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Universidade de Coimbra
Preprint Number 13–32

FROM A-SPACES TO ARBITRARY SPACES

VIA SPATIAL FIBROUS PREORDERS

NELSON MARTINS-FERREIRA

Abstract: The well known equivalence between preorders and Alexandrov spa-
ces is extended to an equivalence between arbitrary topological spaces and spatial
fibrous preorders, a new notion to be introduced.
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1. Introduction

In modern terms, the main result in [1] establishes a categorical equiva-
lence between preorders and A-spaces. A preorder is simply a reflexive and
transitive relation while an A-space is a topological space in which any in-
tersection of open sets is open. The later trivially holds for finite topological
spaces and the equivalence between finite topological spaces and finite pre-
orders was used in [4, 5] to answer to open problems in topological descent
theory. In [3], p.61, Erné writes “Hence the question arises: How can we
enlarge the category of A-spaces on the one hand and the category of quasi-
ordered sets on the other hand, so that we still keep an equivalence between the
topological and the order-theoretical structures, but many interesting ’classi-
cal’ topologies are included in the extended definition?” and proposes the two
notions of B-space and C-space [3].
With a different motivation, and not being restricted to the order-theoretical

structures, we propose a new structure, which we call fibrous preorder, and
generalizes the one of a preorder. With the appropriate morphisms, called
fibrous morphisms, and a suitable equivalence between them, we observe that
the category Top, of topological spaces and continuous maps, is sitting in the
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of the category of preorders and the category of fibrous preorders.
The main result of this work is the description of the subcategory of fibrous

preorders which is equivalent to the category of topological spaces. Inspired
by what is called spatial frames in point-free-topology (see e.g. [7]), the
fibrous preorders arising in this way are called spatial fibrous preorders.
A fibrous preorder is a generalization of a preorder. It was obtained while

looking for a simple description of topological spaces in terms of internal cat-
egorical structures. By an internal categorical structure we mean a structure
which can be defined in an arbitrary category with finite limits — as for ins-
tance the notion of internal category or internal groupoid, internal preorder
or internal equivalence relation. A detailed description on these topics can
be found for instance in [2].
This work is organized as follows: in the section 2 we describe the category

of fibrous preorders, by defining its objects and morphisms and an equivalence
relation on each hom-set of fibrous morphisms; that induces an equivalence
between fibrous preorders that we make explicit; at the end we recover the
classical Alexandrov theorem stating that every A-space is equivalent to a
preorder. In section 3 we introduce the notion of spacial fibrous preorder
and prove that (up to equivalence) it defines a subcategory of the category
of fibrous preorders and moreover that it is isomorphic to the category of
topological spaces. In section 4 we provide some examples to illustrate how
the use of spacial fibrous preorders can be used to work with topological
spaces described by systems of open neighbourhoods.

2. Fibrous preorders and fibrous morphisms

The following definition is a generalization of the notion of preorder, i.e.
a reflexive and transitive relation. The word fibrous is a derivation of the
word fibre and it is motivated by the presence of a morphism p : A −→ B

(see below), suggesting that A may be considered as a fibre over the base
B, moreover when p is an isomorphism the classical notion of preorder is
recovered.

Definition 2.1. A fibrous preorder is a sequence

R
∂

,2 A
p

,2 B
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in which A and B are sets, p and ∂ are maps, R ⊆ A×B is a binary relation
(and as usual we simply write (a, b) ∈ R as aRb) such that the following
conditions hold:

(F1) p∂(a, b) = b;
(F2) aRp(a);
(F3) ∂(a, b)Ry ⇒ aRy;

for every a ∈ A and b, y ∈ B with aRb.

Definition 2.2. LetA = ( R
∂

,2 A
p

,2 B ) and A′ = ( R′ ∂′

,2 A′
p′

,2 B′ )
be two fibrous preorders. A fibrous morphism between A and A′ is a pair
(f, f ∗) with f : B −→ B′ a map from B to B′ and f ∗ : A′

f −→ A a map from

A′
f = {(a′, b) ∈ A′ × B | p′(a′) = f(b)}

to A such that

pf ∗(a′, b) = b (1)

and

f ∗(a′, b)Ry ⇒ a′R′f(y) (2)

for all a′ ∈ A′ and b, y ∈ B with p′(a′) = f(b).

In other words a fibrous morphism from A to A′ is a map f from B to B′

together with a span

A′ A′
f

π1
lr

f∗

,2 A

such that the following diagram (in which the top line is to be considered as
a single composite arrow) is a pullback diagram

A′
f

f∗

,2

π1

��

A
p

,2 B

f
��

A′
p′

,2 B′

and moreover the condition (2) is satisfied. Note that the commutativity of
the previous diagram is equivalent to condition (1).
Now, if (g, g∗) is another fibrous morphism, say from A′ to A′′, then the

composition (g, g∗) ◦ (f, f ∗) is computed as

(g, g∗) ◦ (f, f ∗) = (gf, f ∗g∗f)
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with f ∗g∗f(a
′′, b) = f ∗(g∗(a′′, f(b)), b). The following diagram illustrates how

the above formula is obtained (simply complete the diagram by inserting the
upper left pullback square) and it also shows that this formula is associative
up to a canonical isomorphism of pullbacks.

A′′
gf

g∗f
,2

π1

��

p.b.

A′
f

f∗

,2

π1

��

A
p

,2 B

f

��

A′′
g

g∗
,2

π1

��

A′
p′

,2 B′

g

��

A′′
p′′

,2 B′′

It is a simple calculation to check that it is well defined, that is, condition
(2) is satisfied.
We will consider the category FibPreord of fibrous preorders and fibrous

morphisms with the following identification of parallel fibrous morphisms.

Definition 2.3. Two parallel fibrous morphisms (f, f ∗) and (g, g∗) are said
to be equivalent if and only if f = g.

This equivalence of morphisms immediately gives the following equivalence
between two objects: we identify two fibrous preorders whenever they have
the same base object and the identity map is fibrous in both directions.

Proposition 2.4. Two fibrous preorders (R,A,B, p, ∂) and (R′, A′, B′, p′, ∂ ′)
are equivalent

(R,A,B, p, ∂) ∼ (R′, A′, B′, p′, ∂)

if and only if B = B′ and there exist two maps

A
ϕ

,2

p
��

A′
γ

lr

p′

��

B B′

such that p′ϕ = p, pγ = p′ and

ϕ(a)R′b ⇒ aRb (3)

γ(a′)Rb ⇒ a′R′b (4)

for every a ∈ A, a′ ∈ A′ and b ∈ B.
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Proof : Straightforward.

A preorder (B,≤) is in particular a fibrous preorder with A = B, p = 1B,
xRy if and only if x ≤ y and ∂(x, y) = y. In fact we have more.

Proposition 2.5. There is an embedding of the category of preorders into
the category of fibrous preorders and moreover an object (R,A,B, p, ∂) is (up
to equivalence) in the image of the embedding if and only if there exists a
map

u : B −→ A

such that pu = 1B and

up(a)Ry ⇒ aRy,

for every a ∈ A and b ∈ B.

Proof : Clearly if (B,≤) is a preorder then (R,A,B, p, ∂) with A = B, p =
1B = 1A, xRy if and only if x ≤ y and ∂(x, y) = y is a fibrous preorder. Also
every monotone map gives a fibrous morphism.
Conversely, let (R,A,B, p, ∂) be a fibrous preorder. If there exists a map

u : B −→ A

such that pu = 1B and

up(a)Ry ⇒ aRy,

for every a ∈ A and b ∈ B, then it is equivalent to

(R◦, B, B, 1B, ∂
◦)

with

xR◦y ⇔ u(x)Ry

and ∂◦(x, y) = y. First let us observe thatR◦ is a preorder, so that (R◦, B, B, 1B, ∂
◦)

is well defined. Indeed xR◦x ⇔ u(x)Rx ⇔ u(x)Rpu(x) which holds by con-
dition (F2). This proves reflexivity. For transitivity, suppose we have xR◦y

and yR◦z that is u(x)Ry and u(y)Rz, hence we also have up(∂(u(x), y))Rz

and then it follows ∂(u(x), y)Rz from which we conclude u(x)Rz, proving
that xR◦z as desired. It is also clear that we have maps

A
p

,2

p
��

B
u

lr

1B
��

B B
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with
p(a)R◦b ⇒ up(a)Rb ⇒ aRb

and u(x)Rb ⇒ xR◦b.

There is also a functor from the category of topological spaces to the one
of fibrous preorders which will be used in the next section.

Proposition 2.6. If (B, τ) is a topological space then the structure

A = {(U, x) | x ∈ U ∈ τ}

p(U, x) = x

(U, x)Ry ⇔ y ∈ U

∂((U, x), y) = (U, y)

defines a fibrous preorder. Moreover, if f : (B, τ) −→ (B′, τ ′) is a continuous
map then

(f, f ∗) : (R,A,B, p, ∂) −→ (R′, A′, B′, p′, ∂ ′),

with f : B −→ B′ the underlying map and

f ∗((U ′, x′), y) = (f−1(U ′), y)

for all (U ′, x′) ∈ A′ and y ∈ B with x′ = f(y), is a fibrous morphism between
fibrous preorders.

Proof : Straightforward verification.

In the next section we describe the fibrous preorders arising from a topo-
logical space, called spatial fibrous preorders and prove that the category of
topological spaces is isomorphic to the category of spatial fibrous preorders.
Before that we illustrate how the classical result of [1] can be obtained via
this new setting.

Proposition 2.7 (Alexandrov, [1]). Let (B, τ) be a topological space and
consider the fibrous preorder, say F (B, τ), described in Proposition 2.6. It is
an Alexandrov space if and only if F (B, τ) is equivalent to a preorder.

Proof : We only observe that if (B, τ) is an Alexandrov space then there exists
a map

u : B −→ A

assigning to each point x ∈ B the element (θx, x) ∈ A with θx the intersection
of all open neighbourhoods of x, moreover this map satisfies the requirements
of proposition 2.5.



FROM A-SPACES TO ARBITRARY SPACES VIA SPATIAL FIBROUS PREORDERS 7

3. The main result

The so called spatial frames are the frames that are isomorphic to the to-
pology of some space (see e.g. [7]). Here our main result is the description of
the full subcategory of fibrous preorders and fibrous morphisms (with equiva-
lent morphisms identified) which is equivalent to the category of topological
spaces.

Definition 3.1. A fibrous preorder ( R
∂

,2 A
p

,2 B ) is said to be spatial
when there exists s : B −→ A andm : A×B A −→ A withA×BA = {(a, a′) ∈
A×A | p(a) = p(a′)} such that

(F4) ps(y) = y;
(F5) pm(a, a′) = p(a) = p(a′);
(F6) m(a, a′)Ry ⇒ aRy&a′Ry;

for every a, a′ ∈ A and y ∈ B with p(a) = p(a′).

Observe that because we are identifying fibrous morphisms as in Definition
2.3, the notion of spatial fibrous preorder is a property of a given fibrous pre-
order and not an extra structure. That is to say that the category of spatial
fibrous preorders and (equivalent) fibrous morphisms is a full subcategory of
FibPreord.

Theorem 3.2. There are functors F and G between the category of spatial
fibrous preorders and topological spaces

SpFibPreord
F

,2 Top
G

lr

such that FG = 1 and GF ∼ 1.

Proof : The functor G is defined as in Proposition 2.6, together with s(x) =
(B, x) and m((U, x), (V, x)) = (U ∩ V, x). The functor F associates to each
spatial fibrous preorder

R
∂

,2 A
p

,2
B

s
lr , A×〈p,p〉 A

m
,2 A

the topological space (B, τ) in which τ is defined by

O ∈ τ ⇔ ∀y ∈ O ∃a ∈ A, p(a) = y, N(a) ⊆ O, (5)

with N(a) = {y ∈ B | aRy}. If (f, f ∗) is a morphism in SpFibPreord then
F (f, f ∗) = f . In order to see that the functor F is well defined we observe:
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(a) The empty set is in τ . Indeed it is an immediate consequence of (5).
(b) If O,O′ ∈ τ then O ∩O′ ∈ τ . Indeed if x ∈ O ∩O′ then by (5) there

exist a, a′ ∈ A such that p(a) = p(a′) = x and N(a) ⊆ O, N(a′) ⊆ O′.
Using (F5) and (F6) we obtain m(a, a′) such that pm(a, a′) = x and
N(m(a, a′)) ⊆ N(a)∩N(a′), yielding the desired result that for every
x ∈ O ∩ O′ there exists m(a, a′) ∈ A such that pm(a, a′) = x and
N(m(a, a′)) ⊆ O ∩ O′. This proves that O ∩O′ is in τ .

(c) The fact that p is surjective (F4) implies (in fact is equivalent to the
fact) that B is in τ .

(d) Again by definition of τ it is easy to see that it is closed under arbitrary
unions.

Concerning morphisms we have to show that if (f, f ∗) is a morphism in
SpFibPreord then f is a continuous map from (B, τ) to (B′, τ ′), assuming
that τ and τ ′ are obtained as in (5). Suppose O′ ∈ τ ′, we shall prove
f−1(O′) ∈ τ . Given any y ∈ f−1(O′), because O′ ∈ τ ′ and f(y) ∈ O′,
by (5) there exists a′ ∈ A′ such that p(a′) = f(y) and N ′(a′) ⊆ O′. Now, the
very structure of fibrous morphism gives us an element f ∗(a′, y) ∈ A such
that (see (1) and (2))

pf ∗(a′, y) = y

and

N(f ∗(a′, y)) ⊆ f−1(N ′(a′)) ⊆ f−1(O′),

proving thus that f−1(O′) ∈ τ , wheneverO′ ∈ τ ′. And hence f is a continuous
map.
It is also immediate to observe that FG = 1Top. Indeed

FG(B, τ) = (B, τ̄)

with

O ∈ τ̄ ⇔ ∀y ∈ O, ∃u ∈ τ, y ∈ u ⊆ O

and it is clear that τ̄ = τ .
It remains to prove GF ≃ 1. To do that we will show the existence of two

maps

A
ϕ

,2

p

��

GF (A) = Ā
γ

lr

p̄
��

B B
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such that the diagram above commutes and for every a ∈ A, (u, x) ∈ Ā and
b ∈ B,

ϕ(a)R̄b ⇒ aRb

γ(u, x)Rb ⇒ (u, x)R̄b.

The map ϕ is given by

ϕ(a) = (N(a), p(a))

while (assuming the axiom of choice)

γ(u, x) = au,x = ax

where ax ∈ A is any element of A such that p(ax) = x and N(au,x) ⊆ u,
which exists by definition of (u, x) ∈ Ā. Recall that (u, x) ∈ Ā if and only if
x ∈ u and u ⊆ B is such that

∀y ∈ u, ∃a ∈ A, p(a) = y,N(a) ⊆ u.

In order to prove that ϕ(a) is well defined we observe: by (F2), aRp(a),
and so p(a) ∈ N(a); now suppose y ∈ N(a), this means aRy, and if we put
a′ = ∂(a, y) then by (F1) p(a′) = y and by (F3) we know that

N(a′) ⊆ N(a),

showing that ϕ is well defined.
Finally we observe that

(N(a), p(a))R̄b ⇔ b ∈ N(a) ⇔ aRb

and

au,xRb ⇔ b ∈ N(au,x) ⊆ u ⇒ (u, x)R̄b,

which concludes the proof.

4. Some examples

We conclude with a list of examples to illustrate how this notion of spa-
tial fibrous preorder can be used to work with arbitrary topological spaces
described by basic neighbourhood relations.
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Normed vector spaces. Let B = (B,+, 0) be an abelian group and I ⊆ B

a subset of B together with a map h : I −→ N such that:

(1) 0 ∈ I;
(2) it nn′a ∈ I then na, n′a ∈ I;
(3) if na ∈ I and h(a)a′ ∈ I then n(a+ a′) ∈ I.

We construct a spatial fibrous preorder as follows:

A = N×B

p(n, x) = x, s(x) = (1, x), m(n, n′, x) = (nn′, x)

(n, x)Ry ⇔ n(x− y) ∈ I

∂((n, x), y) =

{

(h(x− y), y) if x 6= y

(n, x) if x = y

A concrete example is the case when B is a normed vector space with I =
{x ∈ B | norm(x) < 1} and h(x) ∈ N is such that 1

h(x) <
1
k
− norm(x) with k

the unique natural number such that

1

k + 1
≤ norm(x) <

1

k

if norm(x) 6= 0.

Metric Spaces. The intuitive idea of working with metric spaces with open
balls of radius 1

n
for some natural number n may be formalized in terms of

spatial fibrous preorders in the following way. Let (B, d) be a metric space
and consider

A = N× B

p(n, x) = x, s(x) = (1, x)

m((n, x), (n′, x)) = (nn′, x)

(n, x)Ry ⇔ d(x, y) <
1

n
∂((n, x), y) = (k, y)

with k ∈ N any number greater than n
1−nd(x,y)

.

This shows the existence of a functor (actually and embedding) from the
category of metric spaces and continuous maps into the category of spatial
fibrous preorders and fibrous morphisms. If f : (B, d) −→ (B′, d′) is a conti-
nuous map we may define f ∗((n, f(y), y)) as the pair (k, y) with k any natural
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number such that for every z ∈ Z

d(z, y) <
1

k
⇒ d′(f(z), f(y)) <

1

n
.

We may now ask for a characterization of those spatial fibrous preorders
which arise from a metric space in the same way as above. As it is well-
known in point-set topology there is not a simple answer to that question.
Nevertheless the notion of a natural space is a good substitute to the one of
a metric space.

Natural spaces. Generalizing the construction for metric spaces from above
we observe that more in general, every map N : N× B −→ P (B) such that

(1) ∀n ∈ N, ∀x ∈ B, x ∈ N(n, x)
(2) N(nn′, x) ⊆ N(n, x) ∩N(n′, x)
(3) N(n, x) ⊆ {y ∈ B | ∃n′ ∈ N, N(n′, y) ⊆ N(n, x)}

gives a spatial fibrous preorder as follows: A = N × B, p(n, x) = x, s(x) =
(1, x), m(n, n′, x) = (nn′, x),

(n, x)Ry ⇔ y ∈ N(n, x),

and ∂(n, x, y) = n′ where n′ is such that N(n′, y) ⊆ N(n, x) which exists by
definition of N .
For the purpose of this note a topological space is said to be natural if

it admits a base of neighbourhoods of the form above. It is clear from the
above that every metrizable space is natural.
In this case, a morphism f : B −→ B′ is continuous if for every n ∈ N and

y ∈ B there exists k ∈ N such that f(N(k, y)) ⊆ N ′(n, f(y)).
The particular the case of metric spaces is recaptured by letting N(n, x) =

{y ∈ B | d(x, y) < 1
n
}.

However, as it is well known, not every natural space is metrizable.

Tangent disk topology. An example of a well known non-metrizable space
which is natural in the sense above is the so-called tangent disk topology. In
this case B = {(x, y) ∈ R

2 | y ≥ 0} and

N(n, (x, y)) =

{

{(x1, x2) | d((x1, x2), (x, y)) <
1
n
} if y > 0

{(x1, x2) | d((x1, x2), (x, y)) <
1
n
} ∪ {(x, y)} if y = 0.
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The Cantor set. The Cantor Set is another well known concrete example
that fits in the setting of natural spaces: in this case we let

B = {u | u : N −→ {0, 2}}

and

N(n, u) = {w ∈ B | w(i) = u(i), i ≤ n}.

More generally we may consider as B any set of the form {u | u : N −→ X}
with X an arbitrary set.

The p-adic topology. The p-adic topology on the set of integers is obtained
as

N(n, x) = {z ∈ Z | z = x+ kpn, k ∈ Z}

with B = Z.
If instead of a map N : N×B −→ P (B) we consider a family of binary

relationsRn over B, then we have examples of the following type, with I = N.

Indexed families of preorders. A more general example is obtained as
follows. Let I be a monoid, B a set, (Ri)i∈I a family of binary relations
Ri ⊆ B × B, and (∂i : Ri −→ I) a family of maps such that:

(1) xRix

(2) xRijy ⇒ xRiy&xRjy

(3) xRib&bR∂i(x,b)y ⇒ xRiy

for all i, j ∈ I and x, y, b ∈ B.
In this case we construct a fibrous preorder as follows: A = I×B, p(i, x) =

x, s(x) = (1, x), m(i, j, x) = (ij, x),

(i, x)Ry ⇔ xRiy

and ∂(i, x, y) = (∂i(x, y), y) if xRiy.
For morphisms (from (∂i : Ri −→ I)i ∈ I to (∂ ′

i′ : R
′
i′ −→ I ′)i′ ∈ I ′) we have

a map f : B −→ B′ and a family of maps fj : B −→ I ′j ∈ I ′ such that

xRfj(x)y ⇒ f(x)R′
jf(y).
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5. Conclusion

In this note we introduced the notions of (spatial) fibrous preorder and
fibrous morphism, showing that the category of topological spaces is the quo-
tient category of the category of spatial fibrous preorders, obtained by iden-
tifying two fibrous morphisms whenever they have the same underlying map.
The examples show that this notion provides a convenient setting to work
with the intuitive notion of base of open neighbourhoods. However, as explai-
ned in the introduction, the main motivation that leads to the definition of fi-
brous preorder was the purpose of finding a purely categorical definition of to-
pological space. Future work ([6]) will specify the internal version of a fibrous
preorder, by replacing the relation R ⊆ A × B with a jointly monomorphic
pair of morphisms and by giving the appropriate translation of axioms (F1)-
(F3) and (F4)-(F6). In particular, the additional structure of spatial fibrous
preorder is nothing but a comonoid structure in the monoidal category of fi-
brous preorders and fibrous morphisms, with an appropriate tensor product.
Further studies will then take place in FibPreOrd(C) and SpFibPreord(C)
for an arbitrary category C with finite limits. For instance if C is the category
of finite sets then Preord(C) ≃ SpFibPreord(C) ≃ FibPreord(C), as easily
follows from Proposition 2.5.
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