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FINITE DIFFERENCE SCHEMES FOR NONLINEAR
COMPLEX REACTION-DIFFUSION PROCESSES:
CONVERGENCE ANALYSIS

ADERITO ARAUJO, SILVIA BARBEIRO AND PEDRO SERRANHO

ABSTRACT: This paper is devoted to the proof of the convergence properties of
a class of finite difference schemes applied to nonlinear complex reaction-diffusion
equations. We investigate the accuracy of the numerical solution considering im-
plicit and semi-implicit discretizations. To illustrate the theoretical results we
present some numerical examples computed with a semi-implicit scheme applied
to a nonlinear equation.
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1. Introduction

Let Q be a bounded open set in RY, d € {1,2}, with boundary I' = 99.
Typically €2 is the cartesian product of open intervals in R, i.e.,

d
Q= ]](a;.0)), (1)

j=1
with a;,b; € R. Let Q = Qx(0,T], withT > 0,and v : Q = Q x [0,T] — C.
We consider a reaction-diffusion process with a non-constant complex coef-
ficient D(x,t,v) = Dg(z,t,v) + iD(x,t,v) and non-constant complex reac-
tion term F(x,t,v) = Fr(x,t,v) + iFi(x,t,v), where Dg(x,t,v), Di(z,t,v),
Fr(z,t,v), Fr(z,t,v) are real functions dependent on v. We need to assume

that

DR(Q?,t,U) Z§>07 (I‘,t) < Q) (2)
and that there exists a constant L > 0 such that
[D(x,t,0)| < L, (x,t) € Q. (3)
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These inequalities (2) and (3) can easily be shown to hold for the diffusion
coefficient in [2], [6] and [14].

We define the initial boundary value problem for the unknown complex
function © = up + tuy

%(x,t) =V - (D(x,t,u)Vu(z,t)) + F(z,t,u), (z,t)€Q, (4)
under the initial condition
u(z,0) =u'(x), z¢€Q, (5)
with either the Dirichlet boundary condition
u(z,t) =0, zel, tel0,T], (6)

or the Neumann boundary condition

Oy —0, zel, tefoT) (7)
ov

u
where — denotes the derivative in the direction of the exterior normal to I'.

For the Iyeaction term we will consider the following decomposition
F(z,t,v) = Fr(x,t,v) + Fyp(z,t,v), (8)
where F7, is a linear operator with respect to v,
Fr(z,t,v) = f(x,t) + Az, t)v,

satisfying
|A(z,t)| < Apae Y(z,t) € Q % (0,T]. 9)
The present paper focuses on deriving convergence results for a class of
finite difference schemes for (4)-(5), with (6) or (7), in one and two dimen-
sions. Diffusion processes are commonly used in image processing, as for
example in noise removal, inpainting, stereo vision or optical flow (see e.g.
6,7, 14, 15, 16, 17, 18, 19, 21]) and in particular nonlinear complex diffusion
proved to be successfully applied in medical imaging despeckling and denois-
ing ([12, 17]). Although diverse numerical schemes have been implemented to
approximately solve the resulting mathematical model, yet, no formal math-
ematical analysis has been carried out in order to gather the properties of
approximate solutions such as error estimates and rates of convergence.
In [2] the authors studied the stability of a one parameter class of finite dif-
ference schemes for the non linear complex diffusion equation. Both explicit
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and implicit schemes were considered by changing the values of the param-
eter. In [3] the authors analyzed the stability of implicit and semi-implicit
finite difference schemes for nonlinear complex reaction-diffusion processes.
In image denoising, the stability proof in [2] is important for the cases where
the definition of the used image is fixed. However, in the cases where it is
possible to increase the definition of the image from previous acquired ones,
it is also important to establish convergence results for the filtering process.

The main goal of the present paper is to derive convergence results for a
class of implicit and semi-implicit finite difference schemes for the nonlinear
complex diffusion equation with a reaction term.

The paper is organized as follows: in Section 2 we describe the implicit and
semi-implicit numerical methods simultaneously by embedding them into a
one-parameter family of finite difference schemes. The core section of this
paper is Section 3, where the rigorous proof of convergence of the semi-
implicit and implicit discretization is presented. In the last section some
numerical experiments are shown to confirm the theoretical analysis. The
paper ends with an appendix where we prove some technical lemmata.

2. Numerical method

Let us construct a mesh on @, starting with the case d = 2. Let h;
denotes the mesh-size in the kth spatial coordinate direction, such that Ay =
(b, — ag)/Nk, k = 1,2, with N; > 2 an integer. The set of points

z; = (a1 + jih1, a2 + j2ha), 0 < ji1 < Np, 0 < jo < Ny,

defines a space grid that we denote by €. For the temporal interval we
consider the mesh

0=t"<tt<... <Mt M=T,

where M > 1 is an integer and At™ = t™*1 —¢™ m =0,...,M — 1. Let
h = max{hy, he} and At = maxAt™. We denote by @ﬁt the mesh in Q
defined by the cartesian product of the space grid 2, and a grid in the

temporal domain. Let Q5! = @hAt NQ and T2 = @hAt NI x [0,T].

We associate the coordinate (j,m) = (ji, j2, m) to the point (z;,t") € @ﬁt
and we denote by V™ the value of a mesh function V', defined on @ft, at the
point (z;,t™). We define the forward and backward finite differences with
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respect to (x;,t™) in the kth spatial direction by

+ m_‘/JT‘Tiek_V}m m_V Vm _
o Vi i , 0V i ., k=12,
where e; = (1,0) and e; = (0, 1).
If d =1, these definitions are simplified for the case of one spatial coordi-
nate instead of two.
On @, we approximate (4)-(5) by the one-parameter family of finite dif-
ference schemes

Um—l—l Um d - . ~
T = D S U E i QR (10)
k=1
with B
UJO = UO(IJ) n Qh, (11)
and either
U"=0 in I}, (12)
in the case of homogeneous Dirichlet boundary conditions (6), or
d
D GHUP+ 6, UM =0 in Ty, (13)
k=1

in the case of homogeneous Neumann boundary conditions (7), where

U = pU 4 (1= pUf", e {0,1}, (14)

and U]" represents the approximation of u(x;,t™),

D(zj, "L UM™) + D(xj et UEH

UZe)
m, _ J j—erk
Dj—(1/2)ek = 5 , ne{0,1}

and

F"' = Fpt 4 P = Fr(ay, 7 U™ 4 Fyg(a, ¢, 070,

We use the notation Qf’f for the set Qh or th, respectively, in the case
of Dirichlet or Neumann boundary conditions, and v, represents the kth
component of the normal vector v.

Note that the cases © = 0 and u = 1 correspond to a semi-implicit and
implicit discretization, respectively. In the semi-implicit case (semi-implicit
Euler method), the diffusion coefficient and the non-linear part of the reaction
term are treated explicitly.
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3. Convergence

The main result of this paper is Theorem 1. Estimates for the difference
between the pointwise restriction of the exact solution on the discretization
nodes and the finite difference solution are proved.

To provide a proper functional setting, we need to define spaces involving
time-dependent functions ([11]). Let X denote a Banach space with norm
|.]lx. In what follows, X is shorthand for any of the usual Sobolev spaces
W#P(Q) (which we also denote by H*(2) in the case p = 2) or the Banach
space L>(Q2). The space L*>(0,T; X) consists of all measurable functions
v:1[0,7] — X with

HUHLoo(o,T;X) = esssup [[v(t)][x < oo.
0<t<T

In what follows, || - ||, will denote the discrete L? norm, which will be
specified later in this section.

Theorem 1. Let the solution u of (4)-(5), with (6) or (7), lie in L>(0,T;
H3(2)), where Q is a one-dimensional or a two-dimensional domain defined
by (1). Let us assume that D and Fxp are Lipschitz continuous with respect
to the third component, with Lipschitz constant C'p and Cp, respectively, in
the sense that

‘D(I,t,?))—D([B,t,w” SCD|U(ZE,t)—w(£L“,t)‘ ( ) Q (15>
|Fnp(z,t,v) — Fyp(z,t,w)| < Crlo(z,t) — w(z, t)| V(z,t) € Q, (16)
and that D(., " u(.,tmH) € H?*(Q), ( tmH (T € H2( ),
Fyr (" u(, ¢ ) € H*(Q), m = 0,...,M — 1. If (2), (3) and (9)
hold, and % c L™(0,T; H*(Q)), ?3? € L>(0,T; HY(Q)), then the numer-

ical solution U of (10)-(11), with (12) or (13), satisfies the following error
estimate

| Ry — Ul < O(h?) + O(At), (17)

where Ryu denotes the pointwise restriction of the function u to the space
grid .

We will prove the convergence for both uni and bi-dimensional cases. In
what follows C' denotes a generic positive constant.
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0*u

We first note that, as a result of Taylor expansion about ¢™*!, if T

€ L=(0,T; L*(9)) then

m+1Y _ m
wle 1) —wlns P) 0wy ymity o App,(a), Vo€, (18)

Atm Ot
with
0%u
pumlloey < c| ou ,
( ) at2 Loc(tmvthrl;LQ(Q))
and, for any sufficiently smooth function g(t),
g™ ) = g(t™) + At" pgm, (19)
with

‘pg,m

3.1. Uni-dimensional case. We will consider the unidimensional case and
Neumann boundary conditions. For Dirichlet boundary conditions the proof
follows the same steps.

We rewrite (10)—(11), (13) as a system by separating the real and imaginary
parts, Up and Uy, respectively, of the main variable U = (Uy,...,Ux). We
shall then study the convergence of the family of finite difference schemes:
find U" =~ u(x;,t™), j=0,...,N,m=0,..., M, such that

( m+1 m

At™m

= 07 (DRlo, Upstt) — 65 (DyRts, U + Fit'
j=0,...,N, m=0,....M—1,
) (20)

Um+1 _Jm
= SH(DS U (D U -

At v
j=0,....,N, m=0,...,M—1,

\

with initial condition
U%j = uOR(a:j), U?j = u?(xj), j=0,...,N,
and homogeneous Neumann boundary conditions

m - m m - m m - m m _ m J—
Ur 1 =Ugi, Ugn 1 = Ugny1, Urly = UL, Uiv 1 = Uy, m=0,..., M.
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In (20) we need the extra points x_; = g — h and zy,1 = xy + h and we

define D" = DV, D?}\}il)_ = Dt
We consider the discrete L? inner products
P e S
(U V)= 50V + > WUV + SUNVy (21)
j=1
and
N
(U V) =Y hUV;, (22)
j=1
and their corresponding norms
10l = (@ 0);* and U]l = (U, 0);" (23)

Let £ = Rhu — U, ER = RhuR — UR and E] = Rhu] — U]. Multiplying
both members of the first and second equations of (20) by Ep*! and E}"™,
respectively, according to the discrete inner product (21), using (18) and
taking into account the boundary conditions, we obtain

Eptl — Ef
(—R ! Em> + (D) 20, B 7. =

0
(Rh%(tﬂul), EgH)h + A" (PuR,m, Egﬂ)h
+ (Dgiu(sw_Rhug—’—l’ 6$_Eg+1)h* - (DT—,M(S;E_RhuT+17 6;Eg+1)h*

(DS By 6 Y, — (PR R, 1)

and

Ept! — Ep
(— Em) D5 B,
NG \

0
<Rh%(tm+l)’ E}nﬁLl) + Atm (pul,maE}nJrl)h
h

i (D?:H(S;Rhugﬂ’ 5:;E}n+1>h* + (Dgl“(S;RhUTH, 5;E}n+1)h*
(D0 B8 B, (Y, -

Let I; = (zj,241) and xj,1/9 = 7; + %, j=1,...,N —1.
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From (4), we get

zj+1/2 zj+1/2
/ 8u(x,tm+1)dx _ / 0 (D(gj,thrl,U(I,thrl))@(iE,thrl)) dr

i Ot T Ox
$j+1/2
+ / Fla, ™ u(z, ") da. (26)
IL'j*l/Q

Let us define x_; ) = 9 and xy,1/2 = ry. Multiplying (26) by (E™);,
using integration and a summation by parts and taking into account the
boundary conditions, we obtain

N xj+1/2 )
| SR de(Bg
N ou
m R m — m
—hZDR(IjA/Q,t Hau)@—x(%—l/%t N6, EFTY);
=1
N ou
m 1 m — m
+hZDI('Tj—1/2at Hau)%(xj—l/%t 0, ERTY);
j=1
N z;+1/2
e [ Fua e 0
j=0 “*i

and

N z;j+1/2 Ou;
S [ St dap, -
. $j—1/2 at

N
m OJug m —m
_hZDI(Ij—l/Qat +1au)%(:€j—1/27t (6, EPY);

J=1

N
m Our m — m
—hZDR(%’_UQ,t —Hau)%(xj—l/%t +1)(5x Ly H)j

J=1

N .

T2 m41 m+1y

+y Fy(z, " w) do(EPHY;. (28)
jZO .I}j—l/2
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In order to provide the desired bounds, we start by deducing that

Eptt — En 1 1
Eerl _ Eerl Em+1 Em Eerl
< Apm L Atm( R 7R )h At ( R> )
1 +112 +1 2
—_~_||E™ Ep Eptt — ER|3.
SINTL lh = S I E Hh+2Ath il
And then
Eptt — En 1
—~“R R Em+1 > Em+1 Em 2 . 29
(F > o (ERTR-IERI) . (29
Likewise
Eptt — pr 1
iy e Em+1 > - Em+1 2 Em 2 . 30
(" > g (BB 60)

In the next bound we take in account that || E°||;, = 0 and we use (29) and
(30). Subtracting (27) and (28) from (24) and (25), multiplying the result
by 2At"™ and summing from 0 to M — 1, we obtain

M-1
2 (min At") 3 (|(DR) 257 B R+ | (D) 20 B3
m=0
M-1
HIE R+ 1B G < 288 Y (1T + |To| + T3] + |Tu] + T3] + |Te| + |77
m=0
+|15] + |1o]),
(31)
where
QUR i1y i . 2 Qup m+1 m+1
T, = (Rh o ("), —Z /“2 (@ ) da(BR);,
h =0 i—1/
N )
8u1 z;+1/2 6U[
T, — R tm+1 Em—H . / it tm+1 d Em+1 .
» = (Rghe e > [, e

= At™ (puR,m7 EgHrl)h + A" (pul,ma E?Jrl)h )
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N
ou ~
T, = hZDR(xj—l/Qatm+1au)a—;<xj—1/2>tm+1)(5zER+1)j
=1

— (DR, Ryulp ™, o, B

h*?

N
ou ~
T5 - _hZDI(Ij—l/Qatm—Hau)a_:L,I(xj—l/Qatm—’—l)(ézER+1)j

J=1

+ (DM, RyuP ™, o, B b

N
ou —
T6 = h E D](Ij_l/g,tm+1,U)—axR(xj—l/Qatm+1)<5xE[ +1)j
j=1

— (DM, Ryulp ™, 0, EFHY

h*?

— (Do, Ryuf ™, o, E7HY)

h*?

N zj+1/2
Ty = (FFR“JrFﬁ’L‘j%,Eg“)h—Z / . Fr(z, ™ u) de(ERHY),,
j=0 Ui

N :L'j+1/2
Ty = (Fﬁ“+Fﬁg},E}”“)h—z / . Fr(z, t™ ™ w) de(EM);.
j=0 %"

In what follows we will obtain estimates for the terms in the right hand
side of (31). Lets start by estimating 77.
First note that 71 = (11, + T1p)/2 with

= [ (Bu du
R m R m
T = 3 |5 (S + Gl o)
=0

:Cj-’_l auR m m m
—/’ (2, ") | (B )0 + (BRH),)

ot
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and

— < auR m+1 _% o 4mtl
Ty = Z x]-ﬁ-lat ) ot (xjat )

Tj+1/2 Oup — /$j+1 Oup mtl
+/$j py —— (z, " )dx i 5 (x, ") dx

j41/2
x ((EF )0 — (ERT;).

For T, we have, from Lemma 1,

h 8uR m (9uR m Lt 8UR m
3 (Gt + Byt ) = [ D s

J

dug (tm—i—l)

H?(I;)

and so, by the Cauchy-Schwarz inequality,

N-1
Tl < C ) <h2
j=0

A
Q
VRS

i
D,H
i
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For T1, we have, from Lemma 2 and the Cauchy-Schwarz inequality

2
Hl(%))

1/2
8uR

m+1
5 (&)

N-1
|T1b‘ < C Z<h3/2

2

AN
Q
R

b
D.H
=~

h*

1/2
) 16, B
)

H(I

1

and then using the inequality ab < ea® + 4—b2 for all a,b € R and € > 0, we
€

get

2

¢
1

% (tm—i-l)

4
h ot

7] + (12 5
m(9)

2

C
iy
+4€

%(tm+1>

- +ello; B (32

HY(Q)

where € is an arbitrary positive constant.
Likewise we obtain an analogous estimate for 75.
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In order to estimate T5 we start by noticing that

N-1

h m m
Z ) (,OuR,m(Ij)(ERH)j + ,OuR,m(ijH)(ERH)jH)

=0
N Tjt1/2
Z/ PuRm dI(EmH)
0

j= Tj—1/2

N Tjt1/2
Z/ Pum (T dx(EmH)

7=0 Lj—1/2

[ (Punams ER 1), | <

_|_

From Lemma 2 and the Cauchy-Schwarz inequality we obtain

N-1
h m m
Z Py (PuR,m(xj>(ERH)j + puR,m(xjH)(ERH)jH)

2
Tjt1/2
_ Z / Pun. m d.T(Eerl)

j=0
Tj-1/2

N_1 1/2
<C (Z hQIpuR,mI%m) 2R

j=0

By the Cauchy-Schwarz inequality we get

Z / o () (E,

Then, for T3 we have

T3 < CA" ([lpuranll i@ ER i +llpuwrmllzpl E7 ™ n)

< llpuranl 2 |1 Bl

2
(Atm)2 (92uR m
< |55 + 151
Loo(tm tm+1 H1(Q))
(Atm) 827,&] 2 m
+0— | 28 +IEF 5 (33)
Loo(tm tm+1, H1(Q))

We write T} in the form

Ty| = |Tha + Tap + Tae + Tual,
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with
T4a -

N
Z DR ZUJ 1/27 +1,u(:vj_1/2,tm+1)> — DR(xj—l/Q,thrl,u(ﬂjj_l/g,tm+ﬂ)>)
=1

8UR m — m
X%(%’—l/%t +1)(5$ ERH)ja

and

8u ~m
Ty = hZD A ]71/2atm+1)(5xERH)j
—( Rf“%Rhu%“ﬁ;Eﬁ“)

h*)

where we used the notation
w (z, ") = w(w, . (34)

In the case u =1,
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and, in the case = 0, by (15) and (19),
N
lur(@™ ) lwree@h Y (6, B3,

J=1

ou

ot
ou

ot
(At™)?
- 4e

Ty < CpAt™

Loo(tm tm+1:[o0(Q))

CAt™

IA

Jur(@™ ) [wreo @) 165 B[ ne
Loo(tm gm0 (Q))

ou|| " -
yn lur(™ ) o) + €llo; B 17
Loo(tm tm+1: Lo (Q))

From the Sobolev imbedding theorem ([1], Theorem 5.4), the norm
|ur(t)||wreq) is bounded provided that up(t) € H*().

In order to estimate Ty, we start by noticing that, by Lemma 3, holds

Dpg(xj_1, ™" u") + Dp(x;, " u)

2
< CR*2| DR, t™ ™ ul ™) s, ),

Dg(xj_1/9, £ )

and, by the Cauchy-Schwarz inequality, follows the estimate
Tw| < CR[lur(t™ ) lwie@l Dr( " ul ™) el o; ER T la-

So we obtain the bound

Bt N . -
Tl < O lun(t™ eyl Dt Ll 7)) By + €l BB

Using (15) we obtain

C m m — m
Tiel < o lur(™ ) o) | ER Nl + €llo; R

By (3) and Lemma 4 we deduce that, for r € {1, 2},

2
R

N-1 1/2
Thal < C(ZhQTWR(thqumgj)) 16, BRI ne

J=0

h2r
<
= C 4e

lur (™ ) ) + €lloy E7 b

The estimates for 15, T and 17 are obtained in an analogous way.
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We write Tg in the form

|T8‘ == |T8a + T8b‘7
with
N xj+1/2
Ty, = (anglegH)h_Z / Frp(z, ™ ) de(ER™);,
j:O $j—1/2
N $j+1/2
Ty = (FNiwER™), - Z / / Fypa(e, " u) do(ERH);
jZO l’j—l 2

Using (9), we have

[(FER ER ), — (RuFLa(, "), B, |
= |(RhAR (., " ERT — RhAI(.,th)E}nH’EgH)h‘

1 m m
< AN ETHE B (3)

Using the same type of analysis as for T} we get

N $j+1/2

(RuFrp( ™), B, = > / Frp(z, t™ u) de(BRY),
< Ch4 I m+1 m+1 2 Em+1 2
>~ Z H LR('?t ,U(.,t ))HHQQ + H R Hh
C
+4—€h4HFLR(.,tm“,u(.,tm“ Hm +e||6; B3, (36)
From (35) and (36) follows
1 m—+1 m—+1
|74l mazHE I + 21 EZ 17
C m m 2
+Zh4HFLR(-,t Ll ") [
C
+4—€h4HFLR(.,tm“,u(.,th HHl + €lld, Em“Hh*.
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Considering the notation (34), we write Tg, in the form

Ty = (Fyim ERtY), — (RaFnr(, t"u), ERTY),

N o pai41/2
+ (RpFnpr( t" u), ERHY), — Z/ Expr(x, " w) do(ERT);

N o pri41/2
+ Fnir x,tmﬂ,u“ — Fyrr x,tmﬂ,u de(EmT..
o R )i
j=0 i~

Using (16), we have
(5t E5), — (BaPrsnl 04 ), B, | < Gl B

C m 1 m
< SR B+ S, (37

Likewise (36) we obtain

N 2i+1/2
(RnFnig(, t™ " u), BT, — Z / Eyxpr(x, " uh) do(ERT),;
=0 :E]fl/2

C
S Zh4 HFNLR('atm+17uM HHQ Q) + HEEHJH%
C
+4_6h4HFNLR('7tm+1 HHl +€H5 Em+1 h*- (38>

In the case u =1,

N o exi41/2
/ (FNLR('%'7 tm+17 uﬂ) - FNLR(.T}, thrl, U)) dx(Eg+1)J = 0.
]:0 IL'j*l/Q
and, in the case = 0, by (16) and (19),
N o 412
/ (FNLR(I,tm+1,Uu) —FNLR(x,tm+1,u)) dI(EgH_l)j
jZO J}j—1/2
ou
< CrpAt™ a HEELJAH;L
t Loo(tm gm+1;,[o(Q)))
02 oul|?
- (Atm)? B (39)
2 at Loo tm tm+1 Loo(Q)) 2 R
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From (37), (38) and (39) follows

012? m+p m+1 C 4 m+1
T IE™ 5+ 2085 + k| Pyt w) [ o
C’
—I——h | Fyer(,t" " u HH1 +ellog ER -
02 0
R (A2 || S .
2 at Loo tm 2fm-i—l LOO(Q))

For Ty we use the same type of analysis as for 7.
The convergence result stated in Theorem 1 follows from (31) using (2)

and the estimates for 17, ...,Ty. In fact
M—1
M m — m—+112
BV + 26 i A7 11680 3 15, £
2 ow, o) C Jou,
< 2At Z — it S + —ht|| ="
A™ 2 82 2

4e ot Loo(gm tm+1 H1(Q))

(AL™)* || du ’ 1y(12

+C Uu tm+ 1,00

el 2 RN G [

h4 m m
+CO - llult D@ DG " wp) [z

g tm—i—l Em—i—u Ch2r tm—i—l
+ 1 (™ D @ 1 E™ 1l + C e o)

+5 A%axl\Em“Hﬁ‘lHE?“Hi

C
+ 4—€h4 | Fr(, " u

)

C m
+Zh4 HFL(7t +1,U HH2(Q)

C
FCRIE™ 15 + 7R [ Fve (™ ) [

oul|?

C
Lee(tm tm+1;12(Q))

[ v (o i + CHAE™?

ot
(40)
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So, for At sufficiently small, we apply the discrete version of Gronwall’s
lemma (see e.g. [9], [20]) to (40) to obtain the convergence estimate (17).

Remark 1. In the case of Dirichlet boundary conditions we obtain a similar
convergence result using the discrete L? inner product

N—1
(U V) =Y _ hUjV;.

J=1

Remark 2. Under the hypothesis of Theorem 1, if we relax the reqularity
condition u € L®(0,T; H?*(Q)) instead of u € L>(0,T; H3(Q)), from (40)
we get the estimate

1Ry — Ulla < O(h) + O(AL).

3.2. Bi-dimensional case. In this section we consider the two-dimensional
case and we obtain analogous convergence estimates. For the proof we follow
some arguments taken from [10] and [13] instead of [4] and [5].

Let us consider the numerical method (10)—(11), with d = 2, assuming
(as for the 1D-case) Neumann boundary conditions. In order to clarify the
presentation, we only give detail for the case p = 0 (semi-implicit Euler
method).

We start by introducing some notation related with the space domain.

Let Qh = Q, U, UY, where €, :QhﬂQ, I'y=T1ulyUl'sUIYy,

— {a:j € Oy, zj = (a1, a2 + joha), jo ...,Ng—l}’
Iy = {:chQh:x] (a1 + jih1,b2),51 =1 ...,Nl—l},
F3:{$j€Qh:£U] (b1, ag + johso), jo = 1, N2_1},

={z; € W :2j= (a1 + jih1,a2), i =1,..., Ny — 1},

and
VU = {¥ = (a1, a2),V2 = (a1, b2),93 = (b1, b2), V4 = (b1, 0a2)}.

Figure 1 illustrates grid in the domain.
For the 2D case, the discrete L? inner products are

_ hiho = — hih
Z hthUjVj -+ Z %Ujvj' + Z %U]V

ijQh IL'jGFh $j€'l9
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Vo I U3
T T T T T
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| | | | |
Iy | | | | | I's
R A e
I I I I I
R WP NN VU Y P S
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I I I I I
L L L L L

FIGURE 1. Domain Q2 = (ay,b1) X (a9, bs) and mesh §2;,.

hihs —

(U,V)h{ = Z h1h2UjVj+ Z U;V;

l’jEQhUI‘g ijEFQUF4U'l93U'l94

and

— hiho = —
(U, V) Y. mhUVit Y S EUV

l’jEQhUFQ :L'jEF1UF3U192U193

and their correspondent norms are denoted by ||.||5, ||-
tively.

Using the same notation as in the previous section, the analogous of (24)—
(25) become

e and |.

hy, TeSpec-

2
hr =

Em+1 — E}? 1 : 1\1/2 1

(%,E}?*) + X II(DF= o, Bt
h =1
ou
(Rha_f(tanl),EgHrl) + Atm (puR,ma Eg+1)h
h
2 2

+ D (DR Ryt 6 BT, = Y (DR Ry ™ 6, ER )
k=1 k=1

hi

o |

(41)

4 Z (D}nle(Sl;E}nJrl, 5};E$+1>hz . (FIZ%M’ EghLl)h

k=1
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and

Our

h
2

2
+ Z (DT_“(S Rhum-i-l’ Em+1 Z Dg—i—l(s RhumH, 6I<:_E7In+1)
1 k=1

I

+ ) (Do, ER ™, o, B
k=1

= (Fy"" EpT) (42)

h h

With the same arguments as before, we may conclude that

M-1 2
2 min At™ Z (H Dm+1 1/25 Em+1 T H(Dm+1>1/25 E}nJrl h*>
m=0 k=1
M-1
+HIEF L + IEF I < 288 ) (T3] + 1 To| + | T3 + | Ta| + |T5)
m=0

+|Ts| + |T7] + T3] + |To]), (43)

where

0

Lj+(1/2)ey Lj+(1/2)eg au
R
- E ' / / thrl) dJ?(EgHrl)j,

.I']EQ}L Zj_ (1/2)eq Ty (1/2)eq

Tl _ <RhauR (thrl) Em+1)
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J2+1/2 ou
_ E m—+1 R m—+1
— hl ( DR(le—l/an%t 7“’) ax (xj1—1/27x27t )dan
_ ) 1
xjeﬂh\(F1U191U192) Tia—1/2

x (01 Bt )

1+1/2 ou
m—+1 R m—+1
+ho E ( Dpg(w1, 2,12, t ’u)87(x1’ Tj—12, ") dy
_ . 2
xjeﬂh\(F4U191U194) Ti-1/2

x(0; B )

— (DR, O o™, 07 E?%Hl)h* (DR o8 B 6 B
2
and the expressions for T5,T3,T5; — Ty are obtained in the same way as for
the 1D case. Here x = (21, 292) and z; = (x;,, xj,).

We start by deriving an estimate for 71. Let P, = (xj,, z;,), P> = (2,41, T;,),
Py = (xj41,%j,41), Py = (2, 2,41). We will consider the contribution of
each rectangle OJ; = (z;,, xj,+1) X (2j,, ,+1) which we subdivide in four con-
gruent subrectangles Rl, Ry, R3, Ry, such that P; is the common vertex of the
region U; and R;, 1 = .4, respectively. The contribution of the region
OJ; to T1, which we represent by T1(0;), is

h1h2 ! 8UR
4 &~ 0t

—Z / OuR . 1) o B+

T (0y) (P t™ ) (ER™)

P;

where (E7 ) p, denotes Eg(B;, t™*1).
Next we will use the following equality

4 4
426 ZCZZCZZ—F Cl—l—CQ—63—64)(d1—|—d2—d3—d4)

i=1 =1 =1
+(c1 —co+c3 —cy)(dy — do + d3 — dy)
+(c1 —cg — 3+ ca)(dy — dy — d3 + dy),

with ¢ = hlhg 8uR(P m+1) 8uR

tm+1 d dd Em—H 5
4 8t o, at( ) T an ( R )P

K2
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We apply this equality to 471(0J;) and study the behavior of the four re-
sulting sums Tla(Dj>7 le(Dj>, Tlc(Dj) and Tld(Dj>
Using the Lemma 5, we obtain

hlhg ! 8uR
1= ot

Jup
o, Ot

Pup
0tox] 0xs}

(Pi,thrl) o (I,thrl) dr

< C(h? 4 h%) max

m+1
S1+S9=2 ( )

Y

LY(;)

where s1, 9 € {0,1,2}, and then
4

> (B )nl.

LYOj) =1

83uR
Ty, (0| < C(h2 + K2 __Jur _
‘ 1 ( J)l — C( 1+ 2) max 8t8$i18$§2

m+1
81+82:2 (t )

We can write T1;(0;) in the form
(c14+co—c3—cy)(dy +do —ds —dy) =
(c1 + o —c3 — ca)ha(— (03 BR ™) p, — (65 ER ) py),
and we obtain
To(T))] < ler+ ca — e3 = calha (|63 B + 1005 ER T R)]) -

Using Lemma 6, we get

O*up
| < C(hy+ h — (gt , 1=1,2,3,4,
lci] < C(h1 + 2)?1?,}2( 8t8:cs( )Ll(Dj) Z
and then
|T1b(D)| < C(h2+h2)maX %(tm—i—l)
i)l < L7202 || otox, LY(0;)

x (108, B pl + 100, B p)I) -
The other sums, T1.(0J;) and T14(0;), can be bounded in the same way as

T(0;).
Summing the contribution of all the rectangles in the domain, we obtain
1/2
2 2 OUR i1 ’
Ty < C(hi+h3) [ > W(t )
0 H2(0;)

DjCQ
< (15w + lloy By + 1105 ERH

1) -
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Let us now obtain an estimate for 7. As for the 1D case, we split T} in
several terms

Ty = |Tu, + Tup, + Tup, + Tac, + Thde, + Tag, + Tha,l,

where T, has the natural correspondence to the same quantity in the 1D
case, Ty, and Ty, have natural correspondence to Ty, in the 1D case with
respect to the space variables x1 and w9, respectively. Analogously, we define
Thers Thaey, Thq, and Tyg,. For most of this terms the analysis is very similar
to the 1D case. As before we can use the Sobolev imbedding theorem ([1])
to conclude that the norm |lu(t)||w1.~(q) is bounded. In order to use this
argument we need the assumption u(t) € H?(Q).
We will only derive in detail the bound for Tyq,,

Rtz auR o
Ty = I ) / D e g ey w7 da (67 B, )

xjeﬂh\(rlLJZ%UﬂQ Tia—1/2

_< m+105 Rh m+1 5 Em+1>h*'

In order to estimate Ty, we consider Ty, = Tyq,, + Tuq,, With

Tjo+1/2 ou
E m+1,0 R el o
fuae = I ( Dri=(2e, &Ul'(%’l—lm,xz,t ) dao(67 BB )j.)
ijQh\(F1U191Uq92) Ljo—1/2

Ljg+1/2 m+10 41 41
- m — m
E: ~(1/2)e1 0y up " (25, T2) dwa(6) B )j>7
$JEQh\(F1UQ91UQ92 Tiz—1/2
and
32+1/2
. —|—10 m—+1 — rm+1
T4d1b = E / D 1/2 (5 UR (Ijl,l'g) d$2(51 ER )j>
:L']EQh\(F1U191U192 Tia—1/2

m+1,0 — m — 1 m
_ (DRj(1/2) Srum T 8 ERH)

Applying Lemma 4 we obtain

i

GuR (93uR
0xq o3
Summing all the terms, applying the Cauchy-Schwarz inequality and con-

sidering (3) we obtain
Tha,] < CRur(t™ )|l meo) |67 ER ™

(le 1/2,1‘2, ) 51 m+1(xj17x2) SChl ('7:E27tm+1)

L(I ) .

hi-
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and then
hi 1y(12 1912
- — m+
| Tia, Coelun(™ D) o) + ellor EF ™ i
Let us now estimate T}q,. We start by noticing that
. L1 8uR
sy ) = [ S ) d,
IL'jl 1 xl
and then
j2+1/2 ou
1,0 R
T4d1b = / / l)er ’1/2)61 Oz (.731,37 tm+ )dl’l dxs
Tjp—-1 7/ Tjp—1/2 1

$J€Qh\ F1U191U'l92
% (5;Em+1) >

i ou
D" 1,0 R m
Z / h2 JF —(1/2)ey 61’1 (xlaxb?t +1) dw (6 E +1)J>

x;€Q,UT5Y Y-t

J1 h2 m auR m m
- ¥ / " pps, e g (0 T Y day (67 E H);)'

$JEF2UF4UQ93UQ94 J1-1

In the same way as for T} in the previous section (see (32)) and taking (3)
into account, we have
h4
Taay| < O llur(t™ ) s + 1E7

4

h m — m
O fun(t™ ) ey + €l B3

Considering all the contributions, we obtain the proof of Theorem 1 for the
2D case.

4. Numerical results

In this section, we will illustrate the theoretical results for convergence for
the semi-implicit method (that is, m = 1 and p = 0), for both the Dirichlet
and Neumann boundary conditions.

4.1. Dirichlet case. Let us consider the equation

ou

5 V- (DVu)+ f, x,29€ (0,m) x (0,7),t € (0,1],



26 ADERITO ARAUJO, SILVIA BARBEIRO AND PEDRO SERRANHO

with initial and Dirichlet boundary conditions given, respectively, by
u(xq, x2,0) = sin(z) sin(xs)
and
u(0, 9, t) = u(m, x9,t) = u(z1,0,t) = u(xy, 7, t) = 0.
Given two constants A, B € C, for
f(x1, x9,t) =(A + 2B) sin(z;) sin(z) e+
[25in?(21) sin®(z) — cos®(z1) sin®(za) — sin®(z1) cos®(x2)] €4

and
D(z1,x9,t,u) =B + u,

the exact solution is given by

u(zy, To,t) = sin(x) sin(zs)e.

For the following, we will consider

A=-2-2 B=1+li

4.1.1. Order 1 in time. In this section we will consider constant spatial
spacements h; = ho and step in time At. Moreover, we will successively half
the spatial spacements hi, ho and step in time At in order to illustrate the
linear numerical order of convergence in time.

One gets the approximations U¥ ., . ,, for

2 2

w(r/2,7/2,T) = —0.05632 — 0.12306i

on the central point (7/2,7/2) of the spatial domain at the final time 7' = 1
given in Table 1. We note that

EN1+1 N2+1 — U(7T/2 7T/2 T) UN1+1 N2+1

Moreover, the order of convergence p can be approximated by

p = 1ogy(|Enl/[Enial), (44)

where F,, and E, . are the errors considering

1
At= ., hy=hy = ——
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TABLE 1. Aproximation, error and numerical estimate on the
order of convergence p for the Dirichlet Case, obtained by halfing
the step in time and the spatial spacement.

hi=hy| At U@% E@% E@% P
/2 1 0.23565-0.10324i | 0.29197+0.01982i 0.29264 0.79414
/4 1/2 | 0.11239-0.11884i | 0.168714-0.00422i 0.16876 0.76446
/8 1/4 | 0.04300-0.12548i | 0.09932-0.00242i 0.09935 0.83094
/16 1/8 |-0.00056-0.12628i | 0.05576-0.00322i 0.05585 0.89736
7/32 | 1/16 |-0.02642-0.125351 | 0.02990-0.00229i 0.02998 0.94333
w/64 | 1/32 |-0.04078-0.12440i | 0.01553-0.00134i 0.01559 0.97023
/128 | 1/64 |-0.04839-0.12378i | 0.00793-0.00072i 0.00796 0.98474

/256 | 1/128 | -0.05232-0.123431 | 0.00400-0.00037i 0.00402 -

TABLE 2. L?-discrete norm of the error and numerical estimate
on the order of convergence p for the Dirichlet Case, obtained by
halfing the step in time and the spatial spacement.

hl :hQ At HU(,,T)—UM”}L p
/2 1 0.45968 0.78001
/4 | 12 0.26770 0.81094
7/8 | 1/4 0.15259 0.85691
/16 1/8 0.08425 0.90866
w/32 | 1/16 0.04488 0.94786
7/64 | 1/32 0.02327 0.97208

7/128 | 1/64 0.01186 0.98554
/256 | 1/128 0.00599 -

Similar results are obtained for the numerical convergence using the L2
discrete norm of the error ||u(.,.,T) — UM||;, as presented in Table 2.
As expected, the numerical orders of convergence tend to 1.

4.1.2. Order 2 in space. In this section we will again consider constant spatial
spacements h; = ho and step in time At. Moreover, we will successively half
the spatial spacements hi, ho while we will successively divide by 4 the step
in time At in order to illustrate the quadratic numerical order of convergence
in space.

The results are shown in Table 3 for pointwise convergence and in Table 4
for the error measured with the L? discrete norm. Note that for the numerical
approximation of the order of convergence p in (44), the error £, is obtained
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TABLE 3. Aproximation, error and numerical estimate on the
order of convergence p for the Dirichlet Case, obtained by halfing
the spatial spacement and dividing by 4 the step in time.
hi=hy| At Uit ngt E¥is1 mpnt E¥i myn p

/2 1 0.05703-0.168071 | 0.11335-0.045011 0.12196 1.62845
/4 1/4 1-0.02090-0.14042i | 0.03542-0.01736i 0.03945 1.89815
/8 1/16 |-0.04714-0.12833i | 0.00918-0.005271 0.01058 1.97857
/16 1/64 |-0.05402-0.12444i | 0.00230-0.00138i 0.00269 1.99486
/32 1/256 |-0.05574-0.12341i | 0.00058-0.000351 0.00067 1.99873
w/64 | 1/1024 |-0.05618-0.12315i | 0.00014-0.00009i 0.00017 -
TABLE 4. L? discrete norm of the error and numerical estimate
on the order of convergence p for the Dirichlet Case, obtained by
halfing the spatial spacement and dividing by 4 the step in time.
hl :hz At HU(,,T)—UMHh P
/2 1 0.19157 1.65693
/4 1/4 0.06075 1.92837
/8 1/16 0.01596 1.98124
/16 1/64 0.00404 1.99522
/32 1/256 0.00101 1.99880
w/64 |1/1024 0.00025 -
considering
1 s
At:ﬁ, hlzhgzﬁ, n:O,l,...

As expected, the numerical order of convergence tends to 2.

4.2. Neumann case. Let us consider the equation

ou

ot

:v-

(DVu) + f,

Ty, T2 € (O?ﬂ-) X (077T)7t € (07 1]7

with initial and Neumann boundary conditions given, respectively, by

and

ou

—(0, 9, t)

v

u(xy, x2,0) = cos(xq) cos(xs)

ou

= —(7T,.T}2,t) =

ov

0
o w1,0,8) =

ou

—(.%’1,7T,t) = 0.

v
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TABLE 5. Aproximation, error and numerical estimate on the
order of convergence p for the Neumann Case, obtained by halfing
the step in time and the spatial spacement.

hi=hy | At ENio1 npen BN nynn p
/2 1 -0.01196-0.012351 0.01719 -0.06301

/4 1/2 | 0.00019-0.01796i 0.01796 0.43921
/8 1/4 |-0.00303-0.01289i 0.01324 0.69251
/16 1/8 |-0.00423-0.00702i 0.00820 0.79918
7/32 | 1/16 |-0.00329-0.00337i 0.00471 0.87788
7/64 | 1/32 |-0.00203-0.00157i 0.00256 0.93158
7/128 | 1/64 |-0.00112-0.00074i 0.00134 0.96365
/256 | 1/128 | -0.00059-0.00036i 0.00069 -

Again, given two constants A, B € C, for
f(x1, 9, t) =(A + 2B) cos(z1) cos(zs) e+

[2 cos®(21) cos® () — sin®(z1) cos®(xa) — cos?(z1) sin®(x2)] €4

and
D(z1,x9,t,u) =B + u,

the exact solution is given by

w(zy, T, t) = cos(x) cos(zs)e .

Again, we will consider

A=-2-2 B=1+li

4.2.1. Order 1 in time. In this section we will consider constant spatial
spacements h; = ho and step in time At. Moreover, we will half the spa-
tial spacements hi, ho and step in time At in order to illustrate the linear
numerical order of convergence in time.

The results are shown in Table 5 for pointwise convergence. Similar re-
sults are obtained for the numerical convergence using the discrete norm, as
presented in Table 6.

As expected, the numerical orders of convergence converge to 1.
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TABLE 6. L? discrete norm of the error and numerical estimate
on the order of convergence p for the Neumann Case, obtained
by halfing the step in time and the spatial spacement.

h1 :hg At ||u(,,T)—UM||h P
/2 1/1 1.01585 0.41741
/4| 12 0.76064 0.75393
/8 | 1/4 0.45105 0.87441
7/16 | 1/8 0.24604 0.92853
7/32 | 1/16 0.12927 0.95927
w/64 | 1/32 0.06648 0.97777

w/128 | 1/64 0.03376 0.98835

7/256 | 1/128 0.01702 -

TABLE 7. Aproximation, error and numerical estimate on the
order of convergence p for the Neumann Case, obtained by halfing
the spatial spacement and dividing by 4 the step in time.

hp=hy | At EN o1 v EN o1y p
/2 1 -0.00724-0.013851 0.01563 0.73198

/4 1/4 |-0.00477-0.00811i 0.00941 1.66505
/8 1/16 |-0.00216-0.00203i 0.00297 1.93101
/16 1/64 |-0.00061-0.00049i 0.00078 1.98676
/32 | 1/256 |-0.00015-0.00012i 0.00020 1.99801
w/64 | 1/1024 | -0.00004-0.00003i 0.00005 -

4.2.2. Order 2 in space. In this section we will consider constant spatial
spacements h; = ho and step in time At. Moreover, we will half the spatial
spacements hq, hy while we will divid by 4 the step in time At in order to
illustrate the quadratic numerical order of convergence in space.

The results are shown in Table 7 for pointwise convergence and in Table 8
for the discrete norm.

As expected, the numerical order of convergence tends to 2.

Appendix A.Technical lemmata

The following lemmata are technical tools needed to derive the conver-
gence estimates. They are a consequence of the Bramble-Hilbert Lemma

(see e.g. [8]).
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TABLE 8. L? discrete norm of the error and numerical estimate
on the order of convergence p for the Neumann Case, obtained
by halfing the spatial spacement and dividing by 4 the step in

time.

h1 :hg At ||u(,,T)—UM||h P
7T/2 1 0.80983 1.43702
71'/4 1/4 0.29909 1.84755
7T/8 1/16 0.08311 1.96560
7T/16 1/64 0.02128 1.99216
7T/32 1/256 0.00535 1.99788
7r/64 1/1024 0.00134 -

A.1. One-dimensional case.
Lemma 1. Forv e H"(I;), r € {1,2}, the following estimates hold

5 (wla) + o) — [ " o(@)da

5 < O 20|y (45)

and

Tj+1
ho(j41/2) — / v(z)dx

J

< CHHY2 o) 3 (46)

Proof: Let the function w be defined by

w(€) = ooy +€B), €€ [0,1] (47
Then
‘g(v(xj)+v(xj+1))—/xjjﬂv(a:)da: _ ‘h(w@);w(l)_/o w(g)d£>‘
= h|A(w)],
with 1
Mo =2 [y gewnio)

This functional is bounded in W"1((0, 1)) and vanish for g being a polynomial
of degree less or equal to 1. Thus, the Bramble-Hilbert Lemma gives the
existence of a positive constant C' such that

Ag) < Clglwraoay = Cllg" | L1 (0.1))-
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Taking g = w and using the Cauchy-Schwarz inequality

A w)] < Chllw® [z < OB 0D |1y < CR™2 00| 2y
and (45) holds. For (46) the proof is analogous with

o =9 (5) - [ o

-

Lemma 2. For v € H'(I;) the following estimates hold

h IL'j+1/2 3/2 ,

51}(1}]') - U(I)dl‘ < Ch HU ‘ILQ((IEj,IEj+1/2))7 (48)
and

h i

gola) = [ oadde| < OBy (49)

Tj-1/2
Proof: Let
1 1/2 L

Mo = 5000 = [ a©de geW(©.1),

and

Mo =390~ [ of9)ds g€ W01

Both functionals are bounded in W11((0,1)) and vanish for polynomials of
degree zero. Taking g = w, with w defined by (47), by the Bramble-Hilbert
Lemma there exists of a positive constant C' such that (48) and (49) hold.m

Lemma 3. Forv e H'(I;), r € {1,2}, the following estimates hold

v(z;) ""27}(‘%3'“) —0(Tj41/2)

S Chr_l/QHU(T)H[p(]j). (50)

Proof: Let the function w be defined by (47). Then
w(0) + w(1) 1
~w (3 )] = )l

v(z;) + v(T)41)
9

- U(l’j+1/2)

with
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This functional is bounded in W"1((0,1)) and vanish for polynomials of de-
gree less or equal to 1. Thus, the Bramble-Hilbert Lemma gives the existence
of a positive constant C' such that

Ag) < Clglwraoy = Cllg" | L1 (0.1))-
Taking g = w and using the Cauchy-Schwarz inequality

Aw)| < Cllw N pioy) < CHH[ 1) < CR2 10 2y

=
Lemma 4. For v e H'"(I;), r € {1,2}, the following estimates holds
”Ul(l'j_l/g) — 5;@(3}'])‘ < Chr 1”’0 (r+1) H < Chr 1/2HU (r+1) HLQ(IJ‘)' (51)
Proof: Let w be defined by (47). Then
1 1 1
v'(a:j_l/Q) — 0, v(x)) = % [w' (§> —w(l)+ w(O)] = ﬁ)\(w), (52)
with

Mg) =4 (%) —g(1) +g(0), g€ W"((0,1)).

This functional is bounded in W*((0,1)), with s € {2,3}, and vanish for
polynomials of degree less or equal to 2. The Bramble-Hilbert Lemma gives
the existence of a positive constant C' such that

IA(9)] < Clglwraory = Cllg™ | r10.1)-
Taking ¢ = w, and using Cauchy-Schwarz inequality, we get

Tj+1
Mw)l < Clu oy =Cht [ @) da

J

1/2
Tj+1
< Ch* 1?2 (/ U(S)(x)|2dx> :

J

From (52),
V' (2j_172) — 6, v(x)| < CH MWV gy < CRV2 00|

The lemmas above were taken from [4] and [5].
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A.2.Bi-dimensional case. Let [J; = (z,,, xj,4+1) X (T, Tjp41), P1 = (2, 2j,),
P2 = (.I'j1+1,$j2), P3 = (I‘j1+1,$j2+1> and P4 = (leaij—i—l)-

Lemma 5. For v € H*(O;), the following estimate holds

h14h2 ZU(H) —/ v(x)dx 0v

< C(h?+h?) max ||————
i=1 0, = Ch 2 Oxy' Oy’

S1+89=2

, (53)
LY(;)

S1,892 € {0, 1, 2}
Proof: Let the function w be defined by
QU(g, 77) - U(le + ghl? L jq + 77h2)7 (57 77) S [07 1] X [07 1] (54)

Then

h14h2 ZU(Pz) — / | U(gj) dr = h1h2>\(w)

i=1 0;

with

YR CUES CUETUS EYLS R o P

g € W2((0,1) x (0,1)). This functional is bounded in W2!((0,1) x (0, 1))
and vanishes for polynomials (in £ and 1) of degree 1. By Bramble-Hilbert
Lemma the estimate

IA9)] < Clglwz1(0,1)x0,1))

holds and we obtain the bound (53). =
Lemma 6. For v € H(O;), the following estimate holds
ov
hihy v(P;) — / v(x)dx| < C(hy + he) max : (55)
uP s=1.2 || O LY(0)

i =1,2,3,4.
Proof: Let the function w be defined by (54). Then

hiha v(Py) — / o(x) dz = hy oA (w)

with

A(9)=g(0,0)—/0 /0 9(&,m) d€ dn,
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g € WH((0,1) x (0,1)). This functional is bounded and vanishes for poly-
nomials of degree zero. By Bramble-Hilbert Lemma we obtain the estimate

M9 < Clglwro.1)x(0.1))

which leads to the bound (55).
The proof using the points P, P; and P, follows the same steps. -
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