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Abstract: Monotone normality is usually defined in the class of T1 spaces. In
this paper we study it under the weaker condition of subfitness, a separation con-
dition that originates in pointfree topology. In particular, we extend some well
known characterizations of these spaces to the subfit context (notably, their hered-
itary property and the preservation under surjective continuous closed maps) and
present a similar study for stratifiable spaces, an important subclass of monotoni-
cally normal spaces. In the second part of the paper, we extend further these ideas
to the lattice theoretic setting. In particular, we give the pointfree analogues of the
previous results on monotonically normal spaces and introduce and investigate the
natural pointfree counterpart of stratifiable spaces.

Keywords: Monotone normality, Borges operator, hereditary monotone normal-
ity, monotonically normal operator, stratifiability, subfit space, frame, locale, subfit
frame, weakly subfit frame, open sublocale, closed map.

AMS Subject Classification (2010): 54D15, 06D22, 54C20, 54C99.

1. Introduction

Fifty years ago, Borges [4, Lemma 2.1] introduced and Zenor ([34], see
[16]) named the notion of monotone normality, a strengthening of normality.
Since that pioneering papers, there has been an extensive literature on the
topic (see e.g. [5, 7, 25, 32] for references). Every metrizable space and every
linearly ordered space is monotonically normal. In fact, it could be argued
that whenever a space can be shown “explicitly” to be normal, then it is
probably monotonically normal.
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Monotone normality is usually treated in the class of T1 spaces (in this
context, a space is monotonically normal iff it is hereditarily monotonically
normal [5], i.e., every its subspace is monotonically normal). Apart [21] and,
more recently, [12, 13, 15], monotone normality has been considered in the
restricted class of T1 spaces. In [12], Gutiérrez Garćıa, Mardones-Pérez and
de Prada Vicente undertook the study of monotone normality free of the
T1 property and obtained new characterizations of monotone normality for
general spaces. In addition, they showed that monotone normality is not, in
general, an hereditary property.
In the present paper, by approaching the problem from a pointfree point

of view, we are able at the same time to improve these results and to extend
them to the pointfree setting. Our primary motivating question is the fol-
lowing: is there any separation axiom weaker than T1 under which monotone
normality becomes an hereditary condition?
The T1 axiom for spaces is so heavily dependent on points that one cannot

expect an exact pointfree counterpart for it. Subfit frames [19] and, some-
times, unordered (TU) frames [19, 20] have been considered as candidates but
both fail to coincide with the T1 property in the spatial case. The former
form a strictly weaker counterpart of T1 spaces [24]. They were introduced
by Isbell in [19] and independently (as conjunctivity, because it is the oppo-
site of the disjunctive property for distributive lattices) by Simmons [30]. A
frame L is said to be subfit if

a 6≤ b =⇒ ∃ c ∈ L : a ∨ c = 1 6= b ∨ c. (Sfit)

As remarked by Isbell [19] (and also by Simmons [30]), given a space (X,OX),
the frameOX of open sets is subfit if and only if the underlying space satisfies
the following condition:

∀U ∈ OX, ∀x ∈ U, ∃ y ∈ {x} such that {y} ⊆ U. (Conj)

Simmons (see e.g. [31, Lemma 4.8]) noted that

T1 = (Conj) + TD

where TD is the familiar separation axiom between T0 and T1 (in fact, much
closer to T0 than to T1) due to Aull and Thron [1], requiring that each point
x ∈ X has an open neighborhood U such that U r {x} is also open.
Our main goal with this paper is to study the role of subfitness within

monotone normality, first in spaces and then in the more general pointfree



MONOTONE NORMALITY AND STRATIFIABILITY 3

setting. The notion of a stratifiable frame will appear naturally as an in-
teresting subclass of monotonically normal frames. They are the pointfree
counterpart of the stratifiable spaces introduced by Ceder [6] and also stud-
ied by Borges [4] (to whom the name stratifiable is due). In particular, we
will see that monotone normality is hereditary under subfitness while strati-
fiability is always hereditary. Further, we will study the preservation of both
properties under closed maps.
The paper is organized as follows. In Section 2 we study the role of the

subfitness axiom on monotonically normal spaces with the aim of extending
the results in [5] from the class of T1 spaces to the broader class of subfit
spaces. In Section 3 we address perfectly normal spaces and stratifiable
spaces. In Section 4 we show how those classical topological variants of
normality can be naturally stated in a general lattice, yielding natural dual
concepts closely related to that of extremal disconnectedness. These first
sections emphasize the role (and usefulness) of the pointfree point of view in
clarifying classical topological concepts and ideas and underlying principles.
After recalling, in Section 5, the background on the category of frames and
the corresponding pointfree approach to topology needed in the last two
sections of the paper, we broaden the extent of the topological ideas of the
first sections, by introducing and investigating monotonically normal frames
(Section 6) and stratifiable frames (Section 7).

2.Monotonically normal spaces

What is the monotonization process of a topological concept? Quoting [11],
take any property of a space, like normality, that can be formulated in terms
of a map ∆: P → Q. By partially ordering sets P and Q and imposing ∆
to be a monotone (i.e, order-preserving) map one defines the corresponding
monotone variant of the given property.
For instance, let X be a topological space with lattice of open sets OX and

let CX denote the corresponding family of closed subsets. Recall that X is
normal if there is a map ∆: DX → OX, where

DX = {(F, U) ∈ CX ×OX | F ⊆ U},

such that F ⊆ ∆(F, U) ⊆ ∆(F, U) ⊆ U for every (F, U) ∈ DX . Then a space
is monotonically normal [16] whenever ∆ is monotone (where DX is assumed
to have the componentwise order) and it is hereditarily monotonically normal

if every its subspace is monotonically normal. The function ∆ that witnesses
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monotone normality is then referred to as a monotone normality operator.
Note that contrary to the usual practice in the literature, we do not assume
monotonically normal spaces as being T1.
For more examples of monotonization of topological concepts see [26, 17,

3, 33, 10].
When the space is assumed to be T1, we have the following:

Proposition 2.1 ([5]). Let X be a T1 topological space. The following are

equivalent:

(1) X is monotonically normal.

(2) For each pair (x, U), where U is an open set containing x, there is an

open set G(x, U) such that:

(i) x ⊆ G(x, U) ⊆ U ;

(ii) if x ∈ U ⊆ V then G(x, U) ⊆ G(x, V );
(iii) if G(x, U) ∩G(y, V ) 6= ∅ then either x ∈ V or y ∈ U .

Such an assignment (x, U) 7→ G(x, U) is sometimes called a Borges mono-

tone normality operator or simply a Borges operator.

Remarks 2.2. (1) It is worth mention that the T1 axiom is only needed in
the implication (1) ⇒ (2) since any Borges operator G induces a monotone
normality operator (cf. [5, Th. 1.2]) by defining, for each (F, U) ∈ DX ,

∆G(F, U) =
⋃

x∈F

G(x, U).

(2) It is really easy to check that the property of having a Borges operator is
hereditary. Indeed, if X has a Borges operator G, then for each ∅ 6= A ⊆ X

and each (x, U) such that U is an open in A and x ∈ U , let

GA(x, U) = G
(

x,X r Ar U
)

∩ A. (∗)

Clearly enough, GA(x, U) is open in A,

x ∈ GA(x, U) ⊆
(

X rAr U
)

∩ A = U

and GA(x, U) ⊆ GA(x, V ) whenever x ∈ U ⊆ V . Also, if GA(x, U) ∩
GA(y, V ) 6= ∅ then either x ∈ X r Ar V or y ∈ X r Ar U and so ei-
ther x ∈ V or y ∈ U .

In conclusion, we have the following for any space X:
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X has a Borges operator
⇓ (A)

X is hereditarily monotonically normal
⇓ (B)

Every open subspace of X is monotonically normal
⇓ (C)

X is monotonically normal.

Of course, as a consequence of the characterization in Proposition 2.1,
for the class of T1 spaces the converse implications also hold (see [5, Thm.
1.2]) and hence, in particular, monotone normality is an hereditary property.
However, as proved in [12], Proposition 2.1 (in particular, the implication
(1) ⇒ (2)) is no longer valid if the space fails to be T1, and monotone nor-
mality is not hereditary with respect to open subspaces (for example, given
a non-normal topological space X and X∗ = X ∪ {ω} endowed with the
topology OX∗ = OX ∪{X∗}, then X is a dense open subspace of the mono-
tonically normal space X∗). This means that the converse to the implication
(C) above fails to be true in general.

What about the converses to (A) and (B) in the general case?
Even if the converse to (B) is well-known to hold in the case of normal

spaces, as we have already mentioned, the usual proof is not “monotonizable”.
Concerning the converse of (A), [12] contains the following improvement of
Proposition 2.1:

Proposition 2.3 ([12, Prop. 3.2]). Let X be a topological space. The fol-

lowing are equivalent:

(1) X is monotonically normal;

(2) For each pair (x, U), where U is an open set containing {x}, there is an

open set H(x, U) such that:

(i) {x} ⊆ H(x, U) ⊆ U ;

(ii) if {x} ⊆ U ⊆ V then H(x, U) ⊆ H(x, V );
(iii) if H(x, U) ∩H(y, V ) 6= ∅ then either x ∈ V or y ∈ U .

Note that the implication (2) ⇒ (1) above follows by the same argument
used in Remark 2.2 (1), since no separation axiom is required: any such H in-
duces a monotone normality operator by defining ∆H(F, U) =

⋃

x∈F H(x, U)
for each (F, U) ∈ DX . The converse implication merely uses the fact that
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the subsets of the form {x} for some x ∈ X are the minimal closed subsets
in X.
Now, recall the subfitness condition (Conj) from the Introduction.

Lemma 2.4. Let X be a normal space. The following are equivalent:

(1) X is subfit.

(2) X is weakly regular, i.e. if U ∈ OX and x ∈ U then {x} ⊆ U .

(3) X is regular, i.e. if U ∈ OX and x ∈ U then there exists an V ∈ OX

such that x ∈ V ⊆ V ⊆ U .

Moreover, if X is additionally T0 then X is subfit iff it is T1 iff it is T2.

Proof : (1) =⇒ (2): Let x ∈ U . By subfitness, we may conclude that there

exists y ∈ {x} such that {y} ⊆ U . Since X is normal, it follows that there

exists an open set V such that y ∈ {y} ⊆ V ⊆ V ⊆ U . It follows then that

x ∈ V (since y ∈ {x} ∩ V ) and thus {x} ⊆ V ⊆ U .

(2) =⇒ (3) follows immediately from normality and (3) =⇒ (1) is trivial.

The last assertion is obvious.

Remark 2.5. The notion of weak regularity is due to Morita [23] (this is also
the R0 condition of Davis [8]). Contrarily to what is mentioned in [18, p.
72], it is in general stronger than subfitness. Nevertheless, subfitness, weak
regularity and regularity do coincide under normality, as shown above.

Now we can go back to Proposition 2.3 and conclude immediately the
following:

Proposition 2.6. Let X be a subfit topological space. The following are

equivalent:

(1) X is monotonically normal.

(2) X has a Borges operator.

Finally, it follows from Remark 2.2(2) and Proposition 2.3 that:

Corollary 2.7. Let X be a subfit topological space. The following are equiv-

alent:

(1) X has a Borges operator.

(2) X is hereditarily monotonically normal.

(3) Every open subspace of X is monotonically normal.

(4) X is monotonically normal.
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Further, as it is well known, monotone normality is preserved under sur-
jective closed continuous functions in the class of T1 spaces. Since the proof
does not require any separation axiom, it holds in the more general context
in which we have defined monotone normality (cf. Remark 6.13 below).

3. Stratifiable spaces

Recall that a space X is said to be perfectly normal if it is normal and
every closed set is a Gδ set. Here again the T1 axiom is not assumed as
part of the definition of normality. However, it follows immediately from
the definition that any perfectly normal space is subfit. Consequently, by
Lemma 2.4, any T0 perfectly normal space is T2. It is easy to prove the
following characterization of perfect normality which merely uses the lattice
OX of open sets of X (cf. Exercise 1.5.K in [9]):

Fact 3.1. A topological space X is perfectly normal if and only if it is normal

and there exist {αn, βn : OX → OX}n∈N satisfying:

(1)
⋃

n∈N

αn(U) = U for every U ∈ OX;

(2) U ∪ βn(U) = X and αn(U) ∩ βn(U) = ∅ for every n ∈ N and U ∈ OX;

(3) αn(U) ⊆ αm(U) and βn(U) ⊇ βm(U) for every n ≤ m in N and U ∈ OX.

Remark 3.2. Note that the assumption of normality in Fact 3.1 is redundant
since, by the infinite distributive law in the lattice OX, conditions (1) and
(2) imply that X is normal. The reason for including it here will be apparent
later on when we will treat this characterization in a general lattice.

This of course leads to the monotone variant of perfect normality: a space
X is monotonically perfectly normal whenever X is monotonically normal,
each αn is order-preserving and each βn is order-reversing. This is not a
new notion; it goes back to Ceder [6] (who called them M3 spaces) and it
was Borges [4] who named them stratifiable spaces (always with the addi-
tional assumption of the T1 property) and called each sequence {αn(U)}n∈N
a stratification of X. We give here an equivalent formulation of the original
definition:

Definition 3.3. A topological space X is stratifiable if and only if it is
monotonically normal and there exist {αn, βn : OX → OX}n∈N satisfying:

(1)
⋃

n∈N

αn(U) = U for every U ∈ OX;

(2) U ∪ βn(U) = X and αn(U) ∩ βn(U) = ∅ for every n ∈ N and U ∈ OX;
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(3′) αn(U) ⊆ αm(V ) and βn(U) ⊇ βm(V ) for every n ≤ m in N and U ⊆ V

in OX.

Remark 3.4. Here again the assumption of monotone normality can be avoided,
since it is implied by conditions (1), (2) and (3′) and the infinite distributive
law (see Definition 4.4 and Proposition 7.1).

It is well known and worth mention here that, in the class of T1-spaces,
stratifiability is an hereditary property and it is preserved by closed contin-
uous functions [4, 6]. The extension of these properties to a larger class of
spaces will be obtained as corollaries of our pointfree results (namely, Corol-
laries 7.7 and 7.11). Note that, in contrast with Corollary 2.7, the subfitness
condition is not needed since stratifiable spaces are always subfit.

4. Dual notions: extremally disconnected spaces

Those properties on a space which merely depend on the lattice of the
open subsets, as normality or its dual (extremal disconnectedness) [14], can
be described in pure lattice theoretical terms: a topological space (X,OX)
is

– normal if

a ∨ b = 1 in OX =⇒ ∃u, v ∈ OX: u ∧ v = 0 and a ∨ u = 1 = b ∨ v. (4.1)

– extremally disconnected if

a ∧ b = 0 in OX =⇒ ∃u, v ∈ OX: u ∨ v = 1 and a ∧ u = 0 = b ∧ v. (4.2)

Conditions (4.1) and (4.2) are dual to each other and are formulable in any
lattice and so one may speak more generally about normal and extremally

disconnected lattices. Evidently, a lattice L is normal iff its dual lattice Lop

is extremally disconnected. Introducing

DL = {(a, b) ∈ L×L | a∨b = 1} (hence DLop = {(a, b) ∈ L×L | a∧b = 0})

we have:

– A lattice L is normal if there exists a map ∆: DL → DLop, (a, b) 7→
(∆1(a, b),∆2(a, b)), such that

(a,∆1(a, b)), (b,∆2(a, b)) ∈ DL for all (a, b) ∈ DL. (N)

– A lattice L is extremally disconnected if Lop is normal, i.e. if there
exists a map ∆: DLop → DL such that

(a,∆1(a, b)), (b,∆2(a, b))) ∈ DLop for all (a, b) ∈ DLop. (ED)
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A. Monotone normality vs monotone extremal disconnectedness.

By naturally endowing DL with the componentwise order inherited from
Lop × L, i.e.,

(a, b) ≤DL
(c, d) ≡ a ≥ c and b ≤ d,

we may extend the notion of monotone normality from spaces to arbitrary
lattices and hence, by applying it to the dual lattice, we may arrive to the
natural notion of monotone extremal disconnectedness. Does this give any
interesting new concept? Our main goal in this section is precisely to inves-
tigate what do the duals of the topological notions studied in the preceding
sections yield.

Definition 4.1. Let L be a lattice. We say that:

(1) L is monotonically normal if there exists a monotone ∆: DL → DLop such
that

(a,∆1(a, b)), (b,∆2(a, b)) ∈ DL for all (a, b) ∈ DL. (MN)

(2) L is monotonically extremally disconnected if Lop is monotonically nor-
mal, i.e. if there exists a monotone ∆: DLop → DL such that

(a,∆1(a, b)), (b,∆2(a, b)) ∈ DLop for all (a, b) ∈ DLop. (MED)

In particular when L = OX for some topological space X we obtain a new
topological notion, dual to that of monotone normality.
Let L be a complete lattice in which finite joins distribute over arbitrary

meets. The pseudosupplement of each a ∈ L (i.e., the pseudocomplement in
Lop) does exist and is given by a# =

∧

{b ∈ L | a ∨ b = 1} (see the following
section for related information). It satisfies rules like

a ≥ a##, a ≤ b =⇒ b# ≤ a#, a### = a#,
(

∧

i∈I

ai

)#

=
∨

i∈I

a
#
i (4.3)

that will be used in the next proposition.

Proposition 4.2. Let L be a complete lattice in which finite joins distribute

over arbitrary meets. Then L is monotonically normal if and only if L is

normal.

Proof : Suppose L is normal and let ∆: DL → DLop be a a normality operator
satisfying (N). For each (a, b) ∈ DL we have

∆1(a, b) ∧∆2(a, b) = 0, a ∨∆1(a, b) = 1 and b ∨∆2(a, b) = 1.
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Then, immediately, ∆1(a, b) ≥ a# and ∆2(a, b) ≥ b#, and thus a# ∧ b# = 0.
This ensures that the map ∆′ : DL → DLop given by ∆′(a, b) = (a#, b#) for
all (a, b) ∈ DL is well-defined. Moreover:

(1) a ∨∆′
1(a, b) = a ∨ a# = 1 = b ∨ b# = b ∨∆′

2(a, b).
(2) If (a, b) ≤DL

(c, d) then a ≥ c and b ≤ d. It follows that a# ≤ c# and
b# ≥ d# and so (a#, b#) ≤DLop (c#, d#).

Hence, ∆′ witnesses the monotone normality of L.

In particular, for any topological space X the lattice of closed subsets
satisfies the conditions of Proposition 4.2 and we have:

Corollary 4.3. Any extremally disconnected space is monotonically extremally

disconnected.

This shows that monotone extremal disconnectedness is equivalent to ex-
tremal disconnectedness and, therefore, in this case the monotonization pro-
cess does not produce a new notion.

B. Stratifiability vs co-stratifiability. Let us now analyse what happens
with the notions of perfect normality and stratifiability when we extend them
to arbitrary lattices and dualize.

Definition 4.4. Let L be a complete lattice. We say that:

(a) L is perfectly normal if L is normal and there exist
(

αn, βn : L → L
)

n∈N

such that:
(1)

∨

n∈N

αn(a) = a for every a ∈ L;

(2) a ∨ βn(a) = 1 and αn(a) ∧ βn(a) = 0 for every n ∈ N and a ∈ L;
(3) αn(a) ≤ αm(a) and βn(a) ≥ βm(a) for every n ≤ m in N and a ∈ L.

(b) L is stratifiable if L is monotonically normal and there exist
(

αn, βn : L → L
)

n∈N

satisfying (1) and (2) above and
(3′) αn(a) ≤ αm(b) and βn(a) ≥ βm(b) for every n ≤ m in N and a ≤ b in

L.
(c) L is perfectly extremally disconnected if Lop is perfectly normal.
(d) L is co-stratifiable in case Lop is stratifiable.
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In particular, when L = OX for some space X, we have that X is perfectly
normal (resp. stratifiable) if and only if the lattice OX is perfectly normal
(resp. stratifiable).

Proposition 4.5. Let L be a complete lattice in which finite joins distribute

over arbitrary meets. Then the following are equivalent:

(1) L is stratifiable;

(2) L is perfectly normal;

(3) L is a complete Boolean algebra.

Proof : (1) =⇒ (2) is obvious and for (3) =⇒ (1) just consider αn(a) = a and
βn(a) = ac for each n ∈ N (where ac stands for the complement of a) for each
n ∈ N and a ∈ L.

(2) =⇒ (3): Since L is distributive, it is enough to prove that, for any a ∈ L,
the pseudosupplement a# is in fact a complement. For each n ∈ N and
a ∈ L, we have a ∨ βn(a) = 1 which implies βn(a) ≥ a#. Also, since Lop

is a frame and αn(a) ∧ βn(a) = 0, it follows that αn(a) ≤ βn(a)
#. Hence,

αn(a) ≤ βn(a)
# ≤ a## ≤ a and, therefore, a =

∨

n∈N αn(a) ≤ a## ≤ a.
Finally, since a ∨ a# = 1, there exist (by normality) u, v ∈ L such that
a ∨ u = 1 = a# ∨ v and u ∧ v = 0. Hence, 0 = u ∧ v ≥ a# ∧ a## = a# ∧ a

and a is complemented.

In particular, for any topological space X the lattice of closed subsets of
X satisfies the conditions of Proposition 4.5 and we have:

Corollary 4.6. The following are equivalent for any topological space X:

(1) X is co-stratifiable.

(2) X is perfectly extremally disconnected.

(3) CX = OX, i.e. any open set is clopen.

Proof : (1) =⇒ (2) and (3) =⇒ (1) are clear. For (2) =⇒ (3), by Proposi-
tion 4.5 we have that CX is a complete Boolean algebra. Since finite joins and
meets in CX coincide respectively with unions and intersections in P(X),
it follows that the complement of each F ∈ CX is precisely X r F . Conse-
quently, for any closed set F its complement X r F is also open, i.e. F is
clopen.

In spite that perfect normality and its monotone version (stratifiability)
are different concepts, this shows that their duals do coincide and describe
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a very special class of extremally disconnected spaces: the ones where every
open is clopen.

5. Basics on frames

Recall that a frame is a complete lattice satisfying the distributive law

(
∨

S) ∧ a =
∨

{s ∧ a | s ∈ S}

for all subsets S ⊆ L and all a ∈ L. Thus, the mapping x 7→ x ∧ a preserves
suprema and has a right Galois adjoint y 7→ (a → y) which makes a frame
a complete Heyting algebra, that is, a lattice with an extra binary operation
→ on L satisfying

a ∧ b ≤ c iff a ≤ b → c. (H)

The Heyting operation satisfies properties like

(H1) a ≤ b iff a → b = 1,
(H2) a ≤ b → a,
(H3) a → (

∧

i∈I bi) =
∧

i∈I(a → bi), and
(H4) (

∨

i∈I ai) → b =
∧

i∈I(ai → b).

In particular, there are the pseudocomplements

a∗ = a → 0 =
∨

{b ∈ L | a ∧ b = 0}

satisfying a ∧ a∗ = 0. They satisfy rules dual to (4.3):

a ≤ a∗∗, a ≤ b ⇒ b∗ ≤ a∗, a∗∗∗ = a∗ and
(

∨

i∈I

ai

)∗

=
∧

i∈I

a∗i . (5.1)

A frame homomorphism h : L → M preserves all joins (including the bot-
tom element 0) and all finite meets (including the top element 1). The
resulting category is the category Frm of frames. A typical frame is the
lattice OX of all open sets of a topological space X: joins are given by
set-theoretical unions and finite meets by intersections, ∅ is the least ele-
ment and X the biggest element X. If f : X → Y is a continuous map then
O(f) = (U 7→ f−1[U ]) : OY → OX is a frame homomorphism. Thus one
has a contravariant functor O : Top → Frm (where Top is the category of
topological spaces).
For more information about frames see, e.g., [20] or [27].

Since the relation between spaces and frames is contravariant, it is the dual
category of Frm, usually denoted by Loc, that should be regarded as the
category of pointfree (generalized) spaces. This is the category of locales and
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localic maps. Localic maps may be represented by maps f : L → M defined
as the right (Galois) adjoints of the frame homomorphisms h : M → L, that
is, maps f such that h(x) ≤ y iff x ≤ f(y).
Subobjects in Loc are represented by sublocales. A sublocale S of a locale

L is a subset S ⊆ L such that

(S1) for every M ⊆ S,
∧

M ∈ S (thus in particular, the top 1 is in S), and
(S2) for every s ∈ S and every x ∈ L, x → s is in S.

Sublocales are precisely such subsets for which the embedding map j : S → L

is a (one-one) localic map. The corresponding (left adjoint) frame homomor-
phism is denoted by νS : L → S and it is given by νS(x) =

∧

{s ∈ S | s ≥ x}.
Sublocales of L ordered by reverse inclusion constitute a frame S(L).
Each sublocale S of L is itself a frame with the same meets as L (and since

the Heyting operation depends on the meet structure only, with the same
Heyting operation) but, however, the joins in S and L do not necessarily
coincide. We shall denote the join of a and b in S by a∨S b, to distinguish it
from the join a ∨ b in L.
In Loc, the role of open (resp. closed) subspaces is taken by open (resp.

closed) sublocales (associated to each a ∈ L)

o(a) = {a → x | x ∈ L} = {x ∈ L | a → x = x}

(resp. c(a) = {a ∨ x | x ∈ L}). (5.2)

They are complemented with each other and one has o(
∨

ai) =
∧

o(ai),
o(a ∧ b) = o(a) ∨ o(b), c(

∨

ai) =
∨

c(ai) and c(a ∧ b) = c(a) ∧ c(b). In
particular, c(a) ≤ c(b) if and only if a ≤ b and o(b) ≤ o(a) if and only if
a ≤ b.

6.Monotonically normal frames

From now on, we restrict our study from general lattices to frames and
locales. In this case, condition (4.1) yields the usual notion of a normal
frame and it is clear that one can take v = u∗. Thus, L is normal if and only
if, whenever a ∨ b = 1, there exists a u ∈ L satisfying a ∨ u = 1 = b ∨ u∗.
Then, a frame L is normal if and only if there exists a function

∆: DL = {(a, b) ∈ L× L | a ∨ b = 1} → L

such that
a ∨∆(a, b) = 1 = b ∨∆(a, b)∗

for all (a, b) ∈ DL. The function ∆ is called a normality operator [11].
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Correspondingly, a frame L is monotonically normal if there exists a mono-
tone function ∆: DL → L such that

a ∨∆(a, b) = 1 = b ∨∆(a, b)∗

for all (a, b) ∈ DL (and ∆ is called a monotone normality operator [11]).
This is a conservative extension of the point-set notion, that is, a topo-

logical space X is monotonically normal iff OX is a monotonically normal
frame.

Examples 6.1. (1) If a ∨ b = 1 implies a = 1 or b = 1, then the frame is
trivially monotonically normal. Indeed the function ∆: DL → L given by

∆(a, b) =

{

0, if a = 1,

1, if a 6= 1,

is a monotone normality operator. For example, any chain (completely or-
dered set) satisfies this condition and hence is trivially monotonically normal.

(2) As proved in [11], any metrizable frame ([28]) is monotonically normal.
More generally, any frame that admits a chain of admissible covers is mono-
tonically normal [11]. Note that, in particular, any nearness with a countable
basis is of this kind. It may be also worth mentioning that since this general
condition is preserved by taking homomorphic images it is automatic that
the frames in question are hereditarily monotonically normal.

Given a function ∆: DL → L, let ∆op(a, b) = ∆(b, a). We say that ∆ is
self-disjoint whenever the pointwise meet ∆ ∧∆op is equal to 0.

Remark 6.2. It is important to recall here the following results from [11].
If ∆: DL → L is a monotone normality operator, then so is ∆⊛ defined
by ∆⊛(a, b) = ∆(b, a)∗. On the other hand, if ∆1 and ∆2 are monotone
normality operators, then so is the pointwise meet ∆1∧∆2. Consequently, if
∆ is a monotone normality operator, then for Θ = ∆∧∆⊛ one has Θ(a, b)∧
Θop(a, b) ≤ ∆(a, b) ∧ ∆(a, b)∗ = 0 and hence Θ is self-disjoint. It follows
that each monotonically normal frame L admits a self-disjoint monotone
normality operator.

Recall that a frame is said to be hereditarily monotonically normal if every
its sublocale is monotonically normal. Of course, the following implications
are true for any frame L:
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L is hereditarily monotonically normal
⇓ (A)

Every open sublocale of L is monotonically normal
⇓ (B)

L is monotonically normal.

And what can we say about the converse implications of (A) and (B)?

Proposition 6.3. If every open sublocale of L is monotonically normal, then

L is hereditarily monotonically normal.

Proof : Let S be an arbitrary sublocale of L, given by the surjective homo-
morphism νS : L → S. In order to prove that S is monotonically normal, let
a, b ∈ S be such that a ∨S b = 1 and consider the open sublocale

T = o(a ∨ b) = {(a ∨ b) → x | x ∈ L} = {νT (x) | x ∈ L}.

By (H4), νT (a) = (a ∨ b) → a = (a → a) ∧ (b → a) = b → a. Likewise,
νT (b) = a → b. So, we have

(b → a) ∨T (a → b) = νT (a) ∨T νT (b) = νT (a ∨ b) = 1.

Since T is monotonically normal, there exists by Remark 6.2 a self-disjoint
monotone normality operator ∆: DT → T , i.e., such that ∆ ∧ ∆op is equal
to 0T = (a ∨ b)∗. We have

(a ∨ b) → (a ∨∆(b → a, a → b)) = νT (a ∨∆(b → a, a → b))

= νT (a) ∨T ∆(b → a, a → b)

= (b → a) ∨T ∆(b → a, a → b) = 1,

which, by (H1), yields a ∨ b ≤ a ∨∆(b → a, a → b). Thus

a ∨ b = (a ∨ b) ∧ (a ∨∆(b → a, a → b)) = a ∨ (b ∧∆(b → a, a → b)). (∗)

We now show that ∆S : DS → S defined by

∆S(a, b) = νS(b ∧∆(b → a, a → b))

is a monotone normality operator for S. Indeed, we first note that

(∆S ∧∆op
S )(a, b) = νS(a ∧ b ∧ (∆ ∧∆op)(b → a, a → b))

= νS((a ∧ b) ∧ (a ∨ b)∗) = νS(0) = 0S
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and hence ∆S(b, a) ≤ ∆S(a, b)
∗. Now, by (∗) we get

a ∨S ∆S(a, b) = νS(a ∨ (b ∧∆(b → a, a → b))) = νS(a ∨ b) = a ∨S b = 1,

and dually, b ∨S ∆S(a, b)
∗ ≥ b ∨S ∆S(b, a) = 1. This shows that S is normal.

Finally, let (a1, b1) ≤ (a2, b2) in DS, that is, a1 ≥ a2 and b1 ≤ b2. Since the
Heyting operator (·) → (·) is antitone on the left and monotone on the right
(recall (H3) and (H4)), then b1 → a1 ≥ b2 → a2 and a1 → b1 ≤ a2 → b2,
that is, (b1 → a1, a1 → b1) ≤ (b2 → a2, a2 → b2) in DT . Then, since
∆ is monotone, we have ∆(b1 → a1, a1 → b1) ≤ ∆(b2 → a2, a2 → b2).
Therefore b1 ∧ ∆(b1 → a1, a1 → b1) ≤ b2 ∧ ∆(b2 → a2, a2 → b2) and hence
∆S(a1, b1) ≤ ∆S(a2, b2).

In conclusion, the converse of (A) is true.
We can also show the converse of (B) in case the frame is subfit:

Theorem 6.4. Let L be a subfit and monotonically normal frame. Then

every open sublocale of L is monotonically normal.

Proof : Given L as stated, let 0 6= a ∈ L (if a = 0 then o(a) = {1} is trivially
monotonically normal). For each (x, y) ∈ Do(a) we have that x ∨o(a) y = a →
(x ∨ y) = 1 (i.e. a ≤ x ∨ y). Since L is subfit and a 6≤ 0, there exists c ∈ L

such that a ∨ c = 1 6= c. Moreover, for each such c ∈ L we have

(x ∧ a) ∨ y ∨ c = (x ∨ y ∨ c) ∧ (a ∨ y ∨ c) ≥ a ∨ c = 1.

On the other hand, by monotone normality, Remark 6.2 ensures the exis-
tence of a self-disjoint monotone normality operator ∆: DL → L. We now
show that ∆o(a) : Do(a) → o(a), defined for each (x, y) ∈ Do(a) by

∆o(a)(x, y) = a →
∨

{∆(x ∧ a, y ∨ c) | a ∨ c = 1 6= c},

is a monotone normality operator for S.
Indeed, we first note that since {c ∈ L | a ∨ c = 1 6= c} 6= ∅ we have

(∆o(a) ∧∆o(a)
op)(x, y) = ∆o(a)(x, y) ∧∆o(a)(y, x) =

= a →
(
∨

{∆(x ∧ a, y ∨ c) | a ∨ c = 1 6= c} ∧
∨

{∆(y ∧ a, x ∨ d) | a ∨ d = 1 6= d}
)

= a →
(
∨

{∆(x ∧ a, y ∨ c) ∧∆(y ∧ a, x ∨ d) | a ∨ c = 1 6= c and a ∨ d = 1 6= d}
)

.

But y ∧ a ≤ (y ∧ a) ∨ c = (y ∨ c) ∧ (a ∨ c) = y ∨ c and x ∨ d = (x ∨ d) ∧
(a ∨ d) = (x ∧ a) ∨ d ≥ x ∧ a whenever a ∨ c = 1 6= c and a ∨ d = 1 6= d.
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Consequently, we have ∆(y ∧ a, x ∨ d) ≤ ∆(y ∨ c, x ∧ a), and since ∆ is
self-disjoint, ∆(x ∧ a, y ∨ c) ∧∆(y ∧ a, x ∨ d) = 0. Hence

(

∆o(a) ∧∆o(a)
op
)

(x, y) = a → 0 = 0o(a)

and therefore ∆o(a)(y, x) ≤ ∆o(a)(x, y)
∗.

Now,

x ∨o(a) ∆o(a)(x, y) = a → (x ∨∆o(a)(x, y))

= a →
(

(a → x) ∨ (a →
∨

{∆(x ∧ a, y ∨ c) | a ∨ c = 1})
)

= a →
(

x ∨
∨

{∆(x ∧ a, y ∨ c) | a ∨ c = 1}
)

= a →
(
∨

{x ∨∆(x ∧ a, y ∨ c) | a ∨ c = 1}
)

≥ a →
(
∨

{(x ∧ a) ∨∆(x ∧ a, y ∨ c) | a ∨ c = 1}
)

= a → 1 = 1

and dually, y ∨o(a) ∆o(a)(x, y)
∗ ≥ y ∨o(a)∆o(a)(y, x) = 1. This shows that o(a)

is normal.

Finally, let (x1, y1) ≤ (x2, y2) in Do(a), that is, x1 ≥ x2 and y1 ≤ y2. Then

∆o(a)(x1, y1) = a →
∨

{∆(x1 ∧ a, y1 ∨ c) | a ∨ c = 1}

≤ a →
∨

{∆(x2 ∧ a, y2 ∨ c) | a ∨ c = 1}

= ∆o(a)(x2, y2).

Remark 6.5. In the above proof, subfitness is not used in its full force; the
proposition actually holds already in the stronger form which only requires
L to satisfy

a 6≤ 0 =⇒ ∃ c ∈ L : a ∨ c = 1 6= c. (WSfit)

Interestingly, this is precisely the weak subfitness of [18] (also puny in [31]).
This is indeed a condition weaker than subfitness (see Example 6.8 below).

The following results give us a more precise idea of the relationship between
subfitness and weak subfitness in terms of sublocales.

Proposition 6.6. A frame L is weakly subfit if and only if every open sublo-

cale of L is weakly subfit.

Proof : Let L be weakly subfit and consider b ∈ o(a) such that b 6= 0o(a) = a∗.
Then b∧a 6= 0 and by (WSfit) there is a c ∈ L, c 6= 1, such that (b∧a)∨c = 1.
Then 1 = b ∨ c ≤ b ∨ (a → c) and a → c 6= 1 (if, otherwise, a → c = 1 then
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we would have a ≤ c, i.e. 1 = a ∨ c = c 6= 1, a contradiction). Hence
c′ = a → c ∈ o(a) and b ∨o(a) c

′ = a → (b ∨ c′) = a → 1 = 1 6= c′.

Proposition 6.7. A frame L is subfit if and only if every closed sublocale of

L is weakly subfit.

Proof : Let L be subfit and consider b ∈ c(a) such that b 6≤ 0c(a) = a. By
(Sfit) there exists c ∈ L satisfying b ∨ c = 1 6= a ∨ c. Take c′ = a ∨ c ∈ c(a).
Then b ∨c(a) c

′ = a ∨ b ∨ c = 1 6= c′.
Conversely, let b 6≤ a in L. Since c(a) is weakly subfit and b′ = a ∨ b 6≤

a = 0c(a), there exists c ∈ c(a) such that b′ ∨c(a) c = 1 6= c. Hence b ∨ c =
a ∨ b ∨ c = b′ ∨ c = 1.

It may be also worth pointing that, by Lemma 4.2 of [18], the frames in
which every sublocale is weakly subfit are the hereditarily subfit ones. The
latter are precisely the fit frames [27, Prop. V.1.5], that is, the frames that
satisfy

a 6≤ b =⇒ ∃ c ∈ L : a ∨ c = 1 and c → b 6≤ b. (Fit)

Thus, the situation is as the following table depicts:

L satisfies (WSfit) ⇐⇒ every open sublocale of L satisfies (WSfit)

⇑ 6⇓

L satisfies (Sfit) ⇐⇒ every closed sublocale of L satisfies (WSfit)

⇑ 6⇓

L satisfies (Fit) ⇐⇒ every sublocale of L satisfies (WSfit)

Example 6.8. For a space X, the frame OX of open sets is weakly subfit if
and only if the space satisfies the following condition:

∀∅ 6= U ∈ OX, ∃x ∈ X such that {x} ⊆ U (WConj)

(equivalently, if each nonempty open set contains a nonempty closed set).
Let X = N ∪ {ω1, ω2} with

OX =
{

A ∪B | A ⊆ N with Nr A finite and B = ∅, {ω1} or {ω1, ω2}
}

∪
{

∅
}

=
{

A | A ⊆ N with Nr A finite
}

∪
{

A ∪ {ω1} | A ⊆ N with Nr A finite
}

∪

∪
{

A ∪ {ω1, ω2} | A ⊆ N with NrA finite
}

∪
{

∅
}

.
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Then

CX =
{

F ∪B | F ⊆ N with F finite and B = ∅, {ω2} or {ω1, ω2}
}

∪
{

∅
}

=
{

F | F ⊆ N with F finite
}

∪
{

F ∪ {ω2} | F ⊆ N with F finite
}

∪

∪
{

F ∪ {ω1, ω2} | F ⊆ N with F finite
}

∪
{

∅
}

and therefore

{n} = {n} for all n ∈ N, {ω1} = {ω1, ω2} and {ω2} = {ω2}.

So, OX is weakly subfit, since each nonempty open set contains a closed set
of the form {n} with n ∈ N. However, OX is not subfit since U = N∪{ω1} is

open, ω1 ∈ U , {ω1} = {ω1, ω2} and {ω1} = {ω1, ω2} 6⊆ N and {ω2} = {ω2} 6⊆
N. Note that, on the other hand, OX is not normal.

As a consequence of Proposition 6.3 and Theorem 6.4 it follows that:

Corollary 6.9. Every open subspace of a subfit monotonically normal space

is monotonically normal.

Proof : Let X be a subfit monotonically normal space and U ⊆ X an open
subset. By hypothesis the open sublocale o(U) is a monotonically normal
frame. Since the frames o(U) and OU are isomorphic, it follows that the
subspace U is monotonically normal.

Corollary 6.10. The following are equivalent for a subfit frame L:

(1) L is monotonically normal.

(2) L is hereditarily monotonically normal.

(3) Every open sublocale of L is monotonically normal.

Remark 6.11. Evidently, by Remark 6.5, Corollaries 6.9 and 6.10 hold more
generally for weakly subfit spaces and weakly subfit frames respectively.

We end this section with a result about the behaviour of monotone nor-
mality under closed maps. For that, we need to recall that the right adjoint
h∗ : M → L of a frame homomorphism h : L → M (i.e., the localic map
corresponding to h) has the following properties:

(L1) h∗ preserves arbitrary meets (in particular, h∗(1) = 1).
(L2) If h∗(b) = 1 then b = 1.
(L3) h∗ is surjective iff h is injective iff h∗(h(a)) = a for every a ∈ L.

Further, h is closed if

h∗ (h(a) ∨ b) = a ∨ h∗ (b) for every a ∈ L and b ∈ M.
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Proposition 6.12. Let h : L → M be an injective closed frame homomor-

phism. If M is monotonically normal then so is L.

Proof : Let ∆M be a monotone normality operator on M , i.e. a monotone
∆M : DM → M satisfying

a ∨∆M(a, b) = 1 = b ∨∆M(a, b)∗

for all (a, b) ∈ DM . Let us define a further map ∆L : DL → L as follows:
For each (c, d) ∈ DL, since h is a frame homomorphism it follows that

(h(c), h(d)) ∈ DM . So we define

∆L(c, d) = h∗

(

∆M(h(c), h(d))
)

∈ L.

We first show that ∆L is a normality operator. Since h is closed, then, for
each (c, d) ∈ DL, we have

c ∨∆L(c, d) = c ∨ h∗

(

∆M(h(c), h(d))
)

= h∗

(

h(c) ∨∆M(h(c), h(d))
)

= h∗(1M) = 1L.

On the other hand, since h∗ preserves arbitrary meets and is surjective we
have

∆L(c, d) ∧ h∗

(

∆M(h(c), h(d))∗
)

= h∗

(

∆M(h(c), h(d)) ∧∆M(h(c), h(d))∗
)

= h∗(0M) = 0L

and thus

d ∨∆L(c, d)
∗ ≥ d ∨ h∗

(

∆M(h(c), h(d))∗
)

= h∗

(

h(d) ∨∆M(h(c), h(d))∗
)

= h∗(1M) = 1L.

Finally, ∆L is monotone since ∆M , h and h∗ are monotone.

Remark 6.13. Translated to the category of locales this proposition asserts
that any closed surjective localic map preserves monotone normality. This is
the pointfree monotone version of the classical Hausdorff mapping invariance
theorem that states that the image of any normal space under any closed
continuous map is normal.

7. Stratifiable frames

We close with a few results on stratifiable frames. As in the case of mono-
tone normality, the notion of stratifiability introduced in Definition 4.4 for
arbitrary lattices L admits a simpler characterization when L is a frame:
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Proposition 7.1. A frame L is stratifiable if and only if there exists
(

αn : L → L
)

n∈N

such that:

(1)
∨

n∈N

αn(a) = a for every a ∈ L.

(2) a ∨ αn(a)
∗ = 1 for every n ∈ N and a ∈ L.

(3) αn(a) ≤ αm(b) for every n ≤ m in N and a ≤ b in L.

Proof : ⇒: This is clear since a ∨ αn(a)
∗ ≥ a ∨ βn(a) = 1 for each n ∈ N and

a ∈ L.

⇐: First, let us show that L is monotonically normal. Let
(

αn : L → L
)

n∈N
as above. We define the map ∆: DL → L as follows:

∆(a, b) =
∨

n∈N

(αn(a)
∗ ∧ αn(b)).

Then we have

a ∨∆(a, b) =
∨

n∈N

((a ∨ αn(a)
∗) ∧ (a ∨ αn(b))) =

∨

n∈N

(a ∨ αn(b)) = a ∨ b = 1.

On the other hand, for every n,m, the element

cn,m = (αn(a)
∗ ∧ αn(b)) ∧ (αm(a) ∧ αm(b)

∗)

is equal to 0. Indeed, if n ≤ m, then cn,m ≤ αm(b) ∧ αm(b)
∗ = 0; similarly,

if n > m, then cn,m ≤ αn(a)
∗ ∧ αn(a) = 0. Consequently, by the frame

distribution law, ∆(a, b) ∧ (
∨

m∈N(αm(a) ∧ αm(b)
∗)) = 0, that is,

∨

m∈N

(αm(a) ∧ αm(b)
∗) ≤ ∆(a, b)∗,

and thus

b ∨∆(a, b)∗ ≥
∨

m∈N

((b ∨ αm(a)) ∧ (b ∨ αn(b)
∗)) =

∨

m∈N

(b ∨ αm(a)) = b ∨ a = 1.

To complete the proof, just notice that α and β = α∗ satisfy the conditions
of Definition 4.4(b).

It follows that the concept of stratifiability for frames is conservative, that
is, a topological space is stratifiable (in the sense of our Definition 3.3) if and
only if the frame of its open sets is stratifiable. Moreover:

Corollary 7.2. Any stratifiable frame is monotonically normal and perfectly

normal.
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Concerning examples of stratifiable frames, we will now observe that the
monotonically frames of Example 6.1(2) are already stratifiable. For that, we
need to recall a few things about frame covers and nearnesses. A subset of a
frame A ⊆ L is a cover of L if

∨

A = 1. The set of all covers of L, denoted
as CovL, can be preordered as follows: a cover A refines a cover B, written
A 4 B, if for each a ∈ A there is some b ∈ B with a ≤ b. For any A ∈ CovL
and b ∈ L, the element Ab of L is defined by Ab =

∨

{a ∈ A | a ∧ b 6= 0}.
For any A ⊆ CovL, the relation ⊳A (or simply ⊳) on L is defined by

x ⊳A y if Ax ≤ y for some A ∈ A,

and A is said to be admissible if a =
∨

{b ∈ L | b ⊳A a} for each a ∈ L. A
nearness on L is an admissible filter A in (CovL,4) ([2]). A nearness frame

[2] is a pair (L,A) whereA is a nearness on L. Given a nearness frame (L,A),
a system of covers B ⊆ A is said to be a basis of A if for each A ∈ A there
exists some B ∈ B such that B 4 A. Note that the relation ⊳B coincides
with ⊳A. Next proposition extends Remark 4.6 and Proposition 4.5 of [11].

Proposition 7.3. Let L be a frame and A = {An | n ∈ N} a system of

admissible covers of L such that Am 4 An whenever n ≤ m in N. Then L is

stratifiable.

Proof : Let us define
(

αn : L → L
)

n∈N
by

αn(a) =
∨

{b ∈ L | Anb ≤ a}

for all n ∈ N and a ∈ L. Then we have:

(1) a =
∨

{b ∈ L | b ⊳A a} =
∨

n∈N

∨

{b ∈ L | Anb ≤ a} =
∨

n∈N αn(a) for
each a ∈ L.

(2) For each x ∈ An satisfying x ∧ αn(a) 6= 0 there is a b ∈ L such that
Anb ≤ a and x ∧ b 6= 0 (hence x ≤ Anb ≤ a). Therefore

1 =
∨

An = (
∨

{x ∈ An | x ∧ αn(a) 6= 0}) ∨ (
∨

{x ∈ An | x ∧ αn(a) = 0})

≤ a ∨ αn(a)
∗

for each n ≤ m in N and a ≤ b in L.

(3) For each n ≤ m in N and a ≤ b in L we have

αn(a) =
∨

{x ∈ L | Anx ≤ a} ≤
∨

{x ∈ L | Amx ≤ a}

≤
∨

{x ∈ L | Amx ≤ b} = αn(b).
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Corollary 7.4. Every nearness frame (L,A) with a countable basis is strat-

ifiable.

In particular, each metrizable frame is stratifiable.

We conclude with two propositions that provide conditions under which
frame homomorphisms preserve and reflect stratifiability.

Proposition 7.5. Let h : L → M be a surjective frame homomorphism. If

L is stratifiable then so is M .

Proof : Let (αn : L → L)n∈N be a stratification of L and consider

βn = M
h∗−→ L

αn−→ L
h

−→ M

where h∗ is the right adjoint of h. The fact that (βn : M → M)n∈N is a
stratification for M is easily established by checking conditions (1)-(3) of
Proposition 7.1:

(1) For each b ∈ M there is some a ∈ L such that b = h(a). Then

∨

n∈N

βn(b) =
∨

n∈N

h (αn (h∗(b))) = h
(

∨

n∈N

αn(h∗(b))
)

= h(h∗(b)) = h (h∗ (h(a))) = h(a) = b.

(2) For each b ∈ M we have

b ∨ βn(b)
∗ = b ∨ h (αn (h∗ (b)))

∗ ≥ b ∨ h (αn (h∗ (b))
∗)

= h (h∗ (b)) ∨ h (αn (h∗ (b))
∗) = h (h∗ (b) ∨ αn (h∗ (b))

∗) = h(1) = 1.

(3) is obvious since both h and h∗ are order-preserving.

We have now the following corollaries:

Corollary 7.6. Any sublocale of a stratifiable frame is stratifiable.

Corollary 7.7. Any subspace of a stratifiable space is stratifiable.

Proof : Let A be a subspace of a topological space X and ιA : A → X the
inclusion map. Then ιA

−1 : OX → OA is a surjective frame homomorphism.
Since OX is stratifiable, so is OA.

Remark 7.8. We note that given a subset A ⊆ X, the right adjoint
(

ιA
−1
)

∗
: OA → OX
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is given by the formula
(

ιA
−1
)

∗
(U) = X r Ar U for each U ∈ OA,

which was already used in Remark 2.2(1) when proving that the property of
having a Borges operator is hereditary.

Finally we establish that stratifiability is preserved under injective closed
frame homomorphisms. We first need the following lemma whose proof is
closely related with the arguments used in the proof of Proposition 7.1.

Lemma 7.9. Let L be a stratifiable frame with a stratification

(αn : L → L)n∈N.

For each a, b ∈ L there exists u(a, b) ≤ a in L such that:

(1) u(a1, b1) ≤ u(a2, b2) whenever a1 ≤ a2 and b1 ≥ b2.

(2) u(a, b) ∨ b ≥ a and a ∨ u(a, b)∗ ≥ b.

(3) If a ∨ b = 1 then a ∨ u(a, b)∗ = 1 = u(a, b) ∨ b.

(Note that u(a, b) ∨ b = a ∨ b.)

Proof : It suffices to take

u(a, b) =
∨

n∈N

(αn(a) ∧ αn(b)
∗) .

Indeed, u(a, b) ≤ a since αn(a) ≤ a for every n ∈ N. Moreover:

(1) is obvious.

(2) On one hand,

u(a, b) ∨ b =
∨

n∈N

(

(αn(a) ∨ b) ∧ (αn(b)
∗ ∨ b)

)

=
∨

n∈N

(αn(a) ∨ b) = a ∨ b ≥ a.

On the other hand, for every m, n ∈ N we have

αm(b) ∧ αm(a)
∗ ∧ αn(a) ∧ αn(b)

∗ ≤ αn(b) ∧ αn(b)
∗ = 0 whenever m ≤ n and

αm(b) ∧ αm(a)
∗ ∧ αn(a) ∧ αn(b)

∗ ≤ αm(a)
∗ ∧ αm(a) = 0 otherwise.

Consequently, αm(b) ∧ αm(a)
∗ ≤ (αn(a) ∧ αn(b)

∗)∗ for every m, n ∈ N and
therefore

a ∨ u(a, b)∗ = a ∨
∧

n∈N

(αn(a) ∧ αn(b)
∗)∗ ≥ a ∨

∨

m∈N

(αm(b) ∧ αm(a)
∗)

=
∨

m∈N

(

(a ∨ αm(b) ∧ (a ∨ αm(a)
∗)
)

=
∨

m∈N

(a ∨ αm(b)) = a ∨ b ≥ b.

(3) is immediate from (2).
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Theorem 7.10. Let h : L → M be an injective closed frame homomorphism.

If M is stratifiable then so is L.

Proof : Let (αn : M → M)n∈N be a stratification of M . We need to present a
stratification (βn : L → L)n∈N of L. So, let a ∈ L and

bn = h
(

h∗

(

αn(h(a))
∗
))

∈ M

for each n ∈ N. Note that

h(a) ∨ bn = 1. (7.10.1)

Indeed, since h is closed, we get

h(a) ∨ bn = h(a) ∨ h
(

h∗

(

αn(h(a))
∗
))

= h
(

a ∨ h∗

(

αn(h(a))
∗
))

= h
(

h∗

(

h(a) ∨ αn(h(a))
∗
))

= h
(

h∗

(

b ∨ αn(h(a))
∗
))

= h (h∗(1)) = 1.

Moreover, bn = h (h∗ (αn(h(a))
∗)) ≤ αn(h(a))

∗ for each n ∈ N and therefore
∨

n∈N

bn
∗ ≥

∨

n∈N

αn(h(a)) = h(a). (7.10.2)

Hence, Lemma 7.9 yields a u(h(a), bn) ≤ h(a) satisfying the corresponding
conditions (1), (2) and (3). Then,

βn(a) = h∗(u(h(a), bn))

defines a stratification of L, since it satisfies conditions (1)-(3) of Proposi-
tion 7.1:

(1) By (7.10.1) and Lemma 7.9(3), u(h(a), bn) ∨ bn = 1. Consequently, since
h is closed, we get

1 = h (h∗(1)) =h
(

h∗

(

u(h(a), bn) ∨ bn
))

= h
(

h∗

(

u(h(a), bn) ∨ h
(

h∗

(

αn(h(a))
∗
))))

= h
(

h∗(u(h(a), bn)) ∨ h∗

(

αn(h(a))
∗
))

= h
(

h∗(u(h(a), bn))
)

∨ h
(

h∗

(

αn(h(a))
∗
))

= h
(

h∗(u(h(a), bn))
)

∨ bn.

Hence h(βn(a)) = h(h∗(u(h(a), bn))) ≥ bn
∗. Using (7.10.2) we conclude that

h
(

∨

n∈N

βn(a)
)

=
∨

n∈N

h(βn(a)) ≥
∨

n∈N

bn
∗ ≥ h(a).

In fact, since h is injective it follows that
∨

n∈N βn(a) ≥ a, and the converse
inequality is a consequence of condition (2) proved below.
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(2) First, a ∨ βn(a)
∗ = a ∨ h∗(u(h(a), bn))

∗ ≥ a ∨ h∗ (u(h(a), bn)
∗). By the

closedness of h, this is equal to h∗ (h(a) ∨ u(h(a), bn)
∗). But by (7.10.1) and

Lemma 7.9(3), h(a) ∨ u(h(a), bn) = 1, so it is shown that a ∨ βn(a)
∗ = 1.

(3) It is a straightforward checking using assertion (1) of the lemma.

Translated to the category of locales this proposition asserts that any closed
surjective localic map preserves stratifiability. Since axiom TD is precisely
equivalent with representability of closed continuous maps as closed frame
homomorphisms (see [29] or [27, III.7.3.1]), we have also the following corol-
lary from the preceding result:

Corollary 7.11. Let X and Y be TD-spaces and f : X → Y a closed surjec-

tive continuous map. If X is stratifiable then so is Y .
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