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MORE ON SUBFITNESS AND FITNESS

JORGE PICADO AND ALEŠ PULTR

Abstract: The concepts of fitness and subfitness (as defined in Isbell [9]) are useful
separation properties in point-free topology. The categorical behaviour of subfitness
is bad and fitness is the closest modification that behaves well. The separation
power of the two, however, differs very substantially and subfitness is transparent
and turns out to be useful in its own right. Sort of supplementing the article [20]
we present several facts on these concepts and their relation. First the “supportive”
role subfitness plays when added to other properties is emphasized. In particular
we prove that the numerous Dowker-Strauss type Hausdorff axioms become one for
subfit frames. The aspects of fitness as a hereditary subfitness are analyzed, and a
simple proof of coreflectivity of fitness is presented. Further, another property, pre-
fitness, is shown to also produce fitness by heredity, in this case in a way usable for
classical spaces, which results in a transparent characteristics of fit spaces. Finally,
the properties are proved to be independent.

Keywords: Frame, locale, sublocale lattice, fit frame, subfit frame, prefit frame,
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1. Introduction

In his celebrated paper [9], Isbell introduced the concepts of fitness and
subfitness. The subfitness was (with some regret) soon dismissed, after an
application in compact context, because of its bad categorical behaviour: it
was not generally inherited by subobjects and by products, while fit frames
constituted a coreflective subcategory of the category of frames. Let us men-
tion right away, though, that subfitness can be translated into a transpar-
ent property of a separation nature while fitness has not been given for a
while any intuitive geometrical interpretation (even the topological descrip-
tion given later in [7] was not very satisfactory; the first one that is really
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simple may be that given below in 4.5.2). Somewhat unexpectedly, subfit-
ness occurred in [7] as the necessary and sufficient condition for admitting
a nearness (not only the regular one) extending the general concept defined
for spaces by Herrlich in [6]. This prompted Simmons (who had introduced
subfitness in [19] – independently and for other purposes – as conjunctiv-

ity) to write his very interesting paper [20] discussing several aspects of the
mentioned properties.
The present article can be viewed as a supplement to [19]. In Section 3

we discuss the role of subfitness as a supporting separation property. Be-
sides mentioning the well-known associations of subfitness with TD and with
normality we prove that numerous Hausdorff axioms of Dowker-Strauss type
merge when this condition is added. In Section 4 we discuss some aspects of
fitness as a hereditary subfitness and present a simple proof of coreflectivity
of fitness based on this and on localic techniques. Then, we introduce an-
other concept, prefitness, which also has the property that it produces fitness
if modified by heredity. Unlike subfitness, it suffices to assume it for closed
sublocales, so that it can be applied for subspaces and yield a simple and
transparent characteristics of fit spaces. Further we show that subfitness,
obviously inherited by closed sublocales, is inherited by all complemented
ones. In the last section we confront the discussed properties and show their
independence.

2. Preliminaries

2.1. Recall that a frame resp. co-frame is a complete lattice L satisfying the
distributive law

a ∧ (
∨

B) =
∨

{a ∧ b | b ∈ B} resp. a ∨ (
∧

B) =
∧

{a ∨ b | b ∈ B}

for all a ∈ L and B ⊆ L. A typical frame is the lattice

Ω(X)

of all open sets of a topological space X. A frame homomorphism h : L → M
preserves all joins and finite meets; if f : X → Y is a continuous map we have
a frame homomorphism Ω(f) : Ω(Y ) → Ω(X) defined by Ω(f)(U) = f−1[U ].

2.2. If L is a frame, the mapping (x 7→ x∧a) : L → L preserves suprema and
hence it is a left Galois adjoint; thus we have the (uniquely defined) Heyting



MORE ON SUBFITNESS AND FITNESS 3

operation x→y satisfying

a ∧ b ≤ c iff a ≤ b→c.

We will use some standard facts like 1→a = a, b ≤ a→b, a ≤ b iff a→b = 1,
a→(b→c) = (a ∧ b)→c = b→(a→c) or a→(

∧

bi) =
∧

(a→bi).

2.2.1. For each a in a frame we have the pseudocomplement

a∗ =
∨

{x | x ∧ a = 0} = a → 0.

We will use the standard facts like a ≤ b ⇒ b∗ ≤ a∗, a ≤ a∗∗ or a∗ = a∗∗∗.
We set a ≺ b for a∗ ∨ b = 1; note that in Ω(X), U ≺ V says that U ⊆ V .

2.3. Here are some separation axioms used for frames:

(sfit): a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c.
(fit): a � b ⇒ ∃c, a ∨ c = 1 & c→b 6= b.
(reg): ∀a, a =

∨

{x | x ≺ a}.
(norm): a ∨ b = 1 ⇒ ∃u, v such that u ∧ v = 0 and a ∨ v =

1 = u ∨ b.

One speaks on subfit, fit, regular and normal frames, in this order. The
subfitness is relaxed to weak subfitness ([7]; cf. property Π0 in [22])

(wsfit): a � 0 ⇒ ∃c 6= 1, a ∨ c = 1.

Ω(X) is regular resp. normal iff X is regular or normal in the classical
sense.

2.4. One thinks of a frame L as of a generalized space. One of several
representations of a (generalized) subspace of L is that of a sublocale. It is a
subset S ⊆ L such that

(S1) M ⊆ S ⇒
∧

M ∈ S, and
(S2) ∀x ∈ L, ∀s ∈ S, x→s ∈ S.

S is a frame in the order of L and inherits its Heyting structure; the left
adjoint

νS : L → S (2.4.1)

to the embedding map j = jS : S ⊆ L is a surjective frame homomorphism
given by νS(x) =

∧

{s ∈ S | s ≥ x}. The system of all sublocales constitutes
a co-frame

Sℓ(L)
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with the order given by inclusion, meet coinciding with the intersection and
the join given by

∨

Si = {
∧

M | M ⊆
⋃

Si};

the top is L and the bottom is the set O = {1}.

2.4.1. A sublocale S is complemented if there is a sublocale T such that
S ∨ T = L and S ∩ T = O. An important property of complemented S is
that for any system Ti, i ∈ I, of sublocales one has

S ∩
∨

Ti =
∨

(S ∩ Ti)

(note that this is exceptional: Sℓ(L) is a co-frame, not a frame; in fact this
law characterizes complementarity – see [14, VI.4.4.3]).

2.4.2. Open resp. closed subspaces are represented by open resp. closed
sublocales

o(a) = {x | a→x = x} = {a→x | x ∈ L} resp. c(a) = ↑a = {x | x ≥ a}.

o(a) and c(a) are complements of each other. Here are a few rules (see [14]):

– o(0) = O, o(1) = L, o(a ∧ b) = o(a) ∩ o(b), o(
∨

ai) =
∨

o(ai),
– c(0) = L, c(1) = O, c(a ∧ b) = c(a) ∨ c(b), c(

∨

ai) =
⋂

c(ai),
– o(a) ∩ c(b) 6= O iff a � b,
– c(a) ⊆ o(b) iff a ∨ b = 1,
– T = S ∩ o(a) is an open sublocale in the sublocale S. More precisely,
T = oS(νS(a)). Similarly for closed sublocales.

Due to (S2) one has an extremely simple formula for the closure S (the
smallest closed sublocale containing S):

S = ↑
∧

S.

It is easy to see that

o(a) ∩ S 6= O iff o(a) ∩ S 6= O (2.4.2)

(since o(a) ∩ S = O iff S ⊆ ↑a iff S ⊆ ↑a).

2.4.3. Note that the original definitions of fitness and subfitness in [9] are
(in our present terminology)

(sfit): each open sublocale is a join of closed ones,
(fit): each sublocale is a meet of open ones.

Now we think of these statements rather as of characterization theorems.

For more about frames see e.g. [10, 14, 13, 17, 16].
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2.5. A cover of a frame L is a subset C ⊆ L such that
∨

C = 1. For a cover
C and an element x ∈ L resp. sublocale S ⊆ L set

Cx =
∨

{c ∈ C | c ∧ x 6= 0} resp. CS =
∨

{c ∈ C | o(c) ∩ S 6= O}. (2.5.1)

Note that Cx = Co(x) (since o(c) ∩ o(x) 6= O iff c(c) ∨ c(x) = ↑c ∨ ↑x 6= L
iff c ∧ x 6= 0).
A system C of covers is admissible resp. quasi-admissible if

∀a ∈ L, a =
∨

{x | ∃C ∈ C , Cx ≤ a} resp. o(a) =
∨

{S | ∃C ∈ C , CS ≤ a}.

Note that Cx ≤ a implies x ≺ a, and that, by (2.4.2), CS = CS. Thus
(using also 2.4.3) we see that

2.5.1. The existence of an admissible system of covers implies regularity and

the existence of a quasi-admissible system of covers implies subfitness.

2.6. We say that a cover A refines a cover B and write A ≤ B if for every
a ∈ A exists a b ∈ B such that a ≤ b.
A nearness (see e.g. [1]) on L is an admissible system of covers A such

that

(N1) if A ∈ A and A ≤ B then B ∈ A , and
(N2) if A,B ∈ A then A ∧B = {a ∧ b | a ∈ A, b ∈ B} ∈ A .

This extends the concept of a regular nearness, as defined for spaces by
Herrlich [6], to the point-free context. If we wish to extend the concept of
general nearness, we relax the admissibility to quasi-admissibility and speak
of a quasi-nearness or generalized nearness.
A basis of (quasi-)nearness is a system of covers B such that A = {C | C ≥

B ∈ B} is a (quasi-)nearness. Note that obviously A is (quasi-)admissible iff
B is.

Convention. We say that a frame L “admits a quasi-nearness” rather than
that it “quasi-admits a nearness”.

2.6.1. Proposition. A frame admits a nearness (resp. a quasi-nearness)
iff it is regular (resp. subfit).

(The implications ⇒ are in 2.5.1, the implication ⇐ for nearness is almost
trivial; for a quasi-nearness see e.g. [7].)
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3. Subfitness as a supportive property

3.1. Subfitness added to another requirement often results in a more desir-
able property. First, however, let us recall the nature of plain subfitness. It
can be viewed as a separation axiom slightly weaker than T1. For spaces we
have

Theorem (Simmons [20], Isbell [9]). A topological space is subfit iff for every

x ∈ U open there exists a y ∈ {x} such that {y} ⊆ U .

Recall that a space X is TD if for each x ∈ X there is an open U such that
x ∈ U and U r {x} is open.
From the theorem above we now easily infer

3.2. Proposition. A topological space is T1 iff it is TD and subfit.

In [2] the point-free aspects of the TD axiom were discussed. The following
property makes a spatial frame representable by a TD-space:

each prime element p in L is completely prime. (pfTD)

From the facts in [2] we can infer

3.2.1. Proposition. Let L satisfy (pfTD) and (sfit). Then the spectrum ΣL
is T1.

3.3. The Hausdorff axiom is mimicked in point-free topology using a num-
ber of different requirements. The strongest is the Isbell’s Hausdorff axiom
requiring that the codiagonal in the coproduct L⊕ L be closed. Then there
is a number of variations on the Dowker-Strauss separation from [3, 4]. Let
us list them:

S ′
2: if a ∨ b = 1 and a, b 6= 1 then there are u, v with

u � a, v � b and u ∧ v = 0 (the axiom from [3]).
S ′′
2 : if a � b and b � a then there are u, v with u � a,

v � b and u∧ v = 0 (the standard strengthening of
S ′
2).

T ′
2: if 1 6= a � b then there are u, v with u � a, v � b

and u ∧ v = 0 (P. Johnstone & Sun Shu Hao [11]).
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T2: if 1 6= a � b then there are u, v with u � a, v � b,

v ≤ a and u ∧ v = 0 (Paseka & Šmarda [12]).
T<: if b < a 6= 1 then there are u, v with u � a, v � b,

v ≤ a and u∧v = 0 (equivalent with T2, introduced
for technical reasons).

S2: if a � b and b � a then there are u, v with u � a,
v � b, v ≤ a, u ≤ b and u ∧ v = 0.

The relations between them are depicted in the following diagram:

T2

��

ks S2 & T<

��

S2

��

T ′
2

+3 S ′′
2

+3 S ′
2

(∗)

Further one has axioms based on the properties of meet irreducibility (see
[18]), weaker than S ′′

2 , but we are not discussing them here.

3.3.1. To obtain a property that would coincide with the Hausdorff one in
the spatial case, Dowker & Strauss [4] introduced the combination

S2sf ≡ S ′
2 & (sfit).

Now adding the subfitness in fact identifies all the axioms of the group (∗).
We have

Proposition. S2 & T< & (sfit) ≡ T2 & (sfit) ≡ S2 & (sfit) ≡ T ′
2 & (sfit) ≡

S ′
2 & (sfit) ≡ S ′′

2 & (sfit).

Proof : Let L be subfit and let it satisfy S ′
2. First we will show that it satisfies

S ′′
2 .
Let a � b and b � a. Then there is a c such that a ∨ c = 1 6= b ∨ c. Hence

a � b ∨ c (else 1 = a ∨ c ≤ b ∨ c) and a ∨ (b ∨ c) = 1 so that we have u � a
and v � b ∨ c (and hence v � b) such that u ∧ v = 0.
Now, again, take a � b and b � a. Then there are c1, c2 such that

a ∨ c1 = 1 6= b ∨ c1 and a ∨ c2 6= 1 = b ∨ c2.

We have
b ∨ c1 � a ∨ c2 and a ∨ c2 � b ∨ c1
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(indeed, if b ≤ a ∨ c2 then 1 = b ∨ c2 ≤ a ∨ c2; the other statement by
symmetry). We already know that L satisfies S ′′

2 and hence we have u′, v′

such that u′ � a ∨ c2, v
′ � b ∨ c1 and u′ ∧ v′ = 0. Then u = u′ ∧ b � a since

otherwise u = u∧ (b∨ c2) ≤ a∨ (u∧ c2) ≤ a∨ c2, and similarly v = v′∧a � b.

Hence we have S2.
Finally let b < a 6= 1. Again take a c such that a∨ c = 1 6= b ∨ c. Then we

have a∨ (b∨ c) = 1 with a, b∨ c incomparable, and using S2 for this pair we
obtain T<.

3.4. Let us also recall the standard fact that normality does not imply
regularity but augmented with subfitness it does.

3.4.1. In [5] the authors introduced, a.o., the concept of almost normality:

(a.norm): if a∨b = 1 and a = a∗∗ then there are u, v with
a ∨ v = 1 = u ∨ b and u ∧ v = 0.

Note that

3.4.2. A frame L is almost normal iff the relation ≺ in L interpolates.

(Indeed: if a ≺ b then a∗∨ b = 1 and we have u, v with u∧ v = 0 – and hence
v∗ ≥ u – and a∗ ∨ v = 1 = u ∨ b. Then a ≺ v ≺ b. On the other hand, if ≺
interpolates and a∗∗ ∨ b = 1 then a∗ ≺ b and we have a∗ ≺ v ≺ b for some v;
then a∗ ∨ v = 1 and v∗ ∨ b = 1.)

3.4.3. Similarly with the implication (normal) & (subfit) ⇒ (regular) we
have

Proposition. If L is almost normal and subfit then for every a ∈ L

a∗∗ =
∨

{x | x ≺ a∗∗}.

Proof : Suppose a∗∗ � b =
∨

{x | x ≺ a∗∗}. By (sfit) there is a c such that
a∨ c = 1 6= c∨ b. Then, by (a.norm) there is a u such that a∨u∗ = 1 = u∨ c.
Hence we have u ≺ a, and then u ≤ b and b ∨ c = 1, a contradiction.
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4. Subfitness and others in sublocales

4.1. Fitness is well-known to be inherited by all sublocales and it implies
subfitness. Although the following fact is standard, we will present a proof.
It will be shorter than the proofs usually found in literature, but first of all,
it will introduce a class of sublocales which will be of interest later.

Proposition. If every sublocale of a locale L is subfit then L is fit.

Proof : Suppose not. Then there are a � b such that a ∨ u = 1 ⇒ u→b = b.
Set

S = {x | a ∨ u = 1 ⇒ u→x = x}.

Then S is obviously a sublocale and b ∈ S. We also have a ∈ S since if
a ∨ u = 1 then a = (a ∨ u)→ a = (a→ a) ∧ (u→ a) = u→ a. If S is subfit
there is a c ∈ S such that a ∨ c = 1 and b ∨ c 6= 1; but since c ∈ S, a ∨ c = 1
implies c→c = c and c→c = 1, a contradiction.

4.1.1. Note that the sublocale S from the previous proof is in fact the
intersection

sc(a) =
⋂

{o(u) | c(a) ⊆ o(u)}.

We will speak of these sublocales as of semiclosed ones. From proof in 4.1
we now obtain

Theorem. The following are equivalent for any frame L:

(1) L is fit.

(2) Each semiclosed sublocale is closed.

(3) Each semiclosed sublocale is subfit.

Proof : (1)⇔(2) is in the standard definition of fitness, (1)⇒(3) is trivial, and
for (3)⇒(1) realize that in the proof above we have shown that in the non-fit
case sc(a) is not subfit.

4.1.2. Obviously, if every closed sublocale of L is weakly subfit then L is
subfit. Consequently, we have:

Corollary. If every sublocale of a frame L is weakly subfit then L is fit.

4.1.3. Note the sharp contrast between inheriting subfitness by all the sub-
spaces of a space X and by all the sublocales of Ω(X). In the former case we
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will not need more than T1 (stronger than (sfit) and subspace hereditary). In
the latter one we obtain in fact a rather strong separation akin of regularity,
see 4.4-4.5.2.

4.2. It is easy to see that subfitness is inherited by every closed sublocale.
But we have much more. For that we need the following lemma about the
operator from (2.5.1) and the map from (2.4.1).

4.2.1. Lemma. Let S be a sublocale of L. For any cover C of L and any

a, b ∈ L,
Cc(b) ≤ a ⇒ νS[C](c(b)∩ S) ≤ νS(a).

Proof : Suppose o(νS(c)) ∩ c(b) ∩ S 6= O. Then there is a s ≥ b in S such
that νS(c) → s = s from which it follows that s = jS(νS(c) → s) = c → s
(see the localic map formula in [14, II.2.3]), that is, s ∈ o(c). Therefore
o(c) ∩ c(b) 6= O and consequently c ≤ a. Thus νS(c) ≤ νS(a).

4.2.2. Proposition. Let N be a quasi-nearness on L. If S is a comple-

mented sublocale of L, then {νS[C] | C ∈ N} is a basis of a quasi-nearness

on S.

Proof : It is obvious that B = {νS[C] | C ∈ N} is a basis of nearness on S.
We have to show that it is quasi-admissible.
Let T be an open sublocale of S. Then T = oS(a) = S ∩ o(a) for some

a ∈ S. By the hypothesis we have

o(a) =
∨

{c(x) | x ∈ L, ∃C ∈ N , Cc(x) ≤ a}

and so, using the lemma, we obtain

oS(a) = S ∩ o(a) = S ∩ (
∨

{c(x) | x ∈ L, ∃C ∈ N , Cc(x) ≤ a})

=
∨

{S ∩ c(x) | x ∈ L, ∃C ∈ N , Cc(x) ≤ a}

≤
∨

{S ∩ c(x) | x ∈ L, ∃C ∈ N , νS[C](S ∩ c(x)) ≤ a}

≤
∨

{cS(x) | x ∈ S, ∃C ∈ N , νS[C]cS(x) ≤ a}.

4.2.3. Since a frame is subfit iff it admits a quasi-nearness we obtain

Corollary. Let L be subfit. Then each of its complemented sublocales is

subfit.
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4.3. The point of view of 4.1.1 can be used for a simple proof of the core-
flectivity of the category FitFrm of fit frames in the category Frm of all
frames.
For that recall the localic map f : M → L associated with a frame homo-

morphism h : L → M , that is, its right Galois adjoint ([14], II.3) and the
concepts of image and coimage of a sublocale ([14], III.4 – f [S] is the set
theoretical image, f−1[S] is the set theoretical preimage slightly modified).
One has f [S] ⊆ T iff S ⊆ f−1[T ] and hence f−1[−] preserves meets. We will
use the formulas ([14], III.6.3)

f−1[c(a)] = c(h(a)) and f−1[o(a)] = o(h(a)). (4.3)

4.3.1. For a frame L define

F1(L) = {a ∈ L | c(a) = sc(a)} = {a ∈ L | c(a) =
⋂

{o(x) | c(a) ⊆ o(x)}}.

Explicitly, a ∈ F1(L) iff

(a ∨ u = 1 ⇒ u→x = x) ⇒ x ≥ a. (∗)

Lemma. F1(L) is a subframe of L, and F1(L) = L iff L is fit.

Proof : Obviously, 0, 1 ∈ F1(L). Let ai ∈ F1(L). We will show that
∨

ai
satisfies (∗). Assume

∨

ai ∨ u = 1 ⇒ u→x = x

and suppose that ai∨u = 1. Then
∨

ai∨u = 1 and consequently u→x = x.
Since ai satisfies (∗), we have that x ≥ ai for every i and hence x ≥

∨

ai.
Finally let a, b ∈ F1(L). We have

c(a ∧ b) = c(a) ∨ c(b) =
⋂

{o(x) | c(a) ⊆ o(x)} ∨
⋂

{o(y) | c(b) ⊆ o(y)}

=
⋂

{o(x ∨ y) | c(a) ⊆ o(x), c(b) ⊆ o(y)}

⊇
⋂

{o(u) | c(a) ∨ c(b) ⊆ o(u)}.

This shows that F1(L) is a subframe of L.
The second statement is in 4.1.1.

4.3.2. For ordinals α define Fα as follows:

F0(L) = L, Fα+1 = F1(Fα(L)) and Fα(L) =
⋂

β<α

Fβ(L) for a limit ordinal.
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Since Fα(L) decrease there is an ordinal γ(L) such that F1(Fγ(L)(L)) =
Fγ(L)(L). Set

F (L) = Fγ(L)(L).

Theorem. F can be extended to a functor Frm → FitFrm and together with

the inclusion homomorphisms ιL : F (L) → L it constitutes a coreflection.

Proof : It suffices to show that for each frame homomorphism h : L → M one
has h[F1(L)] ⊆ F1(M). Let a ∈ F1(L) and consider the localic map f adjoint
to h. We have

c(a) =
⋂

{o(x) | c(a) ⊆ o(x)}

and hence, by (4.3) and since f−1[−] preserves meets,

c(h(a)) = f−1[c(a)] = f−1[
⋂

{o(x) | c(a) ⊆ o(x)}]

=
⋂

{f−1[o(x)] | c(a) ⊆ o(x)}

=
⋂

{o(h(x)) | c(a) ⊆ o(x)} ⊇
⋂

{o(y) | c(h(a)) ⊆ o(y)}.

4.4. A frame is said to be prefit if

a 6= 0 ⇒ ∃x 6= 0, x ≺ a. (pfit)

Note. In [21] the author introduced almost regularity for spaces as the
requirement that for a regular open non-empty U (that is, ∅ 6= U = intU)
there be a non-empty open V such that V ⊆ U . This corresponds to relaxing
our (pfit) by assuming a = a∗∗.

4.4.1. Prefitness is in fact quite a strong property akin to regularity. Set

ρ(a) =
∨

{x | x ≺ a}.

We have

Proposition. A frame L is prefit iff for each a ∈ L,

a ≤ ρ(a)∗∗.

In other words, if o(a) ⊆ o(ρ(a)).

Proof : Suppose ρ(a)∗∗ � a. Then a ∧ ρ(a)∗ 6= 0 and hence there is an x > 0
such that x ≺ (a ∧ ρ(a)∗), that is,

x∗ ∨ (a ∧ ρ(a)∗) = (x∗ ∨ a) ∧ (x∗ ∨ ρ(a)∗) = 1
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so that in particular x ≺ a (and hence x ≤ ρ(a) so that further ρ(a)∗ ≤ x∗),
and x∗ ∨ ρ(a)∗ = 1 and consequently x∗ = x∗ ∨ ρ(a)∗ = 1 and hence x ≤
x∗∗ = 0, a contradiction.

Note. This is not to be confused with another relaxation of regularity,
(a.norm) & (sfit) from 3.4.1. In regularity one has ∀a, a = ρ(a); in prefit ∀a,
a∗∗ = ρ(a)∗∗ and in (a.norm) & (sfit) ∀a, a∗∗ = ρ(a∗∗).

4.5. Note that

each fit frame is prefit.

(Indeed, if a � 0 we have a c such that a ∨ c = 1 and c∗ = c→ 0 6= 0. Set
x = c∗.)

4.5.1. Realize that the pseudocomplement in the closed sublocale c(b) = ↑b
of L is given by the formula

x∗b = x→b.

Proposition. A frame is fit iff each of its closed sublocales is prefit.

Proof : I. Let each closed sublocale c(b) = ↑b of L be prefit. Let a � b. Then
a1 = a ∨ b > b = 0c(b) and hence there is an x > b such that

a1 ∨ x∗b = a ∨ b ∨ (x→b) = (x→b) ∨ a = 1.

Set c = x→b = x∗b. Then a ∨ c = 1 and c→b = c∗b = x∗b∗b ≥ x > b.

II. Let L be fit and let c(b) be a closed sublocale. Let a > b = 0c(b); then
we have a c such that a ∨ c = 1 and c→ b > b. Set x = c∗b = c→ b. Then
x∗b = c∗b∗b ≥ c and hence x ≺ a in c(b).

4.5.2. Each closed sublocale of a topological space is induced by a closed
subspace. Thus, unlike in the sublocale characterization of fitness in 4.1, we
obtain here a characterization of fit spaces:

Corollary. A topological space X is fit if and only if for each closed Y ⊆ X
and each open U such that U ∩Y 6= ∅ there is an open V such that V ∩Y 6= ∅
and V ∩ Y ⊆ U ∩ Y .

4.6. As we said in 4.1.3, comparing 4.5 (and 4.4.1) with 4.1 is an indication
of the difference between the system of all subspaces and that of all sublocales
of a space. If we require a property that in itself is weaker than T1 to be
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inherited by all subspaces we do not go beyond T1. If we require it to be
inherited by all the sublocales we reach a property of regularity type! (For
more about inheriting subfitness by subspaces see Theorem 3.4 in [7].)
Also note that we have in the sublocales sc(a) in subfit but not fit frames

a store of examples of non-spatial frames.

5. Comparing the properties

5.1. It is obvious that

(sfit) ; (pfit) :

even T1 does not imply (pfit) in spaces: see the cofinite topology.

5.2. The prefitness, however, is a fairly strong property and we will have
more trouble to show it does not imply subfitness. It does not, as we will see
in the following

Example. Let N be the set of natural numbers, ω /∈ N. Set

X = (N× {0, 1}) ∪ {ω}

and endow it with the following topology:

U ⊆ X is open if

{

(∃n, (n, 1) ∈ U) ⇒ ω ∈ U, and

ω ∈ U ⇒ ∃k (n ≥ k ⇒ (n, 0) ∈ U).

Thus in particular U0 = N× {0}, U1 = (N× {0}) ∪ {ω} and each of U(n) =
(N×{0})∪ {ω} ∪ {(n, 1)} are open and we have ω ∈ U1 and U1 r {ω} = U0,
(n, 1) ∈ U(n) and U(n)r {(n, 1)} = U1, and finally each {(n, 0)} is open, so
that X is TD. Thus,

X is not subfit

since otherwise, by 3.1, it would be T1, and {ω} contains N× {1}. But

X is prefit.

Indeed, each {(n, 0)} is clopen and each non-void open set contains some of
the {(n, 0)}.

5.3. On the other hand prefit obviously implies (wsfit): if a 6= 0 then x ≺ a
for some x 6= 0. Put c = x∗. Then a ∨ c = 1 and c 6= 1 because c = 1 would
yield x∗∗ = 0 and hence x = 0.
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Thus, the situation is as follows
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with none of the indicated implications reversible.

5.4. Finally we will show that

(pfit) & (sfit) ; (fit).

Example. Consider the square X = I × I where I is the standard unit
interval and set Y = {(x, 1) | x ∈ I}. On X define a topology by declaring
U open if

either U ∩ Y = ∅ and for each (x, y) ∈ U there is a standard

ε-neighbourhood V ⊆ U,

or U ∩ Y 6= ∅, for each (x, y) ∈ U there is a standard

ε-neighbourhood V ⊆ U, and Y r U is finite.

Then X is T1 and hence it is subfit. The space X is also prefit. Indeed, let
U be non-void open. Then U ∩ (X r I) is non-void open and we can choose
a non-void open U ′ ⊆ U ∩ (X r I) such that the standard metric closure of
U ′ does not meet Y (it suffices to take an (x, y) ∈ U ∩ (X r I) and an open
ε-neighbourhood of (x, y) with ε sufficiently small). Then the closure of any
V ⊆ U ′ in X coincides with the standard metric closure in I × I and the
statement follows. On the other hand, X is not fit: Y is closed in X and it
is obviously not prefit.
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