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FINITE DIFFERENCE SCHEMES FOR NONLINEAR
COMPLEX REACTION-DIFFUSION PROCESSES:

STABILITY ANALYSIS

ADÉRITO ARAÚJO, SÍLVIA BARBEIRO AND PEDRO SERRANHO

Abstract: In this paper we establish the stability condition of a general class of
finite difference schemes applied to nonlinear complex reaction-diffusion equations.
We consider the numerical solution of both implicit and semi-implicit discretiza-
tions. To illustrate the theoretical results we present some numerical examples
computed with a semi-implicit scheme applied to a nonlinear equation.
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1. Introduction
Complex diffusion is a commonly used denoising procedure in image pro-

cessing [6]. In particular, nonlinear complex diffusion proved to be a numeri-
cally well conditioned technique that has been successfully applied in medical
imaging despeckling [3]. The stability condition for finite difference methods
applied to the linear diffusion equation has been investigated extensively and
it is widely documented in literature (see e.g. [11, 13]). A stability result for
the linear complex case was derived in [5].

The stability properties of a class of finite difference schemes for the non-
linear complex diffusion equation, were studied in [1], where only the explicit
and implicit scheme where studied and no reaction term was considered. In
this paper we extend those results for nonlinear complex reaction-diffusion
equations, considering discretizations also with a semi-implicit finite differ-
ence scheme, in addition to the explicit and implicit schemes. Applications
of interest include diffusion processes which are commonly used in image pro-
cessing, as for example in noise removal, inpainting, stereo vision or optical
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flow (see e.g. [3, 4, 6, 7, 8, 9, 14, 15, 16]). Complex difusion with reactive
term appears also in the well-known Schrödinger equation, though conser-
vative numerical methods are usually used instead of the finite difference
approach [10, 12].

Let Ω be a bounded open set in Rd, d ≥ 1, with boundary Γ = ∂Ω.
Typically Ω is the cartesian product of open intervals in R, i.e.,

Ω =
d∏
j=1

(aj, bj), (1)

with aj, bj ∈ R. LetQ = Ω×(0, T ], with T > 0, and v : Q̄ = Ω̄× [0, T ] −→ C.
We consider a reaction diffusion process with a non-constant complex coef-
ficient D(x, t, v) = DR(x, t, v) + iDI(x, t, v) and non-constant complex reac-
tion term F (x, t, v) = FR(x, t, v) + iFI(x, t, v), where DR(x, t, v), DI(x, t, v),
FR(x, t, v), FI(x, t, v) are real functions dependent on v. We need to assume
that

DR(x, t, v) ≥ 0, (x, t) ∈ Q̄, (2)

and that there exists a constant L > 0 such that

|D(x, t, v)| ≤ L, (x, t) ∈ Q̄. (3)

These inequalities (2) and (3) can easily be shown to hold for the diffusion
coefficient in [3] and [6].

We define the initial boundary value problem for the unknown complex
function u

∂u

∂t
(x, t) = ∇ · (D(x, t, u)∇u(x, t)) + F (x, t, u), (x, t) ∈ Q, (4)

under the initial condition

u(x, 0) = u0(x), x ∈ Ω, (5)

and with either the Dirichlet boundary condition

u(x, t) = 0, x ∈ Γ, t ∈ [0, T ], (6)

or the Neumann boundary condition

∂u

∂ν
(x, t) = 0, x ∈ Γ, t ∈ [0, T ], (7)

where
∂u

∂ν
denotes the derivative in the direction of the exterior normal to Γ.
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For the reaction term we will consider the following decomposition

F (x, t, v) = F0(x, t) + FL(x, t)v + FNL(x, t, v), (8)

with F0(x, t) = F0R(x, t) + iF0I(x, t), FL(x, t) = FLR(x, t) + iFLI(x, t) and
FNL(x, t, v) = FNLR(x, t, v) + iFNLI(x, t, v), where F0R(x, t), F0I(x, t),
FLR(x, t), FLI(x, t), FNLR(x, t, v) and FNLI(x, t, v) are real functions. For
the nonlinear term, we consider that there exists a complex function χ such
that

FNL(x, t, v) = FNL(x, t, 0) + J(x, t, v)v, (9)

with
J(x, t, v) = F ′NL(x, t, v) + χ(v), (10)

and |χ(r)| −→ 0 as |r| −→ 0, being F ′NL the Fréchet derivative of FNL with
respect to the third component.

Expression (4) involves both Schrödinger type equations and parabolic
equations and includes the possibility of having a source term, a linear reac-
tion term, a nonlinear reaction term or none of them (see (8)).

The paper is organized as follows: in Section 2 we describe the implicit and
semi-implicit numerical methods simultaneously by embedding them into a
two-parameter family of finite difference schemes. In Section 3 we derive a
stability result of the numerical methods considered in the previous section.
In the last section some numerical experiments are shown to confirm the
theoretical analysis.

2. Numerical method
Let us construct a mesh on Q. Let hk denotes the mesh-size in the kth

spatial coordinate direction, such that hk = (bk − ak)/Nk, k = 1, . . . , d, with
Nk ≥ 2 an integer. The set of points

xj = (a1 + j1h1, . . . , ad + jdhd), 0 ≤ jk ≤ Nk, k = 1, ..., d,

defines a space grid that we denote by Ωh. For the temporal interval we
consider the mesh

0 = t0 < t1 < · · · < tM−1 < tM = T,

where M ≥ 1 is an integer and ∆tm = tm+1 − tm, m = 0, . . . ,M − 1. Let

h = maxhk and ∆t = max ∆tm. We denote by Q
∆t
h the mesh in Q defined

by the cartesian product of the space grid Ωh and a grid in the temporal

domain. Let Q∆t
h = Q

∆t
h ∩Q and Γ∆t

h = Q
∆t
h ∩ Γ× [0, T ].
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We associate the coordinate (j,m) = (j1, . . . , jd,m) to the point (xj, t
m) ∈

Q
∆t
h and we denote by V m

j the value of a mesh function V , defined on Q
∆t
h ,

at the point (xj, t
m). We define the forward and backward finite differences

with respect to (xj, t
m) in the kth spatial direction by

δ+
k V

m
j =

V m
j+ek
− V m

j

hk
, δ−k V

m
j =

V m
j − V m

j−ek
hk

,

where ek denotes the kth element of the natural basis in Rd.

On Q
∆t
h we approximate (4)–(5) by the two-parameter family of finite dif-

ference schemes

Um+1
j − Um

j

∆tm
=

d∑
k=1

δ+
k (Dm,µ,θ

j−(1/2)ek
δ−k U

m+θ
j ) + Fm,µ,θ

j in Q̃∆t
h , (11)

with

U 0
j = u0(xj) in Ωh, (12)

and either

Um
j = 0 in Γ∆t

h , (13)

in the case of homogeneous Dirichlet boundary conditions (6), or

d∑
k=1

(
δ+
k U

m
j + δ−k U

m
j

)
νk = 0 in Γ∆t

h , (14)

in the case of homogeneous Neumann boundary conditions (7), where

Um+µθ
j = µθUm+1

j + (1− µθ)Um
j (15)

and Um
j represents the approximation of u(xj, t

m),

Dm,µ,θ
j−(1/2)ek

=
D(xj, t

m+θ, Um+µθ
j ) +D(xj−ek, t

m+θ, Um+µθ
j−ek )

2

and

Fm,µ,θ
j = F0(xj, t

m+θ) + FL(xj, t
m+θ)Um+θ + FNL(xj, t

m+θ, Um+µθ),

µ ∈ {0, 1}, θ ∈ [0, 1].

We use the notation Q̃∆t
h for the set Q∆t

h or Q
∆t
h , respectively, in the case

of Dirichlet or Neumann boundary conditions, and νk represents the kth
component of the normal vector ν.
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Note that, when µ = 1, the cases θ = 0, θ = 1
2 and θ = 1 correspond,

respectively, to the explicit Euler, Crank-Nicolson an implicit Euler schemes.
When µ = 0, we have the semi-implicit case (semi-implicit Euler method
when θ = 1), that is, the diffusion coefficient and the non-linear part of the
reaction term are treated explicitly.

In this paper we will consider two cases: the case when µ = 1, which
corresponds to the usual θ-method, and the case where µ = 0 and θ = 1, i.e.
the semi-implicit Euler scheme. For all cases we suppose that

FLR(xj, t
m+1) ≤ FLRmax (16)

and

JR(xj, t
m+1, Um+θ

j ) ≤ JRmax, (17)

for all (xj, t
m+1) ∈ Q̃∆t

h , where JR(x, t, v) is the real part of J(x, t, v) given
by (10). For µ = 1 and θ ∈ [0, 1

2) or µ = 0 and θ = 1 we also consider

JI(xj, t
m+1, Um+θ

j ) ≤ JImax, (18)

for all (xj, t
m+1) ∈ Q̃∆t

h , where JI(x, t, v) is the imaginary part of J(x, t, v)
given by (10). In addition, for µ = 1 and θ ∈ [0, 1

2) we also need to assume
that

FLI(xj, t
m+1) ≤ FLImax, (19)

for all (xj, t
m+1) ∈ Q̃∆t

h . We need the notation

|FLmax|2 = F 2
LRmax + F 2

IRmax, |Jmax|2 = J2
Rmax + J2

Imax (20)

In what follows, ‖ · ‖h will denote the discrete L2 norm, which will be
specified in the next section.

3. Stability
In this section we derive the continuous dependence of the numerical solu-

tion on the initial data and on the right-hand side.

3.1. Implicit and explicit case. Let us first consider the case where µ = 1.
In this case we have the usual θ-method.

Theorem 1. Let Um
j be the numerical solution of (4)–(5), with homogeneous

Dirichlet (6) or Neumann (7) boundary conditions, given by (11)–(12) with
(13) or (14), respectively. Let us consider µ = 1 and suppose that (16) and
(17) hold, for all (xj, t

m+1) ∈ Q̃∆t
h .
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If θ ∈ [1
2 , 1] the method is stable under the condition

0 < ζ ≤ 1− 4θ2∆tmKε, , ζ ∈ R+, (21)

with, for all ε 6= 0,

Kε = FLRmax + JRmax + ε2, (22)

If θ ∈ [0, 1
2) then the method is stable under the condition (21) with, for all

ε 6= 0,

Kε = FLRmax + JRmax + ε2 + ∆tm
(

1

2
− θ
)

(1 + ε−2)(1 + ε2)

×
(
(1 + ε2)|FLmax|2 + (1 + ε−2)|Jmax|2

)
, (23)

and

1−∆tm
(

1

2
− θ
)

(1 + ε2)
4

h2
max
xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

≥ 0, (24)

provided that (18) and (19) hold, for all (xj, t
m+1) ∈ Q̃∆t

h , |Dm,1,θ
j | is bounded

and

0 < ξ ≤ Dm,1,θ
Rj ∀j,m. (25)

Proof. To prove this result we will consider the unidimensional case and Neu-
mann boundary conditions. For higher dimension or Dirichlet boundary con-
ditions, the proof follows the same steps.

We rewrite (11)–(12), (14) as a system by separating the real and imaginary
parts, UR and UI , respectively, of the main variable U = (U0, . . . , UN). We
shall then study the convergence of the family of finite difference schemes:
find Um

j ≈ u(xj, t
m), j = 0, . . . , N , m = 0, . . . ,M , such that

Um+1
Rj − Um

Rj

∆tm
= δ+

x (Dm+θ
Rj− δ

−
x U

m+θ
Rj )− δ+

x (Dm+θ
Ij− δ−x U

m+θ
Ij ) + Fm+θ

Rj ,

j = 0, . . . , N, m = 0, . . . ,M − 1,

Um+1
Ij − Um

Ij

∆tm
= δ+

x (Dm+θ
Ij− δ−x U

m+θ
Rj ) + δ+

x (Dm+θ
Rj− δ

−
x U

m+θ
Ij ) + Fm+θ

Ij ,

j = 0, . . . , N, m = 0, . . . ,M − 1,

(26)

with initial condition

U 0
Rj = u0

R(xj), U 0
Ij = u0

I(xj), j = 0, . . . , N,



FINITE DIFFERENCES FOR NONLINEAR COMPLEX REACTION-DIFFUSION PROCESSES 7

and homogeneous Neumann boundary conditions

Um
R−1 = Um

R1, U
m
RN−1 = Um

RN+1, U
m
I−1 = Um

I1, U
m
IN−1 = Um

IN+1, m = 0, . . . ,M,
(27)

where

Dm+θ
j− = Dm,1,θ

j− =
D(xj−1, t

m+θ, Um+θ
j−1 ) +D(xj, t

m+θ, Um+θ
j )

2
, (28)

j = 1, . . . , N, m = 0, . . . ,M , and

Fm+θ
j = Fm,1,θ

j = F (xj, t
m+θ, Um+θ

j ) = Fm+θ
Rj + iFm+θ

Ij ,

j = 0, . . . , N , m = 0, . . . ,M − 1. In (26) and (27) we need the extra points
x−1 = x0 − h and xN+1 = xN + h and we define Dm+θ

0− = Dm+θ
1− , Dm+θ

(N+1)− =

Dm+θ
N− .
We consider the discrete L2 inner products

(U, V )h =
h

2
U0V 0 +

N−1∑
j=1

hUjV j +
h

2
UNV N (29)

and

(U, V )h∗ =
N∑
j=1

hUjV j, (30)

and their corresponding norms

‖U‖h = (U,U)
1/2
h and ‖U‖h∗ = (U,U)

1/2
h∗ . (31)

Multiplying both members of the first and second equations of (26) by,
respectively, Um+θ

R and Um+θ
I , according to the discrete inner product (·, ·)h

and using summation by parts we obtain(
Um+1
R − Um

R

∆tm
, Um+θ

R

)
h

+

(
Um+1
I − Um

I

∆tm
, Um+θ

I

)
h

+ ‖(Dm+θ
R− )1/2δ−x U

m+θ‖2
h∗

=
(
Fm+θ
R , Um+θ

R

)
h

+
(
Fm+θ
I , Um+θ

I

)
h
.

Since we can write

Um+θ = ∆tm
(
θ − 1

2

)
Um+1 − Um

∆tm
+
Um+1 + Um

2
, (32)
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we get

∆tm
(
θ − 1

2

)∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

+
‖Um+1‖2

h − ‖Um‖2
h

2∆tm
+ ‖(Dm+θ

R− )1/2δ−x U
m+θ‖2

h∗

=
(
Fm+θ
R , Um+θ

R

)
h

+
(
Fm+θ
I , Um+θ

I

)
h
.

If θ ∈ [1
2 , 1] we immediately obtain that

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
+ ‖(Dm+θ

R− )1/2δ−x U
m+θ‖2

h∗

≤
(
Fm+θ
R , Um+θ

R

)
h

+
(
Fm+θ
I , Um+θ

I

)
h
. (33)

Let us now look to the right-hand side of (33). Considering the decompo-
sition (8)–(9) we can write(
Fm+θ
R , Um+θ

R

)
h

+
(
Fm+θ
I , Um+θ

I

)
h

= (FR(·, tm+θ, 0), Um+θ
R )h + (FI(·, tm+θ, 0), Um+θ

I )h

+ (FLR(·, tm+θ)Um+θ
R , Um+θ

R )h + (FLR(·, tm+θ)Um+θ
I , Um+θ

I )h

+ (JR(·, tm+θ, Um+θ)Um+θ
R , Um+θ

R )h

+ (JR(·, tm+θ, Um+θ)Um+θ
I , Um+θ

I )h.

Since,

(JR(·, tm+θ, Um+θ)Um+θ
R , Um+θ

R )h ≤ JRmax‖Um+θ
R ‖2

h

and, with the necessary modifications, we obtain a correspondent inequal-
ity for (JR(·, tm+1, Um+θ)Um+θ

I , Um+θ
I )h, using Cauchy-Schwarz inequality, we

have(
Fm+θ
R , Um+θ

R

)
h

+
(
Fm+θ
I , Um+θ

I

)
h

≤ ‖FR(·, tm+θ, 0)‖h‖Um+θ
R ‖h + ‖FI(·, tm+θ, 0)‖h‖Um+θ

I ‖h
+ FLRmax‖Um+θ‖2

h + JRmax‖Um+θ‖2
h

which leads to(
Fm+θ
R , Um+θ

R

)
h

+
(
Fm+θ
I , Um+θ

I

)
h

≤ 1

4ε2
‖F (·, tm+θ, 0)‖2

h + ε2‖Um+θ‖2
h

+ (FLRmax + JRmax) ‖Um+θ‖2
h,
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where ε 6= 0. Then, from (33),

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
+ ‖(Dm+θ

R− )1/2δ−x U
m+θ‖2

h∗

≤ 1

4ε2
‖F (·, tm+θ, 0)‖2

h + ε2‖Um+θ‖2
h + (FLRmax + JRmax) ‖Um+θ‖2

h (34)

and so

‖Um+1‖2
h − ‖Um‖2

h

2∆tm

≤ 1

4ε2
‖F (·, tm+θ, 0)‖2

h + ε2‖Um+θ‖2
h + (FLRmax + JRmax) ‖Um+θ‖2

h.(35)

Using the definition of Um+θ we get(
1− 4θ2∆tmKε

)
‖Um+1‖2

h

≤
(
1 + 4(1− θ)2∆tmKε

)
‖Um‖2

h +
∆tm

2ε2
‖F (·, tm+θ, 0)‖2

h,

for m = 0, . . . ,M − 1, with Kε given by (22). If (21) holds we get

‖Um+1‖2
h

≤ 1 + 4(1− θ)2∆tmKε

1− 4θ2∆tmKε
‖Um‖2

h +
∆tm

2ε2(1− 4θ2∆tmKε)
‖F (·, tm+θ, 0)‖2

h

≤ (1 + 4(θ2 + (1− θ)2)ζ−1∆tmKε)‖Um‖2
h +

∆tm

2ε2ζ
‖F (·, tm+θ, 0)‖2

h.

Summing through m and using the Discrete Duhamel’s Principle (Lemma
4.1 in Appendix B of [5]) we get

‖Uk‖2
h ≤ e4(θ2+(1−θ)2)ζ−1Kεt

k

(
‖U 0‖2

h +
1

2ε2ζ

k−1∑
m=0

‖F (·, tm+θ, 0)‖2
h∆t

m

)
,

which proves the stability.
We now consider the case where θ ∈ [0, 1

2). In this case we have

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
+ ‖(Dm+θ

R− )1/2δ−x U
m+θ‖2

h∗

≤ 1

4ε2
‖F (·, tm+θ, 0)‖2

h + ε2‖Um+θ‖2
h + (FLRmax + JRmax) ‖Um+θ‖2

h

+∆tm
(

1

2
− θ
)∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

. (36)
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Since ∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

=

∥∥∥∥Um+1
R − Um

R

∆tm

∥∥∥∥2

h

+

∥∥∥∥Um+1
I − Um

I

∆tm

∥∥∥∥2

h

(37)

and, following [1], we deduce that∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

≤ (1 + η2
1)

4

h2
max
xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

‖(Dm+θ
R− )1/2δ−x U

m+θ‖2
h∗

+(1 + η−2
1 )
(
‖Fm+θ

R ‖2
h + ‖Fm+θ

I ‖2
h

)
,

where η1 6= 0. Using (8)–(9) we get∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

≤ (1 + η2
1)

4

h2
max
xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

‖(Dm+θ
R− )1/2δ−x U

m+θ‖2
h∗

+(1 + η−2
1 )(1 + η−2

2 )‖F (·, tm+θ, 0)‖2
h

+(1 + η−2
1 )(1 + η2

2)(1 + η2
3)(F 2

LRmax + F 2
LImax)‖Um+θ‖2

h

+(1 + η−2
1 )(1 + η2

2)(1 + η−2
3 )(J2

Rmax + J2
Imax)‖Um+θ‖2

h,

where η2, η3 6= 0. Using the definition of Um+θ and η1 = η2 = η3 = ε we get∥∥∥∥Um+1 − Um

∆tm

∥∥∥∥2

h

≤ (1 + ε2)
4

h2
max
xj∈Ω̄h

|Dm+θ
j |2

Dm+θ
Rj

‖(Dm+θ
R− )1/2δ−x U

m+θ‖2
h∗

+(1 + ε−2)2‖F (·, tm+θ, 0)‖2
h

+2θ2(1 + ε−2)(1 + ε2)
(
(1 + ε2)|FLmax|2

+ (1 + ε−2)|Jmax|2
)
‖Um+1‖2

h

+2(1− θ)2(1 + ε−2)(1 + η2)
(
(1 + ε2)|FRmax|2

+ (1 + ε−2)|Jmax|2
)
‖Um‖2

h.

Then, considering the previous inequality in (36) and if (24) holds, we get(
1− 4θ2∆tmKε

)
‖Um+1‖2

h ≤
(

1 + 4(1− θ)2∆tmKε

)
‖Um‖2

h

+2∆tm
(

1

4ε2
+ ∆tm

(
1

2
− θ
)

(1 + ε−2)2

)
‖F (·, tm+1, 0)‖2

h,
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for m = 0, . . . ,M−1, with Kε given by (23). If (21) holds, summing through
m and using the Discrete Duhamel’s Principle we get

‖Uk‖2
h ≤ e4(θ2+(1−θ)2)ζ−1Kεt

k

×

(
‖U 0‖2

h + 2

(
1

4ε2
+ T

(
1

2
− θ
)

(1 + ε−2)2

) k−1∑
m=0

‖F (·, tm+θ, 0)‖2
h∆t

m

)
,

which concludes the proof.

Remark 1. If F (x, t, 0) = 0, we may prove that, for θ ∈ [1
2 , 1], if

0 < ζ ≤ 1− 4θ2∆tmK,

for some ζ ∈ R+, with

K = FLRmax + JRmax,

we get

‖Um+1‖2
h ≤ (1 + 4(θ2 + (1− θ)2)ζ−1∆tmK)‖Um‖2

h.

Summing through m and using the Discrete Duhamel’s Principle we get

‖Uk‖2
h ≤ e4(θ2+(1−θ)2)ζ−1Ktk‖U 0‖2

h.

If, in addition, FLRmax and JRmax are non-positive, the method is uncondi-
tionally stable.

Remark 2. For θ ∈ [0, 1
2), the following particular cases are easily deduced

from the previous theorem.

(1) If F (x, t, 0) = 0, the stability conditions are (21) and (24) with

Kε = FLRmax + JRmax + ∆tm
(

1

2
− θ
)

(1 + ε−1)

×
(

(1 + ε2)|FLmax|2 + (1 + ε−2)|Jmax|2
)
.

(2) If FL(x, t) = 0, the stability conditions are (21) and (24) with

Kε = JRmax + ε2 + ∆tm
(

1

2
− θ
)

(1 + ε−2)(1 + ε2)|Jmax|2.

(3) If J(x, t, U) = 0, the stability conditions are (21) and (24) with

Kε = FLRmax + ε2 + ∆tm
(

1

2
− θ
)

(1 + ε−2)(1 + ε2)|FLmax|2.
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Remark 3. If we consider the Dirichlet boundary conditions then, according
to the discrete Poincaré-Friedrichs inequality, there exists a constant C(Ω),
depending on Ω, such that

C(Ω)‖Um+1‖h ≤ ‖δ−x Um+1‖h∗.

So, for θ ∈ [1
2 , 1], if (25) holds, inequality (34) implies

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
+ ξC(Ω)‖Um+θ‖2

h

≤ 1

4ε2
‖F (·, tm+θ, 0)‖2

h + ε2‖Um+θ‖2
h + (FLRmax + JRmax) ‖Um+θ‖2

h (38)

Considering ε2 = 1
2ξC(Ω), then ξC(Ω)− ε2 > 0 and we obtain(

1− 4θ2∆tmK
)
‖Um+1‖2

h ≤
(
1 + 4(1− θ)2∆tmK

)
‖Um‖2

h

+
∆tm

ξC(Ω)
‖F (·, tm+1, 0)‖2

h,

for m = 0, . . . ,M − 1, with

K = FLRmax + JRmax.

Then, the stability condition is (21) with Kε = K (does not depend on ε).
With the same arguments, for θ ∈ [0, 1

2) and Dirichlet boundary conditions,
we may prove that, if (25) holds, the stability conditions are (21) and (24)
with

Kε = FLRmax + JRmax + ∆tm
(

1

2
− θ
)

(1 + ε−2)(1 + ε2)

×
(

(1 + ε2)|FLmax|2 + (1 + ε−2)|Jmax|2
)
.

Remark 4. For θ ∈ [1
2 , 1], if both FLRmax and JRmax are non-positive, (25)

holds and we consider Dirichlet boundary conditions, the method is uncondi-
tionally stable.

3.2. Semi-Implicit case. Let us now consider the case where µ = 0 and
θ = 1, i.e, the semi-implicit Euler method.

Theorem 2. Let Um
j be the numerical solution of (4)–(5), with homogeneous

Dirichlet (6) or Neumann (7) boundary conditions, given by (11)–(12) with
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(13) or (14), respectively. Let us consider µ = 0, θ = 1 and suppose that
(16), (17) and (18) hold, for all (xj, t

m+1) ∈ Q̃∆t
h .

The numerical method is stable under the condition

0 < ζ ≤ 1− 2∆tmKε, , ζ ∈ R+, (39)

with, for all ε 6= 0,

Kε = FLRmax +
1

2
|Jmax|2 + ε2. (40)

Proof. As for the previous theorem, to prove this result we will consider the
unidimensional case and Neumann boundary conditions. For higher dimen-
sion or Dirichlet boundary conditions, the proof follows the same steps.

We rewrite (11)–(12), (14) as a system by separating the real and imaginary
parts, UR and UI , respectively, of the main variable. We shall then study
the stability of the family of finite difference schemes: find Um

j ≈ u(xj, t
m),

j = 0, . . . , N , m = 0, . . . ,M , such that



Um+1
Rj − Um

Rj

∆tm
= δ+

x (Dm,0,1
Rj− δ−x U

m+1
Rj )− δ+

x (Dm,0,1
Ij− δ−x U

m+1
Ij ) + Fm,0,1

Rj

j = 1, . . . , N − 1,m = 0, . . . ,M − 1,

Um+1
Ij − Um

Ij

∆tm
= δ+

x (Dm,0,1
Ij− δ−x U

m+1
Rj ) + δ+

x (Dm,0,1
Rj− δ−x U

m+1
Ij ) + Fm,0,1

Ij ,

j = 1, . . . , N − 1,m = 0, . . . ,M − 1,

(41)

with initial condition and homogeneous Neumann boundary conditions given
as in the previous theorem, where

Dm,0,1
j− =

D(xj−1, t
m+1, Um

j−1) +D(xj, t
m+1, Um

j )

2
, (42)

j = 1, . . . , N, m = 0, . . . ,M , and

Fm,0,1 = F0(., t
m+1) + FL(., tm+1)Um+1 + FNL(., tm+1, Um) = Fm,0,1

Rj + iFm,0,1
Ij ,

j = 0, . . . , N , m = 0, . . . ,M−1. In (41) we need the extra points x−1 = x0−h
and xN+1 = xN + h and we define Dm,0,1

0− = Dm,0,1
1− , Dm,0,1

(N+1)− = Dm,0,1
N− .

We consider the discrete L2 inner products defined by (29)–(30) their cor-
responding norms.
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Multiplying both members of the first and second equations of (41) by,
respectively, Um+1

R and Um+1
I , according to the discrete inner product (·, ·)h,

and using summation by parts we obtain, as for (33),

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
+ ‖(Dm,0,1

R− )1/2δ−x U
m+1‖2

h∗

≤
(
Fm,0,1
R , Um+1

R

)
h

+
(
Fm,0,1
I , Um+1

I

)
h
. (43)

Let us now look to the right-hand side of (43). Considering (8)–(9) we
obtain(
Fm,0,1
R , Um+1

R

)
h

+
(
Fm,0,1
I , Um+1

I

)
h

= (FR(·, tm+1, 0), Um+1
R )h + (FI(·, tm+1, 0), Um+1

I )h

+ (FLR(·, tm+1)Um+1
R , Um+1

R )h + (FLR(·, tm+1)Um+1
I , Um+1

I )h

+ (JR(·, tm+1, Um)Um
R , U

m+1
R )h + (JR(·, tm+1, Um)Um

I , U
m+1
I )h

− (JI(·, tm+1, Um)Um
I , U

m+1
R )h + (JI(·, tm+1, Um)Um

R , U
m+1
I )h.

So, using Cauchy-Schwarz inequality, we have

(JR(·, tm+1,Um)Um
R , U

m+1
R )h ≤ J2

Rmax‖Um+1
R ‖h‖Um

R ‖h
and so

(JR(·, tm+1,Um)Um
R , U

m+1
R )h ≤

1

2

(
J2
Rmax‖Um+1

R ‖2
h + ‖Um

R ‖2
h

)
and, with the necessary modifications, we obtain a correspondent inequal-
ity for (JR(·, tm+1, Um)Um

I , U
m+1
I )h. We also have, considering the Cauchy-

Schwarz inequality,

−(JI(·, tm+1, Um)Um
I , U

m+1
R )h + (JI(·, tm+1, Um)Um

R , U
m+1
I )h

≤ 1

2

(
J2
Imax‖Um+1‖2

h + ‖Um‖2
h

)
Then, for the right-hand side of (43), we have(
Fm,0,1
R , Um+1

R

)
h

+
(
Fm,0,1
I , Um+1

I

)
h

≤ ‖FR(·, tm+1, 0)‖h‖Um+1
R ‖h + ‖FI(·, tm+1, 0)‖h‖Um+1

I ‖h
+ FLRmax‖Um+1‖2

h

+
1

2

(
J2
Rmax + J2

Imax

)
‖Um+1‖2

h + ‖Um‖2
h
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which leads to(
Fm,0,1
R , Um+1

R

)
h

+
(
Fm,0,1
I , Um+1

I

)
h

≤ 1

4ε2
‖F (·, tm+1, 0)‖2

h + ε2‖Um+1‖2
h

+

(
FLRmax +

1

2
|Jmax|2

)
‖Um+1‖2

h + ‖Um‖2
h,

where ε 6= 0. Then, from (43),

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
+ ‖(Dm,0,1

R− )1/2δ−x U
m+1‖2

h∗

≤ 1

4ε2
‖F (·, tm+1, 0)‖2

h + ε2‖Um+1‖2
h

+

(
FLRmax +

1

2
|Jmax|2

)
‖Um+1‖2

h + ‖Um‖2
h, (44)

and so

‖Um+1‖2
h − ‖Um‖2

h

2∆tm
≤ 1

4ε2
‖F (·, tm+1, 0)‖2

h + ε2‖Um+1‖2
h

+

(
FLRmax +

1

2
|Jmax|2

)
‖Um+1‖2

h + ‖Um‖2
h, (45)

Using the definition of Um+θ we get

(1− 2∆tmKε) ‖Um+1‖2
h ≤ (1 + 2∆tm)‖Um‖2

h +
∆tm

2ε2
‖F (·, tm+1, 0)‖2

h, (46)

for m = 0, . . . ,M−1, with Kε given by (40). If (39) holds, summing through
m and using the Discrete Duhamel’s Principle we get

‖Uk‖2
h ≤ e2(1+Kε)ζ

−1tk

(
‖U 0‖2

h +
1

2ε2ζ

k−1∑
m=0

‖F (·, tm+1, 0)‖2
h∆t

m

)
,

which concludes the proof.

Remark 5. If F (x, t, 0) = 0, we may prove that if

0 < ζ ≤ 1− 2∆tmK, (47)

for some ζ ∈ R+, with

K = FLRmax +
1

2
|Jmax|2, (48)
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we get

‖Um+1‖2
h ≤

(
1 + 2∆tm(1 +K)ζ−1

)
‖Um‖2

h,

for m = 0, . . . ,M − 1, and so

‖Uk‖2
h ≤ e2(1+K)ζ−1tk‖U 0‖2

h.

If, in addition, K ≤ 0, then the method is unconditionally stable.

Remark 6. As in Remark 3, if we consider the Dirichlet boundary conditions
and (25) holds, the stability condition is (47) with K given by (48).

Remark 7. If FNL ≡ 0, FLRmax is non-positive, (25) holds and we consider
Dirichlet boundary conditions, the method is unconditionally stable.

4. Numerical examples
In this section we will illustrate the stability results using appropriate nu-

merical examples.
We start by noting that the stability condition for the explicit method has

already been illustrated in [1], though without a reactive term. Since the
numerical results are very similar, we will leave the explicit scheme out of
this illustration, refering the reader to [1] for details. We will also leave out
of this section the illustration of the stability of the implicit scheme, since
we expect that the choice of linearization method may further influence the
results.

In this way, we will focus the numerical illustrations on the stability of the
semi-implicit scheme with Neumann boundary condition, since the stability
condition (though similar to the Dirichlet case) is slighty more complex.

In this way, we consider equation (4) with

x1, x2 ∈ (0, π)× (0, π), t ∈ (0, T ]

with initial and Neumann boundary conditions given, respectively, by

u(x1, x2, 0) = cos(x1) cos(x2)

and
∂u

∂ν
(0, x2, t) =

∂u

∂ν
(π, x2, t) =

∂u

∂ν
(x1, 0, t) =

∂u

∂ν
(x1, π, t) = 0.

Given a constant A ∈ C, for

F (x1, x2, t, v) =(A+ 2i)v + 2v2

−
(
sin2(x1) cos2(x2) + cos2(x1) sin2(x2)

)
e2At
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and

D(x1, x2, t, v) =i+ v,

the exact solution is given by

u(x1, x2, t) = cos(x1) cos(x2)e
At.

We also note that with this choice of reactive term F we have

F0(x1, x2, t) =−
(
sin2(x1) cos2(x2) + cos2(x1) sin2(x2)

)
e2At,

FL(x, t) =A+ 2i,

FNL(x, t, v) =2v2 ( and FNL(x, t, 0) = 0),

J(x, t, v) =2v2.

We will now consider two different possibilities for the value of the constant A
that will induce different behaviours on the solution and therefore on the
stability condition.

4.1. Case 1: FLR ≤ 0. For A = −1 + i, we have that FLR = −1 < 0. We
will now consider the upper bound (46) (taking ε = 1) and compare it with
the actual norm ‖Um‖2

h. We also note that if the time step ∆t is such that
there exists no ξ > 0 so that (39) is satisfied, then no theoretical upper bound
is known and the numerical solution might become unbounded in time (even
in cases where the solution is bounded).

The numerical results are shown in figures 1 and 2. It can be seen that
for smaller steps in time, the ratio stays bounded by the theoretical upper
bound. For higher time steps (namely for time steps that do not satisfy the
stability condition), there is no theoretical upper bound and the norm of the
approximation increases rapidly.

4.2. Case 2: FLR > 0. For A = 0.1 + i, we have that FLR = 0.1 > 0. In
this way, the condition (39) is harder to satisfy, since now FLRmax is positive.

Again we compare the theoretical the upper bound (46) and the actual
norm ‖Um‖2

h.
The numerical results are shown in figures 3 and 4. It can be seen that

though in some cases the theoretical bound increases, the numerical results
might stay bounded. Similarly to the previous case, for higher steps in time,
the approximation’s norm increases rapidly.
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Figure 1. Case 1: Evolution in time of numerical norm ‖Um‖2
h

and the theoretical upper bound (46) for several time steps ∆t.
No plot on the theoretical upper bound, means there exists no ξ
that satifies (39).

5. Conclusions
In this paper we have established the stability conditions for finite difference

schemes in the context of complex diffusion with reactive terms. In this way
we have extended a previous stability result [1] to the semi-implicit scheme
and to the presence of reactive terms in complex diffusion.

In this way we have shown that both the implicit and semi-implicit schemes
are stable under some conditions on the time step. We note that at a fixed
time, there is always a small enough time step for which the method is stable,
since the stability condition is an upper bound for the time step.
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Figure 2. Case 1: Real and imaginary parts of the approxima-
tion Um for the final time T = 3 for several time steps ∆t.

As usual, for the explicit scheme, a stability condition that relates the
magnitude of the time step and the spatial spacement needs to be satisfied.

Finally we have illustrated the theoretical results with numerical examples,
to show cases of stability and unstability.

Parallel work [2] establishes a convergence result for these finite different
schemes in the context of complex diffusion with reactive terms.

References
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