using the fact that (6.2) is an exact sequence, we
get

dimg ker G(tl) = dimg My — dimg M7 + dimg My = 0.
This shows that GG is an exact functor. [

Proposition 6.3. Let p € A(m,r). Then G(K,) is isomorphic to K, where
W= (p1, s pm,0,...,0). In particlular, G preserves irreducible modules.

Proof: By Lemma 6.1, we know that G(K,) is a one-dimensional module.
Thus G(K,) = Kp for some 8 € A(n,r). We know that F(G(K,)) is isomor-
phic to K. Therefore K, is isomorphic to F'(Kgz). But

~ )0, B&A(m,r)
F(Ks) = {Kﬁ, B e AN(m,r).

Thus 8 = g and this is equivalent to 5 = 1. |

Proposition 6.4. Let M be an indecomposable S(B;})-module. Then G(M)
is an indecomposable S(B;")-module.

Proof: Suppose G(M) = Uy @ Us, direct sum of non-zero S(B,")-modules. By
Lemma 6.1, we have that eU; = Uy and eUs = Us. Therefore M = eG(M) =
U, ® U, which contradicts the fact that M is indecomposable. |

Applying G to the Auslander-Reiten sequence (6.1), by Propositions 6.2
and 6.3, we get the exact sequence

0— Gy Y amn) Uk, o, (6.3)
where the module G(Uy) is indecomposable by Proposition 6.4.
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The sequence (6.3) is not split. In fact, applying F' to (6.3), we obtain an
exact sequence isomorphic to (6.1). If (6.3) were split, then (6.1) would also
be split. Contradiction.

So the sequence (6.3) is a short exact non-split sequence, ending and start-
ing with indecomposable modules. But it needs not be Auslander-Reiten in
general.

Ezample 6.5. Assume m = 2, n = 3, r = 3, and char(K) # 2. Consider
A = (1,2,0). Then A = (1,2). First we claim that the Auslander-Reiten
translate 7(IK(;2)) is simple, isomorphic to K. Since charK # 2, we
get Pl = £9.1)S(B3), so the cokernel of p{ has a basis labelled by the set

J((2, 1))\ J((X)

The set J((2,1)) is in bijective correspondence with

1]1] 1]2] 212]
2] 2 2

and the set J()) is in bijective correspondence with

1 2
2[2] 2[2]

Therefore the cokernel of p! has basis labelled by j = (1, 1,2). Taking duals,
giVGS that T(K(LQ)) = K(Q,l)-
Let 0 = K1) = £ — K 2) — 0 be the Auslander-Reiten sequence in

S(By)-mod. Applying the functor G, this gives the non-split exact sequence
of S(B7)-modules

I
0— K(ZLO) — G(E) i) K(1,2,0) — 0

and G(F) is indecomposable of length 2.

There is an indecomposable S(Bj3 )-module X with simple head K21y and
simple socle K ; ), namely the quotient of S (By )€(2,0,1) module the square
of the radical.

So there is a 1-1 homomorphism A : K919 — X. Assume for a contradic-
tion that there is some homomorphism ¢ : G(F) — X with o f = h. Then
Y must be 1-1 (since the socle of G(E) is equal to the image of f), and then
1 is an isomorphism, by dimensions. But this is a contradiction, since G(F)
and X have non-isomorphic heads.
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7. The socle of S*(n,r)

In the previous sections we studied the kernel of the map p!. Since this
kernel can be identified with Homgp+)(Ky, S(B7)), it provides information
on the socle of the Borel-Schur algebra S(B™). Namely, p! is non-injective if
and only if K, is in the socle of S(B™). In this section we collect some facts
on the socle of S(B*). We will use the usual notation A™(n,r) for the subset
of partitions in A(n,r).

We start with the following auxiliary result.

Lemma 7.1. Suppose v € A(n,r)\ AT (n,r) and let M be an S(n,r)-module.
Then Homg(p+(K,, M) = 0, where we consider M as an S(B™)-module by
restriction.

Proof: Let f: K, — M be an S(B")-homomorphism and ¢ € K,. Then
&ijf(c) = f(&jc) = 0 for all §; € S(B") different from ¢,. By [5, Theo-
rem 5.2] we have
= ) S(B)&S(BY),
AEAT(n,r)

where S(B™) denotes the lower Borel subalgebra of the Schur algebra S(n, 7).
Since v € At (n,r), we get that S(n,r)f(c) = 0. This shows that f(c) =
for all ¢ € K, and thus f is the zero map. |

As a simple consequence we get:
Proposition 7.2. Let v € A(n,r)\ A™(n,r). Then Homgp+)(K,,S(B")) =
0.
Proof: The embedding S(B*) < S(n,r) induces the injective map
Homg(p+)(Ky, S(B")) = Homg(p+)(Ky, S(n,7)).

Now Lemma 7.1 implies that the vector space Homgg+)(K,, S(n,r)) is trivial.
Thus also Homgp+)(K,, S(B™)) vanishes. u

Combining the results of the previous sections and Proposition 7.2, we get
the following theorem.

Theorem 7.3. (1) The module K,.o.. o) is a direct summand of the socle
of S(B™) independently of char K.
(2) Suppose char K = 0 and n = 2. Then the socle of S(B™") is a direct
sum of several copies of K.
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(8) Suppose char K = p and n = 2. Then K, is a direct summand of the
socle of S(BY) if and only if A = (r,0) or X is a partition satisfying

(4) Suppose n > 3 and char K = 0. Then all the composition factors of
the socle of S(BT) are of the form K, with X\ a partition such that
A = 0.

(5) Suppose n > 3 and char K = p. Then all the composition factors of
the socle of S(BT) are of the form Ky with X\ a partition such that
either A, = 0 or

A, > leogp An]+1 1.
(6) Suppose n =3, charK = p > 3, and A = (A1, Ao, A\3) satisfies
>\1 Z p\_logp)\sj-i-Q o 1, )\2 — 2p|_10gp)\3j+1 . 1 (71)
Then the module Ky has a non-zero multiplicity in the socle of S(B™).

Proof: The simple module K, ¢y is isomorphic to its projective cover
S(B+)f(r,o,...,0)- Thus H0m5(3+)(K(r,0,...,0),S(B+)) = f(r,o,...,o)S(B+) is non
trivial. This shows that K. o) is a direct summand of the socle of S(B¥).

Now the claims (2)-(5) follow from Propositions 3.3, 3.5, and 4.1.

To prove (6), we denote |log,A3] by d. Then p? < A3 < p™!. Since
\ satisfies (7.1) there is j € J()\) such that a(j) = Ay = 2p%"! — 1 and
t3 = t3(j) = p™? — 1. Then by Proposition 5.6(c)(ii) we get p'(&.;) = 0.
This shows that ker(p!) is non-trivial, and therefore there is an embedding
of Ky into the socle of S(B™). u
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