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TO SHARP REGULARITY
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Abstract: That the weak solutions of degenerate parabolic pdes modelled on the
inhomogeneous p−Laplace equation

ut − div
(
|∇u|p−2∇u

)
= f ∈ Lq,r, p > 2

are C0,α, for some α ∈ (0, 1), is known for almost 30 years. What was hitherto miss-
ing from the literature was a precise and sharp knowledge of the Hölder exponent
α in terms of p, q, r and the space dimension n. We show in this paper that

α =
(pq − n)r − pq

q[(p− 1)r − (p− 2)]
,

using a method based on the notion of geometric tangential equations and the
intrinsic scaling of the p−parabolic operator. The proofs are flexible enough to be
of use in a number of other nonlinear evolution problems.

Keywords: Degenerate parabolic equations; sharp Hölder regularity; tangential
equations; intrinsic scaling.
AMS Subject Classification (2000): 35K55, 35K65.

1. Introduction
The understanding of the local behaviour of solutions to singular and de-

generate parabolic equations has witnessed an impressive progress in the last
three decades. At the heart of most developments lies a single unifying idea,
namely that regularity results have to be interpreted in an intrinsic geomet-
ric configuration, a sort of signature to each particular pde. The pioneering
work of DiBenedetto [4] was the starting point to a theory that has, in many
aspects, reached its maturity (cf. [5] and [15] for recent accounts).
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2 TEIXEIRA AND URBANO

A central aspect in this endeavour has always been the Hölder continu-
ity of bounded weak solutions, which ultimately follows from Harnack type
inequalities. Although powerful, this approach only provides qualitative es-
timates that depend solely on the structure of the equations and thus hold in
a very general setting. The quest for precise, quantitative derivations of the
Hölder exponent has hitherto eluded the community, the only exception be-
ing the two-dimensional result in [6] concerning p−harmonic functions. This
type of quantitative information, apart from its own intrinsic value, plays
an important role in the analysis of a number of qualitative issues for par-
abolic pdes, such as blow-up analysis, Liouville type results, free boundary
problems, and so forth.

The main goal of this paper is to fill this gap, bringing the theory to a
new level of understanding. We show that weak solutions of degenerate
p−parabolic equations whose prototype is

ut − div
(
|∇u|p−2∇u

)
= f ∈ Lq,r, p ≥ 2 (1.1)

are locally of class C0,α in space, with

α :=
(pq − n)r − pq

q[(p− 1)r − (p− 2)]
,

a precise and sharp expression for the Hölder exponent in terms of p, the
integrability of the source and the space dimension n. We also show that u is
of class C0,αθ in time, where θ is the α−interpolation between 2 and p. What
makes the parabolic case more delicate to analyse is the inhomogeneity in the
equation, the fact that it scales differently with respect to space and time. It
is worth stressing that the integrability in time (respectively, in space) of the
source affects the regularity in space (respectively, in time) of the solution.

To highlight the extent to which our result is sharp, we project it into the
state of the art of the theory. For the linear case p = 2, we obtain

α = 1−
(

2

r
+
n

q
− 1

)
,

which is the optimal Hölder exponent for the non-homogeneous heat equa-
tion, and is in accordance with estimates obtained by energy considerations.
When p → ∞, we have α → 1−, which gives an indication of the expected
locally Lipschitz regularity for the case of the parabolic infinity-Laplacian.
When the source f is independent of time, or else bounded in time, that is
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r =∞, we obtain

α =
pq − n
q(p− 1)

=
p

p− 1
·
q − n

p

q
,

which is exactly the optimal exponent obtained in [14] for the elliptic case.
It might also be interesting to compare our optimal result with the estimates
from [11, Section 4], and also with the continuity estimates on p−parabolic
obstacle problems from [9].

Within the general theory of p−parabolic equations, our result reveals a
surprising feature. From the applied point of view, it is relevant to know
what is the effect on the diffusion properties of the model as we dim the
exponent p. Näıve physical interpretations could indicate that the higher the
value of p, the less efficient should the diffusion properties of the p−parabolic
operator turn out to be, i.e., one should expect a less efficient smoothness
effect of the operator. For instance, this is verified in the sharp regularity
estimate for p−harmonic functions in 2D [6]. On the contrary, our estimate
implies that for p−parabolic inhomogeneous equations, the Hölder regularity
theory improves as p increases. In fact, a direct computation shows

sign (∂pα(p, n, q, r)) = sign (q(2− r) + nr) = +1,

in view of standard assumptions on the integrability exponents of the source
term.

Although regularity estimates for degenerate evolution equations have been
successfully obtained in great generality (cf. [7], [1]), explicit expressions for
the Hölder exponent of continuity for weak solutions have only been known in
the linear setting. For nonlinear equations, the classical tools from harmonic
analysis, such as singular integrals, are precluded from being used and an
entirely new approach is needed. The new estimates we obtain are striking
in their simplicity but perhaps the most relevant contribution we offer is the
technique employed. We develop a method based on the notion of geometric
tangential equations, which explores the intrinsic scaling of the p−parabolic
operator and the integrability of the forcing term. By means of appropriate
scaled iterative arguments, we show that at each inhomogeneous equation
there is a universal tangential space formed by C0,1 in space and C0, 12 in time
functions. The method then imports such regularity back to the original
equation, properly corrected through the scaling used to access the tangential
space. The method is new to the field and robust enough to be adapted to
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other evolutionary problems, as well as to a number of other issues in the
theory.

2. Preliminary tools
Let U ⊂ Rn be open and bounded, and T > 0. We consider the space-

time domain UT = U × (0, T ). We work with the prototype inhomogeneous
equation

ut − div
(
|∇u|p−2∇u

)
= f in UT , (2.1)

with a source term f ∈ Lq,r(UT ) ≡ Lr(0, T ;Lq(U)) satisfying

1

r
+
n

pq
< 1 (2.2)

and
2

r
+
n

q
> 1 (2.3)

The first assumption is the standard minimal integrability condition that
guarantees the existence of bounded weak solutions, while (2.3) defines the
borderline setting for optimal Hölder type estimates. For instance, when
r =∞, conditions (2.2) and (2.3) enforce

n

p
< q < n,

which corresponds to the known range of integrability required in the elliptic
theory for local C0,α estimates to be available.

We start with the definition of weak solution to (2.1).

Definition 2.1. We say a function

u ∈ Cloc
(
0, T ;L2

loc(U)
)
∩ Lploc

(
0, T ;W 1,p

loc (U)
)

is a weak solution to (2.1) if, for every compact K ⊂ U and every subinterval
[t1, t2] ⊂ (0, T ], there holds∫

K

uϕ dx
∣∣∣t2
t1

+

∫ t2

t1

∫
K

{
−uϕt + |∇u|p−2∇u · ∇ϕ

}
dxdt =

∫ t2

t1

∫
K

fϕ dxdt,

for all ϕ ∈ H1
loc

(
0, T ;L2(K)

)
∩ Lploc

(
0, T ;W 1,p

0 (K)
)

.
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The following alternative definition makes use of the Steklov average of a
function v ∈ L1(UT ), defined for 0 < h < T by

vh :=


1
h

∫ t+h

t

v(·, τ)dτ if t ∈ (0, T − h]

0 if t ∈ (T − h, T ],

and circumvents the difficulties related to the low regularity in time. In fact,
these difficulties are more of a technical nature since the time derivative ut
is shown in [10] to be an element of a certain Lebesgue space.

Definition 2.2. We say a function

u ∈ Cloc
(
0, T ;L2

loc(U)
)
∩ Lploc

(
0, T ;W 1,p

loc (U)
)

is a weak solution to (2.1) if, for every compact K ⊂ U and every 0 < t <
T − h, there holds∫

K×{t}

{
(uh)tϕ+

(
|∇u|p−2∇u

)
h
· ∇ϕ

}
dx =

∫
K×{t}

fhϕdx, (2.4)

for all ϕ ∈ W 1,p
0 (K).

One key ingredient in our analysis is the following Caccioppoli-type energy
estimate enjoyed by weak solutions of equation (2.1).

Lemma 2.3 (Caccioppoli estimate). Let u be a weak solution to (2.1). Given
K × [t1, t2] ⊂ U × (0, T ], there exists a constant C, depending only on n, p,
K × [t1, t2] and ‖f‖Lq,r, such that

sup
t1<t<t2

∫
K

u2ξp dx+

∫ t2

t1

∫
K

|∇u|p ξp dxdt ≤
∫ t2

t1

∫
K

|u|p (ξp + |∇ξ|p) dxdt

(2.5)

+

∫ t2

t1

∫
K

u2ξp−1 |ξt| dxdt+ ‖f‖q,r,

for every ξ ∈ C∞0 (K × (t1, t2)) such that ξ ∈ [0, 1].

Proof : Choose ϕ = uhξ
p as a test function in (2.4) and perform the usual

combination of integrating in time, passing to the limit in h→ 0 and applying
Young’s inequality to derive the estimate.
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We finally recall that, for a function belonging to Lp(Q), its averaged norm
is

‖v‖p,avg,Q :=

(∫
Q

|v|p dxdt
)1/p

= |Q|−1/p‖v‖p,Q,

where, as usual, the integral average is defined by∫
A

ψ =
1

|A|

∫
A

ψ.

3. Sharp Hölder estimate
We start by fixing universal constants, that depend only on the data. The

intrinsic exponent to equation (2.1), with f ∈ Lq,r, is

α :=
(pq − n)r − pq

q[(p− 1)r − (p− 2)]
=

p

(
1− 1

r
− n

pq

)
(

2

r
+
n

q
− 1

)
+ p

(
1− 1

r
− n

pq

) , (3.1)

which, in view of (2.2) and (2.3), satisfies 0 < α < 1. Next, let

θ := α + p− (p− 1)α = p− (p− 2)α = α2 + (1− α)p. (3.2)

Clearly 2 < θ < p, since 0 < α < 1. For such θ, we define the intrinsic
θ−parabolic cylinder

Gτ :=
(
−τ θ, 0

)
×Bτ(0), τ > 0.

We first establish a key compactness result that states that if the source
term f has a small norm in Lq,r, then a solution u to (2.1) is close to a
p−caloric function in an inner subdomain.

Lemma 3.1 (Approximation to p−caloric functions). For every δ > 0, there
exists 0 < ε � 1, such that if ‖f‖Lq,r(G1) ≤ ε and u is a local weak solution
of (2.1) in G1, with ‖u‖p,avg,G1

≤ 1, then there exists a p−caloric function φ
in G1/2, i.e.,

φt − div
(
|∇φ|p−2∇φ

)
= 0 in G1/2, (3.3)

such that

‖u− φ‖p,avg,G1/2
≤ δ. (3.4)
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Proof : Suppose, for the sake of contradiction, that the thesis of the lemma
fails. That is, assume, for some δ0 > 0, that there exists a sequence

(uj)j ∈ Cloc
(
−1, 0;L2

loc(B1)
)
∩ Lploc

(
−1, 0;W 1,p

loc (B1)
)

and a sequence (f j)j ∈ Lq,r(G1), such that

ujt − div
(
|∇uj|p−2∇uj

)
= f j in G1; (3.5)

‖uj‖p,avg,G1
≤ 1; (3.6)

‖f j‖Lq,r(G1) ≤
1

j
(3.7)

but still, for any j and any p−caloric function φ in G1/2,

‖uj − φ‖p,avg,G1/2
> δ0. (3.8)

Fix a cutoff function ξ ∈ C∞0 (G1), such that ξ ∈ [0, 1], ξ ≡ 1 in G1/2 and
ξ ≡ 0 near ∂pG1. From the Caccioppoli estimate, using the notation

V (I × U) = L∞
(
I;L2(U)

)
∩ Lp

(
I;W 1,p(U)

)
,

we obtain

‖uj‖V (G1/2) ≤ sup
−1<t<0

∫
B1

(uj)2ξp dx+

∫ 0

−1

∫
B1

∣∣∇uj∣∣p ξp dxdt
≤
∫ 0

−1

∫
B1

{
|uj|p (ξp + |∇ξ|p) + (uj)2ξp−1 |ξt|

}
dxdt+ ‖f j‖Lq,r(G1)

≤ c ‖uj‖pp,avg,G1
+ c′‖uj‖2

2,avg,G1
+ 1/j

≤ c.

A control of the time derivative, along the lines of [10] (see also [2]), gives

‖ujt‖Ls,1(G1/2) ≤ c,

with s = min
{
q, p

p−1

}
< p. We now use a classical compactness result (cf.

[12, Corollary 4]), with

W 1,p ↪→ Lp ⊂ Ls,

to conclude that

uj −→ ψ,

strongly in Lp(G1/2), in addition to the weak convergence in V (G1/2).
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Passing to the limit in (3.5), we find that

ψt − div
(
|∇ψ|p−2∇ψ

)
= 0 in G1/2,

which contradicts (3.8), for j � 1. The proof is complete.

Next, by means of geometric iteration, we shall establish the optimal Hölder
continuity for solutions to the heterogeneous p−parabolic equation (2.1).
Our approach explores the approximation by p−caloric functions, given by
Lemma 3.1, and the fact that p−caloric functions are universally Lipschitz
continuous in space and C0, 12 in time. The following is the crucial first itera-
tive step.

Lemma 3.2. Let 0 < α < 1 be fixed. There exists ε > 0 and 0 < λ � 1/2,
depending only on p, n and α, such that if ‖f‖Lq,r(G1) ≤ ε and u is a local weak
solution of (2.1) in G1, with ‖u‖p,avg,G1

≤ 1, then there exists a universally
bounded constant c0 such that

‖u− c0‖p,avg,Gλ ≤ λα. (3.9)

Proof : Take 0 < δ < 1, to be chosen later, and apply Lemma 3.1 to obtain
0 < ε� 1 and a p−caloric function φ in G1/2, such that

‖u− φ‖p,avg,G1/2
≤ δ.

Observe that

‖φ‖p,avg,G1/2
≤ ‖u− φ‖p,avg,G1/2

+ ‖u‖p,avg,G1
≤ δ + 1 ≤ 2. (3.10)

Since φ is p−caloric, it follows from standard theory that φ is universally

C
0, 12
loc in time and C0,1

loc in space. That is, for λ � 1, to be chosen soon, we
have

sup
(x,t)∈Gλ

|φ(x, t)− φ(0, 0)| ≤ C λ,

for C > 1 universal. In fact, for (x, t) ∈ Gλ,

|φ(x, t)− φ(0, 0)| ≤ |φ(x, t)− φ(0, t)|+ |φ(0, t)− φ(0, 0)|
≤ C ′ |x− 0|+ C ′′ |t− 0|

1
2

≤ C ′ λ+ C ′′ λ
θ
2 ≤ C λ,
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since θ > 2. We can therefore estimate

‖u(x, t)− φ(0, 0)‖p,avg,Gλ ≤ ‖u(x, t)− φ(x, t)‖p,avg,Gλ
+ ‖φ(x, t)− φ(0, 0)‖p,avg,Gλ
≤ δ + C λ. (3.11)

Note that we will choose λ� 1/2 and thus

Gλ = (−λθ, 0)×Bλ ⊂ (−(1/2)θ, 0)×B1/2 = G1/2.

We put c0 := φ(0, 0), observing that, due to (3.10) and the fact that φ is
p−caloric, c0 is universally bounded. The next step is to fix the constants.
We choose λ� 1/2 so small that

C λ ≤ 1

2
λα

and then we define

δ =
1

2
λα

thus fixing, via Lemma 3.1, also ε > 0. The lemma now follows from estimate
(3.11) with the indicated choices.

Our next step accounts to iterating Lemma 3.2 in the appropriate geometric
scaling.

Theorem 3.3. Under the conditions of the previous lemma, there exists a
convergent sequence of real numbers {ck}k≥1, with

|ck − ck+1| ≤ c(n, p) (λα)k , (3.12)

such that
‖u− ck‖p,avg,Gλk ≤

(
λk
)α
. (3.13)

Proof : The proof is by induction on k ∈ N. For k = 1, (3.13) holds due to
Lemma 3.2, with c1 = c0. Suppose the conclusion holds for k and let’s show
it also holds for k + 1. We start by defining the function v : G1 → R by

v(x, t) =
u(λkx, λkθt)− ck

λαk
. (3.14)

We compute
vt(x, t) = λkθ−αkut(λ

kx, λkθt)

and
div
(
|∇v(x, t)|p−2∇v(x, t)

)
=
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= λpk−(p−1)αkdiv
(
|∇u(λkx, λkθt)|p−2∇u(λkx, λkθt)

)
to conclude, recalling (3.2), that

vt − div
(
|∇v|p−2∇v

)
= λpk−(p−1)αkf(λkx, λkθt) = f̃(x, t).

We now compute

‖f̃‖rLq,r(G1) =

∫ 0

−1

(∫
B1

|f̃(x, t)|qdx
)r/q

dt (3.15)

=

∫ 0

−1

(∫
B1

λ[pk−(p−1)αk]q|f(λkx, λkθt)|qdx
)r/q

dt

=

∫ 0

−1

(∫
Bλk

λ[pk−(p−1)αk]q−kn|f(x, λkθt)|qdx

)r/q

dt

= λ{[pk−(p−1)αk]q−kn} rq
∫ 0

−1

(∫
Bλk

|f(x, λkθt)|qdx

)r/q

dt

= λ{[pk−(p−1)αk]q−kn} rq−kθ
∫ 0

−λkθ

(∫
Bλk

|f(x, t)|qdx

)r/q

dt.

Due to the crucial and sharp choice (3.1) of α, we have, recalling again (3.2),

{[pk − (p− 1)αk]q − kn}r
q
− kθ = 0.

We go back to (3.15) to conclude

‖f̃‖Lq,r(G1) ≤ ‖f‖Lq,r((−λkθ,0)×Bλk ) ≤ ‖f‖Lq,r(G1) ≤ ε,

which entitles v to Lemma 3.2 (note that ‖v‖p,avg,G1
≤ 1, due to the induction

hypothesis).
It then follows that there exists a constant c̃0, with |c̃0| ≤ c(n, p), such that

‖v − c̃0‖p,avg,Gλ ≤ λα,

which is the same as

‖u− ck+1‖p,avg,Gλk+1
≤ λα(k+1),

for ck+1 := ck + c̃0λ
αk; the induction is complete. We readily observe that

|ck+1 − ck| ≤ c(n, p) (λα)k ,
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thus obtaining also (3.12).

Theorem 3.4. A locally bounded weak solution of (2.1), with f ∈ Lq,r,
satisfying (2.2)–(2.3), is locally Hölder continuous in the space variables,
with exponent

α =
(pq − n)r − pq

q[(p− 1)r − (p− 2)]

and locally Hölder continuous in time with exponent α
θ . In addition, there

exists a constant C, that depends only on p, n, ‖f‖q,r and ‖u‖p,avg,G1
, such

that

‖u‖C0;α,α/θ(G1/2) ≤ C.

Proof : We start by observing (see also [3, section 7]) that the smallness
regime required in the assumptions of Theorem 3.3 is not restrictive since
we can fall into that framework by scaling and contraction. Indeed, given a
solution u, let

v(x, t) = %u(%ax, %(p−2)+apt)

(%, a to be fixed), which is a solution of (2.1) with

f̃(x, t) = %(p−1)+apf(%ax, %(p−2)+apt).

We choose a > 0 such that

a <
2

n+ p
and [(p− 1) + ap]r − a(n+ p)− (p− 2) > 0,

which is always possible (observe that the second condition holds for a = 0
and use its continuity with respect to a), and then 0 < % < 1 such that

‖v‖pp,avg,G1
≤ %2−a(n+p)‖u‖pp,avg,G1

≤ 1

and

‖f̃‖rLq,r(G1) = %[(p−1)+ap]r−a(n+p)−(p−2)‖f‖rLq,r(G1) ≤ εr.

Due to (3.12), the sequence {ck}k≥1 is convergent and we put

c̄ := lim
k→∞

ck.

It follows from (3.13) that, for arbitrary 0 < r < 1
2 ,∫

Gr

|u− c̄|p dxdt ≤ Crpα.
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Standard covering arguments, a remark in [14, Lemma 3.2] and the charac-
terisation of Hölder continuity of Campanato-Da Prato give the local C0;α,α/θ

– continuity and thus the result.

4. Generalizations and beyond
The ideas and methods employed in this paper only explore the degenerate

p−structure of the operator. The underlying heuristics is to interpret the
homogeneous problem as the geometric tangential equation of its inhomoge-
neous counterpart, for small perturbations f ∈ Lr,q, ‖f‖r,q � 1. The proofs
adapt to more general degenerate parabolic equations

ut − div A (x, t,Du) = f ∈ Lr,q (4.1)

satisfying the usual structure assumptions for p ≥ 2.
We briefly comment on the modifications required. Lemma 2.3 is based on

pure energy considerations, thus the very same proof works in the general
case. Lemma 3.1 can be carried out universally in the structural class of
operators, provided integrability bounds for the time-derivative are available
(cf. [2, section 7], where a more general version of the result in [10] on this
issue is proved). As for Lemma 3.2, the very same proof works since solutions
to the general homogeneous equation are also Lipschitz in space and C0;1/2

in time. The only modification occurs when we iterate Lemma 3.2. The
rescaled function v defined in (3.14) now solves the equation

vt − div Ak(x, t,Dv) = λpk−(p−1)αkf(λkx, λkθt),

where

Ak(x, t, ξ) :=
(
λ−αk

)1−p
A (λkx, λθkt, λ−αkξ)

belongs to the same structural class of A . In particular, v is entitled to the
conditions of Lemma 3.2 and the proof then follows exactly as before.

We would like to conclude by explaining how the idea of finding geo-
metrical tangential equations can be employed to derive analytical tools for
p−parabolic operators, continuously on p. For instance, one can access reg-
ularity estimates for degenerate parabolic equations by interpreting the heat
operator as the tangential equation obtained when we differentiate the family
of p−parabolic operators with respect to the exponent p, near p = 2.

It is possible to obtain a universal compactness device. Let Qτ := Iτ×Bτ =
(−τ, τ)×Bτ . We fix M0 � 2 and work within the range p ∈ [2,M0].
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Lemma 4.1 (Uniform in p compactness). Given δ > 0, there exists ε > 0,
depending only on n, M0 and δ, such that if q ∈ [2,M0], u is a q−caloric
function in Q1, with |u| ≤ 1, and |q − p| < ε, then we can find a p−caloric
function w in Q1/2, with |w| ≤ 1, such that

sup
Q 1

2

|w − u| ≤ δ. (4.2)

Proof : Suppose, for the sake of contradiction, that the thesis of the lemma
does not hold true. This means that for a certain δ0 > 0, there exist sequences
(qj)j, (uj)j and (pj)j, with

qj ∈ [2,M0];

(uj)t − div
(
|∇uj|qj−2∇uj

)
= 0 in Q1;

|uj| ≤ 1;

|pj − qj| ≤ 1
j

(4.3)

but such that, for every pj−caloric function w in Q 1
2
,

sup
Q 1

2

|uj − w| > δ0. (4.4)

By compactness, we have, up to subsequences,

qj → q∞ ∈ [2,M0] (4.5)

and, from the last assertion in (4.3), also pj → q∞. As in the proof of Lemma
3.1, up to a subsequence, uj → u∞ in the appropriate space. Since qj → q∞,
by stability (cf. [8]), we can pass to the limit in the equation satisfied by the
uj to conclude that u∞ is q∞−caloric in Q 2

3
.

We now solve, for each pj, the following boundary value problem
(wj)t − div

(
|∇wj|pj−2∇wj

)
= 0 in Q 2

3

wj = u∞ on ∂Q 2
3

(4.6)

and pass to the limit in j, concluding that also wj → u∞ uniformly in Q 1
2
.

Finally, choosing j sufficiently large, we obtain

|uj − wj| ≤ |uj − u∞|+ |wj − u∞| ≤
δ0

2
+
δ0

2
= δ0 in Q 1

2
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which is a contradiction to (4.4).

Heuristically, Lemma 4.1 implies the continuity of the underlying regularity
theory for p−parabolic operators with respect to p. In particular, improved
sharp Hölder estimates can be derived by these methods for problems gov-
erned by p−parabolic operators, near the heat equation, i.e., for p close to
2. We leave the development of these heuristics for a future work.
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