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FUNCTION SPACES OF POLYANALYTIC FUNCTIONS

LUÍS DANIEL ABREU AND HANS G. FEICHTINGER

Abstract: This is both an introduction and a review of some of the recent de-
velopments on Fock and Bergman spaces of polyanalytic functions. The study of
polyanalytic functions is a classic topic in complex analysis. However, thanks to the
interdisciplinar transference of knowledge promoted within the activities of HCAA
network, it has benefited from a cross-fertilization with ideas from signal analysis,
quantum physics and random matrices. It is the main purpose of this survey to
provide a brief introduction to those ideas and to describe some of the results of
the mentioned cross-fertilization. We will put some emphasis on the connections
to Gabor and wavelet analysis and in the applications of coorbit and localization
theory. The departure point of our investigations is a thought experiment related
to a classical problem in the Theory of Signals, the one of multiplexing: sending
several signals simultaneously using a single channel.
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1. Introduction
1.1. Definition of a polyanalytic function. Among the most widely stud-
ied mathematical objects are the solutions of the Cauchy-Riemann equation

∂zF (z) =
1

2

(
∂

∂x
+ i

∂

∂ξ

)
F (x+ iξ) = 0,

known as analytic functions. The properties of analytic functions are so
remarkable, that, at a first encounter, they are often perceived as “magic”.
However, the analiticity restriction is so strong that it created a prejudice
against non-analytic functions, which are often perceived as unstructured
and bad behaved objects and therefore not worthy of further study. But
there are non-analytic functions with significant structure and with properties
reminiscent of those satisfied by analytic functions.

Such nice non-analytic functions are called polyanalytic functions.
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A function F (z, z), defined on a subset of C, and satisfying the generalized
Cauchy-Riemann equations

(∂z)
n F (z, z) =

1

2n

(
∂

∂x
+ i

∂

∂ξ

)n
F (x+ iξ, x− iξ) = 0, (1.1)

is said to be polyanalytic of order n − 1. A polyanalytic function F (z, z)
of order n − 1 is a polynomial of order n − 1 in z, with analytic functions
{ϕk(z)}n−1

k=0 as coefficients:

F (z, z) =
n−1∑
k=0

zkϕk(z). (1.2)

One can easily be convinced that some fundamental properties of analytic
functions cease to be true for polyanalytic functions. For instance, a simple
polyanalytic function of order 1 is

F (z, z) = 1− |z|2 = 1− zz.
Since

∂zF (z, z) = −z and (∂z)
2 F (z, z) = 0,

the function F (z, z) is not analytic in z, but is polyanalytic of order one.
This simple example already highlights one of the reasons why the proper-
ties of polyanalytic functions can be different of those enjoyed by analytic
functions: they can vanish on closed curves without vanishing identically,
while analytic functions can not even vanish on a accumulation set of the
complex plane! Still, many properties of analytic functions have found an
extension to polyanalytic functions, often in a nontrivial form.

1.2. What are polyanalytic functions good for? Imagine some applica-
tion of analytic functions. By definition, they allow to represent the objects
of our application as a function of z (because the function is analytic). We
may want to represent the object to obtain a nice theory, we may want to
store the information contained in the object and send it to someone. What-
ever we want to do, we will always end up with a representation involving
powers of z (because the functions are analytic). Not that bad, since we have
an infinite number of them. However, several applications of Mathematics,
like Quantum Mechanics and Signal Analysis, require infinite dimensions for
their theoretical formulation. And when we build a model in the complex
plane using analytic functions, all the powers of z are taken.
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What if we want to build several models simultaneously for the same plane?
Introducing an extra complex variable will bring us the complications related
to the study of analytic functions in several complex variables. If C is not
enough for some models, C2 may seem to much to handle if we want to keep
the mathematical problems within a tangible range. One is tempted to ask
if there is something in between, but it may seem hard to believe that it is
possible to “store” more information in a complex plane without introducing
an extra independent variable.

Enter the world of polyanalytic functions!
We are now allowed to use powers of z and z. This introduces an enormous

flexibility. Consider the Hilbert space L2(C) of all measurable functions
equiped with the norm

‖F‖2
L2(C) =

∫
C
|F (z)|2 e−π|z|

2

dµ(z). (1.3)

It is relatively easy to observe, using integration by parts (see formula (2.3)
below) that, given an analytic function F (z) ∈ L2(C), the function

F ′(z)− πzF (z)

is orthogonal to F (z). We can create several subspaces of L2(C) by mul-
tiplying elements of the Fock space of analytic functions by a power of z.
If we consider the sum of all such spaces we obtain the whole L2(C). We
can do even better: by proper combination of the powers of z and z we can
obtain an orthogonal decomposition of L2(C)! This fact, first observed by
Vasilevski [71] is due to the following: the polynomials

ek,j(z, z) = eπ|z|
2

(∂z)
k
[
e−π|z|

2

zj
]

are orthogonal in both the index j and k and they span the whole space L2(C)

of square integrable functions in the plane weighted by a gaussian e−π|z|
2

. For
every j, we have thus a “copy” of the space of analytic functions which is
orthogonal to any of the other copies. It is a remarkable fact that every
polyanalytic function of order n can be expressed as a combination of the
polynomials {ek,j(z, z)}k<n,j∈N. Thus, we can work simultaneously in n planes
keeping the number of degrees of freedom of each one intact. We will see in
this paper how this fact can be put in good use, notably in the analysis of the
higher Landau levels and in the multiplexing of signals (analysis of several
signals simultaneously).
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1.3. Some historical remarks. Polyanalytic functions were for the first
time considered in [49] by the Russian mathematician G. V. Kolossov (1867-
1935) in connection with his research on elasticity. This line of research
has been developed by his student Muskhelishvili and the applications of
polyanalytic functions to problems in elasticity are well documented in his
book [56].

Polyanalytic Function Theory has been investigated intensively, notably
by the Russian school led by Balk [15]. More recently the subject gained
a renewed interest within operator theory and some interesting properties
of the function spaces whose elements are polyanalytic functions have been
derived [16], [17], [71], [72]. A new characterization of polyanalytic functions
has been obtained by Agranovsky [9]. Our investigations in the topic were
originally motivated by applications in signal analysis, in particular by the
results of Gröchenig and Lyubarskii on Gabor frames with Hermite functions
[43],[44] but soon it was clear that Hilbert spaces of polyanalytic functions
lie at the heart of several interesting mathematical topics. Remarkably, they
provide explicit representation formulas for the functions in the eigenspaces
of the Euclidean Laplacian with a magnetic field, the so called Landau lev-
els. The historically-conscious reader may recognize in Polyanalytic Function
Theory the ecletic aroma emblematic of the Mathematics oriented to Signal
Analysis and Quantum Mechanics, an aroma which was particulary notori-
ous in the body of Mathematics which became known as the Bell papers of
the 60’s (see the review [67]) and, perhaps even stronger, in the advent of
wavelets and coherent states [23], [10].

1.4. Outline. Our purpose is to highlight the connections between different
topics and we have organized the paper as follows. We start with a section
on the Hilbert space theory of polyanalytic Fock spaces. This includes the
description of the “Theoretical Multiplexing Device” which is the basic signal
analytic model for our viewpoint. The third section explains how the topic
connects to time frequency analysis, more precisely, to the theory of Gabor
frames with Hermite functions. We quote some applications in Quantum
Physics in section 4, namely the interpretation of the so-called true polyan-
alytic Fock spaces as the eigenspaces of the Euclidean Landau Hamiltonian
with a constant magnetic field. In section 5 we take a close look to the repro-
ducing kernels and some asymptotic results recently obtained in the study
of random matrices. Then we make a review of the basis facts of the Lp
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theory of polyanalytic Fock spaces. The last section is devoted to hyperbolic
analogues of the theory.

2. Fock spaces of polyanalytic functions
2.1. The orthogonal decomposition and the polyanalytic hierar-
chy. Recall that L2(C) denotes the Hilbert space of all measurable functions
equiped with the norm

‖F‖2
L2(C) =

∫
C
|F (z)|2 e−π|z|

2

dµ(z),

where dµ(z) stands for area measure on C. If we require the elements of
the space to be analytic, we are lead to the Fock space F2(C). Polyanalytic
Fock spaces Fn

2(C) arise in an analogous manner, by requiring its elements
to be polyanalytic of order n − 1. They seem to have been first considered
by Balk [15, pag. 170] and, more recently, by Vasilevski [71], who obtained
the following decompositions in terms of spaces Fn

2 (C) which he called true
poly-Fock spaces :

Fn
2(C) = F1

2 (C)⊕ ...⊕Fn
2 (C). (2.1)

L2(C) =
∞⊕
n=1

Fn
2 (C).

We will use the following definition of Fn
2 (C) which is equivalent to the one

given by Vasilevski: a function F belongs to the true polyanalytic Fock space
Fn+1

2 (C) if ‖F‖L2(C) <∞ and there exists an entire function H such that

F (z) =

(
πn

n!

) 1
2

eπ|z|
2

(∂z)
n
[
e−π|z|

2

H(z)
]
. (2.2)

With this definition it is easy to verify that the spaces Fn
2 (C) are orthogonal

using Green´s formula:∫
Dr

f(z)∂zg(z)dz = −
∫
Dr

∂zf(z)g(z)dz +
1

i

∫
δDr

f(z)g(z)dz. (2.3)
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and its higher order version obtained by iterating (2.3):∫
Dr

f(z)

(
d

dz

)n
g(z)dz = (−1)n

∫
Dr

(
d

dz

)n
f(z)g(z)dz

+
1

i

n−1∑
j=0

(−1)j
∫
δDr

(
d

dz

)j
f(z)

(
d

dz

)n−j−1

g(z)dz.(2.4)

A visual image of the polyanalytic hierarchy is the following decomposition
of L2(C) (an orthogonal decomposition in the spaces {Fn

2 (C)}∞k=1 and a union
of the nested spaces {Fn

2(C)}∞k=1).

F1
2 (C) = F1

2(C) = F2(C)
F1

2 (C)⊕F2
2 (C) = F2

2(C)
..
...

F1
2 (C)⊕ .....⊕Fn

2 (C)
....

= Fn
2(C)

F1
2 (C)⊕ .....Fn

2 (C)⊕Fn+1
2 (C)⊕ ... =

⊕∞
n=1Fn

2 (C) = L2(C)

2.2. Reproducing kernels of the polyanalytic Fock spaces. The re-
producing kernels of the polyanalytic Fock spaces have been computed using
several different methods: invariance properties of the Landau Laplacian [13],
composition of unitary operators [71], Gabor transforms with Hermite func-
tions [2], and the expansion in the kernel basis functions [34]. Nice formulas
are obtained using the Laguerre polynomials

Lαk (x) =
k∑
i=0

(−1)i
(
k + α

k − i

)
xi

i!
.

The reproducing kernel of the space Fn
2 (C), Kn(z, w), can be written as

Kn(z, w) = πL0
n−1(π |z − w|

2)eπzw.

This gives the explicit formula for the orthogonal projection P n required at
the step (5) of our theoretical multiplexing device in the next section:

(P nF )(w) =

∫
C
F (z)πL0

n−1(π |z − w|
2)eπz(w−z)dµ(z). (2.5)
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The reproducing kernel of the space Fn
2(C) is denoted by Kn(z, w). Using the

formula
∑n−1

k=0 L
α
k = Lα+1

n−1, (2.1) gives

Kn(z, w) = πL1
n−1(π |z − w|

2)eπzw.

2.3. A thought experiment: multiplexing of signals. A classical prob-
lem in the Theory of Signals is the one of Multiplexing, that is, transmitting
several signals over a single channel in such a way that it is possible to recover
the original signal at the receiver [14]. We will use the multiplexing idea as
a thought experiment providing intuition about our ideas, later to be devel-
oped rigorously. We suggest the reading of [48] for considerations regarding
the role of these kind of experiences, ubiquous in Theoretical Physics, in the
modern mathematical landscape.

The center of our attention is now the orthogonal decomposition (2.1).
Assume that we can somehow (we will do it in the next section) construct a
map Bn sending an arbitrary f ∈ L2(R) to the space Fn

2 (C). Then we can,
at least theoretically, proceed as follows.

(1) Given n signals f1, . . . , fn, with finite energy (fk ∈ L2(R) for every k),
process each individual signal by evaluating Bkfk. This encodes each
signal into one of the n orthogonal spaces F1(C), . . . ,Fn(C).

(2) Construct a new signal F = Bf = B1f1 + ...+Bnfn as a superposition
of the n processed signals.

(3) Sample, transmit, or process F.
(4) Let P k denote the orthogonal projection from Fn

2(C) onto Fk(C), then
P k (F ) = Bkfk by virtue of (2.1).

(5) Finally, after inverting each of the transforms Bk, we recover each
component fk in its original form.

The combination of n independent signals into a single signal Bnf and the
subsequent processing provides our multiplexing device. With two signals
this can be outlined in the following scheme.

f1 → Bf1 Bf1 → f1

↘ P 1 ↗
Bf1 + B2f2 = Bf

↗ P 2 ↘
f2 → B2f2 B2f2 → f2

We believe that the above device has pratical applications, but we will
pursue another direction in our reasoning: we will use the above scheme as a
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source of mathematical ideas-with some poetic license, we may say that we
apply signal analysis to mathematics.

2.4. The polyanalytic Bargmann transform. The construction of the
map Bk above can be done as follows. To map the first signal f1 ∈ L2(R)
to the space F1

2 (C) = F2(C) we can of course use the good old Bargmann
transform B, where

Bf(z) = 2
1
4

∫
R
f(t)e2πtz−πz2−π2 t

2

dt.

The remaining signals are mapped using

Bk+1f(z) =

(
πk

k!

) 1
2

eπ|z|
2

(∂z)
k
[
e−π|z|

2

Bf(z)
]

It can be proved that Bk : L2(R) → Fk
2 (C) is a Hilbert space isomorphism,

by observing that the Hermite functions are mapped to the orthogonal basis
{ek,n(z, z) : n ≥ 0} of Fk

2 (C), where

ek,n(z) =

(
πk

k!

) 1
2

eπ|z|
2

(∂z)
k
[
e−π|z|

2

en(z)
]

(2.6)

and

en(z) =

(
πn

n!

) 1
2

zn

is the orthogonal monomial basis of the Fock space.
We can now define a transform Bn : L2(R,Cn)→ Fn(C) by mapping each

vector f = (f1, ..., fn) ∈ L2(R,Cn) to the following polyanalytic function of
order n:

Bnf =B1f1 + ...+ Bnfn . (2.7)

This map is again a Hilbert space isomorphism and is called the polyanalytic
Bargmann transform [1].

2.5. A polyanalytic Weierstrass function. Our construction of the pre-
vious section is done at a purely theoretical level, since we have no way of
soring and processing a continuous signal. However, we can construct a dis-
crete counterpart of the theory. Following [3], an analogue of the Whittaker-
Shannon-Kotel´nikov sampling theorem can be constructed using a polyan-
alytic version of the Weierstrass sigma function. Let σ be the Weierstrass
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sigma function corresponding to Λ defined by

σΛ(z) = z
∏

λ∈Λ\{0}

(
1− z

λ

)
e
z
λ+ z2

2λ2 ,

To simplify our notations we will write the results in terms of the square
lattice, Λ = α(Z + iZ) consisting of the points λ = αl + iαm, k,m ∈ Z,
but most of what we will say is also true for general lattices. To write down
our explicit sampling formulas, the following polyanalytic extension of the
Weierstrass sigma function is required:

Sn+1
Λ (z) =

(
πn

n!

) 1
2

eπ|z|
2

(∂z)
n

[
e−π|z|

2 (σΛ(z))n+1

n!z

]
.

Clearly, S1
Λ(z) = σΛ(z)/z. Let σΛ◦(z) be the Weierstrass sigma function as-

sociated to the adjoint lattice Λ◦ = α−1(Z + iZ) of Λ and consider the cor-
responding polyanalytic Weierstrass function SnΛ0(z). With this terminology
we have:

Theorem 1. [3]. If α2 < 1
n+1, every F ∈ Fn+1

2 (C) can be written as:

F (z) =
∑

λ∈α(Z+iZ)

F (λ)eπλz−π|λ|
2

Sn+1
Λ0 (z), (2.8)

3. The connection to time-frequency analysis
3.1. The Gabor transform. The study of polyanalytic Fock spaces can be
significantly enriched via a connection to time-frequency (Gabor) analysis.
Recall that the Gabor or Short-time Fourier transform (STFT) of a function
or distribution f with respect to a window function g is defined to be

Vgf(x, ξ) =

∫
R
f(t)g(t− x)e−2πiξtdt. (3.1)

There is a very important property enjoyed by inner products of this trans-
forms. The following relations are usually called the orthogonal relations for
the short-time Fourier transform. Let f1, f2, g1, g2 ∈ L2(R). Then Vg1

f1, Vg2
f2 ∈

L2(R2) and

〈Vg1
f1, Vg2

f2〉L2(R2) = 〈f1, f2〉L2(R) 〈g1, g2〉L2(R). (3.2)

If ‖g‖L2(R) = 1, the Gabor transform provides an isometry

Vg : L2(R)→ L2(R2),
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since, if f, g ∈ L2(Rd), then

‖Vgf‖L2(R2) = ‖f‖L2(R) ‖g‖L2(R) . (3.3)

In many applications it is required that the window g is in the Feichtinger
algebra S0. This means that Vgg ∈ L1

(
R2
)
. Given a point λ = (λ1, λ2) in

phase-space R2, the corresponding time-frequency shift is

πλf(t) = e2πiλ2tf(t− λ1), t ∈ R.

Using this notation, the Gabor transform of a function f with respect to the
window g can be written as

Vgf(λ) = 〈f, πλg〉L2(R) .

In analogy to the time-frequency shifts πλ, there are Bargmann-Fock shifts
βλ defined for functions on C by

βλF (z) = eπiλ1λ2eπλ̄zF (z − λ) e−π|λ|
2/2 . (3.4)

We observe that the true polyanalytic Bargmann transform intertwines the
time-frequency shifts πλ and the Fock representation βλ on Fn

2 (C) by a cal-
culation similar to [41, p. 185]:

Bn (πλγ) (z) = βλBnγ(z) , (3.5)

for γ ∈ L2(R). If we choose the Gaussian function h0(t) = 2
1
4e−πt

2

as a win-
dow in (3.1), then a simple calculation shows that the Bargmann transform
is related to these special Gabor transforms as follows:

Bf(z) = e−iπxξ+π
|z|2

2 Vh0
f(x,−ξ). (3.6)

This is a well known fact and the details of the calculation can be found in
standart textbooks in time-frequency analysis, see for instance [41, pag. 53].

The key step now is the choice of higher order Hermite functions as windows
in (3.1). In Figure 1 one can observe the interesting patterns of the time-
frequency concentration when higher Hermite functions are used. We begin
by choosing the first Hermite function h1(t) = 2

1
4 2πte−πt

2

. First observe that

Vh1
f(x,−ξ) = 2πVh0

(tf)(x,−ξ)− 2πxVh0
f(x,−ξ)

and that

2πB(tf)(z) = ∂zBf(z) + πzBf(z).
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Thus, using (3.6)

e−iπxξ+π
|z|2

2 Vh1
f(x,−ξ) = ∂zBf(z)− πzBf(z) = B2f(z).

With a bit more effort, we can choose the nth Hermite function

hn(t) = cne
πt2
(
d

dt

)n (
e−2πt2

)
,

where cn is chosen so that ‖hn‖2 = 1, as a special window in (3.1).
We find a similar relation between Gabor transforms with Hermite func-

tions and true polyanalytic Bargmann transforms:

e−iπxξ+π
|z|2

2 Vhnf(x,−ξ) = Bn+1f(z). (3.7)

This simple observation made in [1] connects polyanalytic Fock spaces with

Gabor analysis. The important fact to retain is that the multiplier e−iπxξ+π
|z|2

2

is the same for every n. This leads us to the next observation. We can define
a vector valued Gabor transform

Vhn−1
f(λ) = V(h0,...,hn−1)(f0, ...fn−1)(λ)

for the purpose of processing simultaneously n signals using a vectorial win-
dow constituted by the first n Hermite functions. Since the windows are
orthogonal to each other, we can do this by simple superposition (we know
that the transformed signals will live in mutually orthogonal function spaces
because of the orthogonality conditions (3.2) )

Vhn−1
f(λ) =

n−1∑
k=0

Vhkfk(λ).

If follows now from (3.7) and from (2.7) that

Bnf =e−iπxξ+π
|z|2

2 Vhn−1
f(λ). (3.8)

Formula (3.8) is the key for a real variable treatment of polyanalytic Fock
spaces. This approach already lead to the proof of results that seemed hope-
less using only complex variables. For instance, it was possible to prove
that the sampling and interpolation lattices of Fn

2(C) can be characterized
by their density [1]. Previously, this result was known only for n = 1 and
the proofs ([52] and [65]) strongly depend on tools like Jensen´s formula,
which are not available in the polyanalytic case. The above connection to
Gabor analysis solved the problem, by means of a remarkable duality result
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(a) Phase space concentrations of a given function with the first four Hermite func-
tions

(b) Basis elements of the Phase space associated with high order Hermite
windows

Figure 1. Short-time Fourier transforms with higher order Her-
mite windows
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from time-frequency analysis [63], which turned the polyanalytic problem
into a Hermite interpolation (multi-sampling) problem in spaces of analytic
functions.

On the other side, the connection between Gabor analysis and polyanalytic
functions offers a new technical ammunition to time-frequency analysis. It
has already been used in [24, Lemma 1] in a key step of the proof of the
main result, where it is shown that a certain time-frequency localization has
infinite rank.

3.2. Gabor spaces. Let Gg denote the subspace of L2(R2) which is the
image of L2(R) under the Gabor transform with the window g,

Gg =
{
Vgf : f ∈ L2(R)

}
.

The spaces Gg are called model spaces in [12]. It is well known (see [23]) that
Gabor spaces have a reproducing kernel given by

k(z, w) = 〈πzg, πwg〉L2(R) (3.9)

For instance, if we consider the Gaussian window g(x) = 2
1
4e−πt

2

, using the
notation z = x + iξ and w = u + iη, a calculation (see [41, Lemma 1.5.2])
shows that the reproducing kernel of Gg is

k0(x, ξ, u, η) = eπi(u+x)(ξ−η)−π(u−x)2−π(η−ξ)2
2 .

This reproducing kernel can be related with the reproducing kernel of the
Fock space:

k0(z, w) = e−iπ(uη−xξ)−π |z|
2+|w|2

2 eπwz. (3.10)

Similar calculations can be done for g = hn−1 and we obtain

kn(z, w) = e−iπ(uη−xξ)−π |z|
2+|w|2

2 πL0
n−1(π |z − w|

2)eπzw

for the reproducing kernel of Ghn−1
. Thus, considering the operator E which

maps f to Mf , where

M(z) = eπ
|z|2

2 −iπxξ,

it is clear that E is an isometric isomorphism,

E : Ghn−1
→ Fn(Cd).

A similar construction is valid for the vector valued spaces. See [2] for more
details.
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3.3. Gabor expansions with Hermite functions. To give a more con-
crete idea of what we are talking about, let us see what Theorem 1 tells about
Gabor expansions, more precisely about the required size of the square lat-
tice. From Theorem 1, if α2 < 1

n+1 , then every F ∈ F2(C) can be written
in the form (2.8). Now, applying the inverse Bargmann transform and do-
ing some calculations involving the interwining property between the time-
frequency shifts and the Fock shifts (see [3] for the details), one can see
that this expansion is exactly equivalent to the Gabor expansion of an L2(R)
function. More precisely, if α2 < 1

n+1 , every f ∈ L2(R) admits the following
representation as a Gabor series

f(t) =
∑
l,k∈Z

ck,le
2πiαlthn(t− αk), (3.11)

with
‖c‖l2 ≈ ‖f‖L2(R)

Stable Gabor expansions of the form (3.11) can be obtained from frame
theory. For a countable subset Λ ∈ R2, one says that the Gabor system
G (hn,Λ) = {πλhn : λ ∈ Λ} is a Gabor frame or Weyl-Heisenberg frame in
L2(R), whenever there exist constants A,B > 0 such that, for all f ∈ L2(R),

A ‖f‖2
L2(R) ≤

∑
λ∈Λ

∣∣∣〈f, πλhn〉L2(R)

∣∣∣2 ≤ B ‖f‖2
L2(R) . (3.12)

This sort of expansions have been used before for practical purposes, for
instance, in image analysis [38]. Their mathematical study ([43], [33], [44],
[1], [3], [51]) used a blend of ideas from signal, harmonic and complex analysis,
providing this research field with a nice interdiciplinary flavour.

The problem of finding conditions on the set Λ that yield Gabor frames
is known as the density of Gabor frames. See [36] for a survey on the topic
and the recent paper [45] for the solution of the problem for a large class of
windows.

3.4. Fock expansions. Observe that, using the Bargmann transform and
the intertwining property (3.5) with n = 0, we can write the expansion (3.11)
in the Fock space as folows. Writing λl,k = αk + iαl and using (3.6) we can
expand every F ∈ F2(C) in the form

F (z) =
∑
l,k∈Z

ck,lβλl,ken(z),
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where βλ is the Bargmann-Fock shift (3.4) and the system {βλl,ken(z)}l,k∈Z is
a frame in the Fock space F2(C) of analytic functions. On the other side, if we
apply the true polyanalytic Bargmann transform of order n+1 together with
(3.5) with the same n+ 1, we can use (3.7) and expand every F ∈ Fn+1

2 (C)
in the form

F (z) =
∑
l,k∈Z

ck,lβλl,ken,n(z) (3.13)

and the system {βλl,ken,n(z)}l,k∈Z is a frame in the true polyanalytic space

Fn+1
2 (C). To see that this is an expansion of a distiguished sort, recall that

using (3.7) and the fact that the reproducing kernel of the Gabor space
generated by hn is given by 〈πzhn, πwhn〉L2(R), one can express the reproducing
kernel of the true polyanalytic space as

e−iπxξ+
π
2 |z|

2

〈πzhn, πwhn〉L2(R) = Bn+1(πwhn)(z) = βwen,n(z).

Thus, (3.13) is an expansion of reproducing kernels and, applying the repro-
ducing formula, the frame inequality for {βλl,ken,n(z)}l,k∈Z,

A ‖F‖2
L2(C) ≤

∑
l,k∈Z

∣∣∣〈F, βλl,ken,n(z)
〉
L2(R)

∣∣∣2 ≤ B ‖F‖2
L2(C)

can be written as

A ‖F‖2
L2(C) ≤

∑
l,k∈Z

|F (λl,k)|2 ≤ B ‖F‖2
L2(C) .

Thus, the lattice {λl,k}l,k∈Z is a sampling sequence for the true polyana-
lytic Fock space. Thus, sampling in Fn+1

2 (C) is equivalent to (analytic) Fock
frames of the form {βλl,ken(z)}l,k∈Z and both are equivalent to the formulation
of Gabor frames with Hermite functions. On the other side, one can con-
struct completely different frames in Fn+1

2 (C) by applying Bn+1 to the frames
G (hm,Λ) with m < n. This means that we have a different representation of
the frame G (hm,Λ) in each space Fn+1

2 (C)!
An open problem
The first proof of the sufficiency of the condition α2 < 1

n+1 for the expansion
(3.11) is due to Gröchenig and Lyubarskii [43]. In the same paper, the authors
provide some evidence to support the conjecture that the condition may even
be sharp (it is known from a general result of Ramanathan and Steger [60]
that α2 < 1 is necessary), a statement which would be surprising, since α2 <

1
n+1 is exactly the sampling rate necessary and sufficient for the expansion of
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n functions using the superframe (the superframe [44] is a vectorial version
of frame which has be seen to be equivalent to sampling in the polyanalytic
space [1]). The following problem seems to be quite hard.

Problem 1. [43] Find the exact range of α such that G (hn, α(Z + iZ)) is a
frame.

Recently, Lyubarskii and Nes [51] found that α2 = 3
5 > 1

2 is a sufficient

condition for the case n = 1. They also proved that, if α2 = 1 − 1
j , no

odd function in the Feichtinger algebra [29] generates a Gabor frame. In
[51], supported by their results and by some numerical evidence, the authors
formulated a conjecture.

Conjecture 1. [51] If α2 < 1 and α2 6= 1 − 1
j , then G (h1, α(Z + iZ)) is a

frame.

3.5. Sampling and Interpolation in Fn
2(C). We say that a set Λ is a set

of sampling for Fn
2(C) if there exist constants A,B > 0 such that, for all

F ∈ Fn
2(C),

A ‖F‖2
Fn2 (C) ≤

∑
λ∈Λ

|F (λ)|2 e−π|λ|
2

≤ B ‖F‖2
Fn2 (C) .

A set Λ is a set of interpolation for Fn
2(C) if for every sequence {ai(λ)} ∈ l2,

we can find a function F ∈ Fn
2(C) such that

eiπλ1λ2−π2 |λ|
2

F (λ) = ai(λ),

for every λ ∈ Λ. The sampling and interpolation lattices of Fn
2(C) can be

characterized by their density. For the square lattice the results are as follows.

Theorem 2. The lattice α(Z+ iZ) is a set of sampling for Fn
2(C) if and only

if α2 < 1
n+1.

Theorem 3. The lattice α(Z+ iZ) is a set of interpolation for Fn
2(C) if and

only if α2 > 1
n+1.

So far, there is no proof of these results using only complex variables.
The proof in [1] is based on the observation that the polyanalytic Bargmann
transform is an isometric isomorphism

Bn : H → Fn(Cd).
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and the sampling problem can be transformed in a problem about Gabor su-
perframes with Hermite functions. Consider the Hilbert spaceH = L2(R,Cn)
consisting of vector-valued functions f = (f0, ..., fn−1) with the inner product
with the inner product

〈f ,g〉H =
∑

0≤k≤n−1

〈fk, gk〉L2(Rd) . (3.14)

The time-frequency shifts πλ act coordinate-wise in a obvious way.
The vector valued system G(g,Λ) = {πλg}(x,w)∈Λ is a Gabor superframe

for H if there exist constants A and B such that, for every f ∈ H,

A ‖f‖2
H ≤

∑
λ∈Λ

|〈f , πλg〉H|
2 ≤ B ‖f‖2

H . (3.15)

Then the above sampling theorem is equivalent to the following statement
about Gabor superframes with Hermite functions:

Theorem 4. [44] Let hn = (h0, ..., hn−1) be the vector of the first n Hermite
functions. Then G(hn, α(Z + iZ)) is a frame for L2(R,Cn), if and only if
α2 < 1

n+1.

Superframes were introduced in a more abstract form in [47] and in the
context of “multiplexing” in [14]. A structure result of Gabor analysis, the
so called Ron-Shen duality [63] transforms the superframe problem into a
problem about multiple Riesz sequences, which can be further transformed
in a problem about multiple interpolation in the Fock space. The solution
of the multiple interpolation problem can be obtained as a special case of
the results of [20]. The dual of this argument proves the second theorem.
The characterization of the lattices yielding Gabor superframes with Her-
mite functions had been previously obtained by Gröchenig and Lyubarskii in
[44], using the Wexler-Rax orthogonality relations and solving the resulting
interpolation problem in the Fock space. An approach using group theoretic
methods has been considered by Führ [33]. The hard part of the above re-
sults is the sufficiency of the condition in Theorem 2. This would follow from
the explicit formula in Theorem 1, if a complex variables proof was available
(the case n = 0 is a simple consequence of the Cauchy formula).

Problem 2. Find a proof of Theorem 1 without using the structure of Gabor
frames (in particular, one using only complex variables).
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4. Lp theory and Modulation spaces
4.1. Banach Fock spaces of polyanalytic functions. The Lp version of
the polyanalytic Bargmann-Fock spaces has been introduced in [3]. In its
study the link to Gabor analysis has been particulary useful. For p ∈ [1,∞[
write Lp(C) to denote the Banach space of all measurable functions equiped
with the norm

‖F‖Lp(C) =
(∫

C
|F (z)|p e−πp

|z|
2

2

dz
)1/p

.

For p =∞, we have ‖F‖L∞(C) = supz∈C |F (z)| e−π
|z|2

2 .

Definition 1. We say that a function F belongs to the polyanalytic Fock
space Fn+1

p (C), if ‖F‖Lp(C) <∞ and F is polyanalytic of order n.

Definition 2. We say that a function F belongs to the true polyanalytic
Fock space Fn+1

p (C) if ‖F‖Lp(C) < ∞ and there exists an entire function H
such that

F (z) =

(
πn

n!

) 1
2

eπ|z|
2

(∂z)
n
[
e−π|z|

2

H(z)
]
.

Clearly, F1
p (C) = Fp(C) is the standard Bargmann-Fock space. The space

F1
1 (C) is the Bargmann-Fock image of the Feichtinger algebra.
The orthogonal decomposition (2.1) extends to the p-norm setting. Similar

results appear in [61] for the unit disk case. For 1 < p <∞:

Fn
p(C) = F1

p (C)⊕ ...⊕Fn
p (C).

Lp(C) =
∞⊕
n=1

Fn
p (C).

This decomposition has been used in [8] as an essential ingredient in the
proof of a result relating localization operators to Toeplitz operators.

4.2. Mapping properties of the true polyanalytic Bargmann trans-
form in modulation spaces. For the investigation of the mapping prop-
erties of the true polyanalytic Bargmann transform Fn

p (C) we need the con-
cept of modulation space. Following [41], the modulation space Mp(R),
1 ≤ p ≤ ∞, consists of all tempered distributions f such that Vh0

f ∈ Lp(R2)
equipped with the norm

‖f‖Mp(R) = ‖Vh0
f‖Lp(R2) .
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Modulation spaces were introduced in [28]. The case p = 1 is the Feichtinger
Algebra, which has been mentioned previously. It would be probably be hard
to prove the following statement directly, but the Modulation space theory
provides a simple proof.

Theorem 5. Given F ∈ Fn
p (C) there exists f ∈Mp(R) such that F = Bnf .

Moreover, there exist constants C,D such that:

C ‖F‖Lp(C) ≤ ‖Bf‖Lp(C) ≤ D ‖F‖Lp(C) . (4.1)

The key observation leading to the proof of this result is the following: since
the definition of Modulation space is independent of the particular window
chosen [41, Proposition 11.3.1], then the norms

‖f‖′Mp(R2) = ‖Vhnf‖Lp(R2)

and

‖f‖Mp(R2) = ‖Vh0
f‖Lp(R2) ,

are equivalent. Then, using the relations between the true polyanalytic
Bargmann transform and the Gabor transform with Hermite functions (3.7)
provide a norm equivalence which can be transfered to the whole Fn

p (C) due
to the mapping properties of the true polyanalytic Bargmann transform [3].

The properties of the polyanalytic projection are kept intact. Indeed, we
have the following result.

Proposition 1. The operator P n is bounded from Lp(C) to Fn+1
p for 1 ≤

p ≤ ∞. Moreover, if F ∈ Fn+1
p then P nF = F.

Combining the above Lp theory of the polyanalytic Bargmann-Fock spaces,
a result from localization [42] and coorbit theory [30], with the estimates from
[43], provides a far reaching generalization of Corollary 1.

Theorem 6. Assume that Λ ⊆ R2 is a lattice and α2 < 1
n+1

(i) Then F belongs to the true poly-Fock space Fn+1
p , if and only if the se-

quence with entries e−π|λ|
2/2F (λ) belongs to `p(Λ), with the norm equivalence

‖F‖Fn+1
p
�

(∑
λ∈Λ

|F (λ)|pe−πp|λ|2/2
)1/p

.
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(ii) Let SnΛ0(z) be the polyanalytic Weierstrass function on the adjoint lattice
Λ0. Then every F ∈ Fn+1

p (C) can be written as

F (z) =
∑
λ∈Λ

F (λ)eπλz−π|λ|
2

SnΛ0(z − λ) . (4.2)

The sampling expansion converges in the norm of Fn+1
p for 1 ≤ p < ∞ and

pointwise for p =∞.

Remark 1. If α2 > n+ 1, then Λ is an interpolating sequence for Fn+1(C).
Moreover, the interpolation problem is solved by [3]

F (z) =
∑
λ∈Λ

a
λ
eπλz−π|λ|

2
/2 SnΛ(z − λ). (4.3)

5. The Landau levels and displaced Fock states
In addition to time-frequency analysis, polyanalytic Fock spaces also ap-

pear in several topics in quantum physics. We will here describe how the
polyanalytic structure shows up in the Landau levels associated with a single
particle within an Euclidean plane in the presence of an uniform magnetic
field perpendicular to the plane and also

5.1. The Euclidean Laplacian with a magnetic field. Consider a sin-
gle charged particle moving on a complex plane with an uniform magnetic
field perpendicular to the plane. Its motion is described by the Schrödinger
operator

HB = −1

4

(
(∂x + iBy)2 + (∂y − iBx)2

)
− 1

2
acting on L2 (C). Here B > 0 is the strength of the magnetic field. Writing

∆̃z = e
B
2 |z|

2

HBe
−B2 |z|

2

we obtain the following Laplacian on C

∆̃z = −∂z∂z +Bz∂z. (5.1)

This Laplacian is a positive and selfadjoint operator in the Hilbert space
L2(C) and the set {n, n ∈ Z+} can be shown to be the pure point spectrum

of ∆̃z in L2(C). There are other Laplacians in the literature related to this

one [57], [58], [68]. The eigenspaces of ∆̃z, are known as the Landau levels.
In [13] the authors consider

A2
n,B(C) = {F ∈ L2(C) : ∆̃z,BF = nf},
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and obtain an orthogonal basis for the spaces A2
n,B. When B = π we can use

the results in [13] (comparing either the orthogonal basis or the reproducing
kernels of both spaces) to see that

A2
m,π(C) = Fn

2 (C). (5.2)

5.2. Displaced Fock states. This section summarizes work to be developed
further in [7] Now, we can define a set of coherent states | z >n for each
Landau level n. This can be done by displacing via the representation βw
the vector | 0 >n of Fn

2 (C) with the following wavefunction

〈z | 0〉n = en,n(z).

Precisely,

|w >n= βw|0 >n

and the wavefunction is given by

〈z | w〉n = βwen,n(z).

We will call this the true polyanalytic representation of the Landau level
coherent states. Now, observing that

eπ|z|
2

∂z

[
e−π|z|

2

F (z)
]

= ∂zF (z)− πzF (z),

we conclude from the unitarity of the true polyanalytic Bargmann transform
that the operator

(∂z − πz) : Fn
2 (C)→ Fn+1

2 (C)

is unitary and that

en,n(z) = (∂z − πz)n en(z).

Now, combining this identity with the intertwining property (3.5) gives

βwen,n(z) = βwBn+1(hn)(z)

= Bn+1(πwhn)(z)

= (∂z − πz)n Bn(πwhn)(z)

= (∂z − πz)n βwen(z).

Since the operator (∂z − πz)n is unitary F2(C) → Fn+1
2 (C) we have the

following equivalent representation of the Landau level coherent states in the
analytic Fock space

〈z | w〉n = βwen(z).
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A similar representation has been obtained by Wünsche [69], using quite
different methods. These coherent states are called displaced Fock states,
since they are obtained by displacing by a Fock shift an already excited Fock
state.

A natural question concerns the completeness properties of these coherent
states. More precisely, given a lattice Λ what are the complete discrete
subsystems {|λ >n, λ ∈ Λ} of this system of coherent states? In order to do
so, we go back to the section about “Fock frames” where the completeness
and basis properties of the above have been shown to be equivalent to those
of Gabor frames with Hermite functions and to the results about sampling
in the true polyanalytic spaces. Using the true polyanalytic transform, the
results about Gabor frames with Hermite function translate to sampling in
true polyanalytic Fock spaces as follows.

Proposition 2. The lattice α(Z + iZ) is a set of sampling for Fn
2 (C) if and

only G (hn, α(Z + iZ)) is a Gabor frame.

Thus, we conclude that, in particular, if α2 < 1
n+1 , the subsystems of states

constituted by the lattice α(Z+ iZ) are complete in the Landau levels. Now,
take B = 1 and observe that

∆̃z = (−∂z + z) (∂z) .

This suggests us to consider the operators

a+ = −∂z + z

a− = ∂z,

which are formally adjoint to each other and satisfy the commutation rela-
tions for the quantum mechanic creation and annihilation operators. Vasilevski
[71, Theorem 2.9] proved that the operators√

(k − 1)!

(l − 1)!

(
a+
)l−k |Fk2 (C) : Fk

2 (C)→ F l
2(C)√

(k − 1)!

(l − 1)!
al−k|Fk2 (C) : F l

2(C)→ Fk
2 (C)
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are Hilbert spaces isomorphisms (and one is the inverse of the other). Given
our identification (5.2) we conclude that the operators a+ and a− are, re-
spectively, the raising and lowering operators between two different Landau
levels.

For other Quantum Physics applications of Gabor transforms which include
as special cases polyanalytic Fock spaces see [19].

Similar considerations lead Wünsche in [69] to derive the following repre-
sentation for the displaced Fock states |z, n >:

|z, n >=
(−1)n√
n!

(−∂z + z)n |z > . (5.3)

In view of our remarks in this section, one realizes that (5.3) is essentially
the map T : F2(C)→ Fn+1

2 (C) such that

T : F (z)→ eπ|z|
2

(∂z)
n
[
e−π|z|

2

F (z)
]

.

and the displaced Fock states are also true polyanalytic Fock spaces. We can
now use Gröchenig and Lyubarskii result to show that if α2 < 1

n+1 then the
subsystem of these coherent states constituted by the square lattice on the
plane is overcomplete. From Ramathan and Steeger general result [60], we
know that if α2 > 1 they are not. This can be seen as analogues of Perelomov
completeness result [59] in the setting of displaced Fock states.

6. Polyanalytic Ginibre ensembles
The polyanalytic Ginibre ensemble has been introduced by Haimi and Hen-

denmalm [34]. Its has a physical motivation based on the Landau level in-
terpretation described in the previous section. For the kth Landau level,
consider the wave functions of the form

ψk,j(z) = ek,j(z)e−π|z|
2

,

where

ek,j(z) =

(
πk

k!

) 1
2

eπ|z|
2

(∂z)
k
[
e−π|z|

2

ej(z)
]

, j ≥ 0.

Thus, the wave function of a system consisting of the first n Landau levels
with N non-interacting fermions at each Landau level k, with wavefunctions
ψk,j is given by the determinant

Ψn,N = det[ψk,j(zs,i)]nN×nN , 1 ≤ i, j ≤ N, 1 ≤ k, s ≤ n.
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This can be rewritten as the probability density of a determinantal point
process

Ψn,N =
1

(nN)!
det[Kn,N(zs,i, zk,j)]nN×nN , 1 ≤ i, j ≤ N, 1 ≤ k, s ≤ n,

whose correlation kernel is given as

Kn,N(z, w) =
n∑
k=1

N∑
j=1

ψk,j(z)ψk,j(w).

To have a glimpse of what we are talking about, we first give a brief de-
scription of what is a determinantal point process and then give more details
about the polyanalytic Ginibre ensemble.

6.1. Determinantal point processes. Consider an infinite dimensional
Hilbert space H with continuous functions having their values in X ⊆ C,
with a reproducing kernel K(z, w), that is, for every f ∈ H,

f(z) = 〈f,K(z, .)〉H .

Suppose that {ϕj} is a basis of H. Define the N-dimensional kernel

KN(z, w) =
N∑
j=0

ϕj(z)ϕj(w). (6.1)

Using N -dimensional kernels one can describe determinantal point processes
[18] for N points (z1, ..., zN) ∈ XN using their n-point intensities

dPN(z1, ..., zn) =
1

n!
det
[
KN(zi, zj)

]n
i,j=1

dµ(z1)...dµ(zn).

We will be more concerned with the 1-point intensity

dPN(z) = KN(z, z)dµ(z),

which allows us to evaluate the expected number of points to be found in a
certain region if they are distributed according to the determinantal point
process.

Using the reproducing kernels of the polyanalytic and true polyanalytic
Fock spaces, one can define interesting determinantal point processes which
are generalizations of the Ginibre ensemble, a determinantal point process
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in C related to the reproducing kernel of a Gabor space associated with a
Gaussian window h0:

Kh0
(z, w) = e−iπ(uη−xξ)−π |z|

2+|w|2
2 eπwz.

The corresponding polynomial kernel (6.1) is

KN
h0

(z, w) = e−π
|z|2+|w|2

2

N∑
j=0

(πwz)j

j!
.

This is the kernel of the Ginibre ensemble [54, Chapter 15].

6.2. The polyanalytic Ginibre ensemble. In [34], a variant of this setting
is used in the investigation of the polyanalytic Ginibre ensemble. The authors
consider the space with reproducing kernel

Kn
m(z, w) = mL1

n−1(m |z − w|
2)emzw

and the polynomial space

Polm,n,N = span{zjzl : 0 ≤ j ≤ N − 1, 0 ≤ l ≤ n− 1}.
We remark that using the polyanalytic Hermite polynomials ej,l(z, z) as de-
fined in (2.6), this is equivalent to writing

Polm,n,N = span{ej,l(z, z) : 0 ≤ j ≤ N − 1, 0 ≤ l ≤ n− 1}.
Several interesting asymptotic results are obtained. For instance, denoting

the reproducing kernel of Polm,n,k by Kn
m,N(z, w), it is proved that, if z, w ∈

D, when m,N →∞ with |m−N | bounded and 1− |zw| ≥ τ > 0, then

Kn
m,N(z, w) = Kn

m(z, w) +O(e−
1
2mτ

2

em|zw|).

Another result is the blow-up of the 1-point intensity function of the deter-
minantal point process associated with Kn

m,N(z, w). The one point intensity

function is e−m|z|
2

Kn
m,N(z, z) and its localized version with z = 1 +m−

1
2ξ is

Um,N,n(ξ) =
1

m
e
−m

∣∣∣1+m−
1
2 ξ
∣∣∣2
Kn
m,N(1 +m−

1
2ξ, 1 +m−

1
2ξ)

In [34, pag 29] the authors observe that, considered the Hermite polynomials
Hj(t) normalized such that

etz−
1
2z

2=
∞∑
j=0

Hj(t)
zj

j!
,
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this can be written as

Um,N,n(ξ) =
n−1∑
j=0

1

r!
√

2π

∫ −2Reξ

−∞
Hj(t)e

− 1
2 t

2

dt+O(m−
1
2+ε)

Thus, when m,N → ∞ with |m−N | bounded, Um,N,n(ξ) is essentially de-
termined by the density

ρ(t) =
n−1∑
j=0

1

j!
√

2π
Hj(t)

2e−
1
2 t

2

,

which is the one point intensity in the Gaussian Unitary Ensemble. Thus,
if we make the polyanaliticity degree increase, we are led to the Wigner
semicircle law (see [54]):

Um,N,n(ξ) ≈
2n

π

∫ −n− 1
2Reξ

−1

√
1− τ 2dτ.

Something similar happens to the Berezin measure

dB
(z)
m,n,N(w) =

∣∣Kn
m,N(z, w)

∣∣2
Kn
m,N(z, z)

e−m|z|
2

dz;

while the asymptotics of dB
(z)
m,n,N(w) are similar to the case n = 1, defining

the blow-up Berezin density at 1 by B̂
(1)
m,n,N(w) = m−1B

(1)
m,n,N(1 + m−1/2w),

we have, as m,N → +∞ with N = m + O(1), the following asymptotics,
with uniform control on compact sets:

B̂
(1)
m,n,N(w) =

1

πn

∣∣∣∣∣
n−1∑
j=0

1

j!

∫ −w
−∞

Hj(t+ w)Hj(t− w)e−
1
2 t

2

dt

∣∣∣∣∣
2

+O(m−
1
2+ε).

Remark 2. Comparing this set up with section 4.1, one recognizes the pa-
rameter m as the strengh of the magnetic field B. Therefore, the physical in-
terpretation of the above limit m,N →∞ consists of increasing the strength
of the magnetic field and simultaneously the number of independent states in
the system. In the analytic case this has been done for more general weights
[11].

Remark 3. A version of the polyanalytic Ginibre ensemble allowing for more
general weights in the corresponding Fock space has been recently considered
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in [35], providing a polyanalytic setting similar to the one considered in [11]
for analytic functions.

7. Hyperbolic analogues: wavelets and Bergman spaces
Most of what we have seen about polyanalytic Fock spaces has an analogue

in the hyperbolic setting. However, the hyperbolic setting presents several
difficulties and the topic is far from being understood. We will outline some
of what is known and what one would expect applying “time-frequency intu-
ition” to this setting. Some facts contained on the material which is currently
under investigation in [6] will be included.

7.1. Wavelets and Laguerre functions. For every x ∈ R and s ∈ R+, let
z = x+ is ∈ C+ and define

πzg(t) = s−
1
2g(s−1(t− x)).

For a vector g = (g1, ..., gn) such that the Fourier transforms of any two
functions gi and gj are orthogonal in L2(R+, t−1), define πz pointwisely as

πzg = (πzg1, ..., πzgn).

LetH = H2(C+,Cn) be the inner product space whose vector components be-
long to H2(C+), the standard Hardy space of the upper half-plane, equipped
with the natural inner product

〈f ,g〉H = f1g1 + ...+ fngn.

We say that the vector valued systemW(g,Λ) is a wavelet superframe for H
if there exist constants A and B such that, for every f ∈ H,

A ‖f‖2
H ≤

∑
λ∈Λ

|〈f , πλg〉H|
2 ≤ B ‖f‖2

H . (7.1)

The orthogonality conditions imposed on the entries of the vector g allow us
to recover the original definitions of superframes [14]. Indeed, it serves the
same original motivation for the introduction of superframes in signal anal-
ysis: a tool for the multiplexing of signals. We consider wavelet superframes

with analyzing wavelets ( Φα0
cΦα0
, ..., Φαn

cΦαn
), where c2

Φαn
= Γ(n+α+1)

n! is the admissibil-

ity constant of the vector component Φα
n defined via the Fourier transforms

as

FΦα
n(t) = t

1
2 lαn(2t), with lαn(t) = t

α
2 e−

t
2

n∑
k=0

(−1)k
(
n+ α

n− k

)
tk

k!
. (7.2)
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The functions Φα
n above have been chosen as the substitutes of the Hermite

functions used by Gröchenig and Lyubarskii to construct Gabor superframes
[44]. As we will see, our choice is well justified by physical, operator theory
and function theory arguments. We start with the remark that the func-
tions Φα

n provide an orthogonal basis for all the g ∈ H2 (C+) satisfying the
admissibility condition

‖Fg‖2
L2(R+,t−1) <∞,

and we note in passing that, according to the results in [25], such admissible
functions constitute a Bergman space.

7.2. Wavelet frames with Laguerre functions. The fundamental ques-
tion about wavelet frames is, given a wavelet g, to characterize the sets of
points Λ such that W(g,Λ) is a wavelet frame (and the corresponding prob-
lem for the superframes defined above). This problem is much more difficult
that the corresponding one for Gabor frames. The only characterization
known so far is about the case n = 0 in (7.2) because the problem can be
reduced to the density of sampling in the Bergman spaces, which has been
completely understood by Seip in [66]. An important research problem is to
understand how Seip’s results extend to the whole family {Φα

n}. The only
thing known to the present date is a necessary condition obtained in [4] in
terms of a convenient set of points for discretization known as the “hyperbolic
lattice” Γ(a, b) = {ambk, am}k,m∈Z:

Theorem 7. If W(Φ2α−1
n ,Γ(a, b)) is a wavelet frame for H2(C+), then

b log a < 2π
n+ 1

α
.

As far as our knowledge goes, and despite 30 years of intensive research in
the field of wavelets, it seems that the above paragraph completely describes
the state of art in the topic. Beyond [66] and [4] nothing seems to be known.

One of the limitations of wavelet theory is the absence of duality theo-
rems like those used in [44] and [1] in order to obtain precise conditions on
the lattice generating Gabor superframes with Hermite functions. For this
reason, there are no known analogue results for Wavelet superframes with
Laguerre functions. Still, a lot can be said. The existence of wavelet frames
with windows Φα

n follows from coorbit theory along the lines of [32], where
the case n = 0 is explained in detail.
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Using the “time-frequency intuition” provided by the results in section 3
of this survey, one would expect the following to be true.

Conjecture 2. W(Φ2α−1
n ,Γ(a, b)) is a wavelet superframe for H if and only

if

b log a <
2π

n+ α
. (7.3)

The case n = 0 follows from the results in [66]. This conjecture is well
beyond the existing tools, since the duality between Riesz basis and frames
has no known extension to wavelet frames. See the chapter about wavelets in
[41]. We have reasonable expectations on the possibility that the connection
to polyanalytic Bergman spaces to be described in the next sections may be
put in good use for the investigation of this conjecture.

7.3. The hyperbolic Landau levels. The most notable fact about the
wavelet transforms associated with Φα

n is that they provide a phase space
representation for the higher hyperbolic Landau levels with a constant mag-
netic field introduced in Physics by Comtet ([26], see also [53]). We will now
briefly sketch this connection. Let HB denote the Landau Hamiltonian of a
charged particle with a uniform magnetic field on C+, with magnetic length
proportional to |B|,

HB = s2

(
∂2

∂x2
+

∂2

∂s2

)
− 2iBs

∂

∂x
.

It is well known that, if |B| > 1/2, the spectrum of the operator HB consists
of both a continuous and a finite discrete part. The choice of the functions
Φα
n as analyzing wavelets yields the eigenspaces associated with the discrete

part. Denote by EB,m(C+) the subspace of L2(C+) defined as

EB,n = {f : L2(C+) : HBψ = enψ},
with en = (|B|−n)(|B|−n−1). Zouhair Mouayn has introduced a system of
coherent states [55] for the operator HB. Once we overcome the differences
in the notation and parameters, we can identify Mouayn’s coherent states
[55] with our wavelets and conclude that

EB,n = W
Φ

2(B−n)−1
n

(
H2
(
C+
))
.

Thus, wavelet frames with the functions Φα
n are discrete subsystems of coher-

ent states attached to the hyperbolic Landau levels. The spectral analysis of



FUNCTION SPACES OF POLYANALYTIC FUNCTIONS 31

the operator HB is also important in number theory, since the solutions of
HB satisfying an automorphy condition are half-integral weight Maass forms,
[62], [27]. Maass forms have become proeminent in modern number theory
in part thanks to the striking relations to Ramanujan’s Mock theta func-
tions (see [21]) As we will see below, the spaces EB,n are, up to a multiplier
isomorphism, true polyanalytic Bergman spaces.

7.4. Bergman spaces of polyanalytic functions. The Hardy space
H2(C+), is constituted by the analytic functions on the upper half plane
such that

sup
0<s<∞

∫ ∞
−∞
|f(z)|2 dx <∞.

Let L2
α (C+) be the space of square-integrable functions in C+ with respect

to dµ+
α (z) = sαdµ+(z), where dµ+(z) is the standard area measure in C+.

The weighted analytic Bergman space, Aα(C+), is constituted by L2
α (C+)

functions analytic in C+. We will also require the space An
α(C+), which is

the polyanalytic Bergman space consisting of all functions in L2
α (C+) which

can be written in the form

F (z) =
n−1∑
p=0

zpFp(z), (7.4)

with F0(z), ..., Fn−1(z) analytic on C+. There is also a decomposition in true
polyanalytic spaces Akα(C+), also due to Vasilevski (see the original paper in
[70] and the book [72]):

L2
α

(
C+
)

=
∞⊕
n=0

Anα(C+).

The true polyanalytic spaces Akα(C+) can be defined as

Akα(C+) = Ak
α(C+)	Ak−1

α (C+)

such that

An
α(C+) = A1

α(C+)⊕ ...⊕Anα(C+).

The Bergman transform of order α is the wavelet transform with a Poisson
wavelet times a weight:

Berα f(z) = s−
α
2−1WΦα0

f(z) =

∫ ∞
0

t
α+1

2 Ff(t)eiztdt. (7.5)
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It is an isomorphism Berα : H2(C+) → Aα(C+) and plays the role of the
Bargmann transform in the hyperbolic case. The true polyanalytic Bergman
transform for f ∈ H2(C+) is given by the formula

Bern+1
α f =

(2i)n

n!
s−α (∂z)

n [sα+n(Berαf)(z)
]

. (7.6)

It is an isomorphism Berα : H2(C+)→ Aα(C+). This has been proved in [5]
for the case α = 1 and it can be shown for general α by an argument involving
special functions. Then, we have the connection to wavelets provided by the
formula

Bern+1
α f(z) = s−

α
2−1WΦαnf(z).

It is an isomorphism Bern+1
α : H2(C+) → An+1

α (C+) and we identify the
true polyanalytic Bergman spaces as the eigenspaces associated to the hy-
perbolic Landau levels. A “thought experience” concerning multiplexing of
signals in this context leads to similar constructions to those we found in
the Fock/Gabor case. Rephrasing the result about wavelet frames in terms
of sampling sequences for polyanalytic Bergman spaces yields the following
consequence of Theorem 6:

Corollary 1. The sequence {ambk+ami} is a sampling sequence for An+1
2α−1(C+)

if and only if b log a < 2πn+1
α .

An in equivalence to the Conjecture 2, we have the following.

Conjecture 3. The sequence {ambk+ami} is a sampling sequence for An+1
2α−1(C+)

if and only if b log a < 2π
n+α.

Much of the results about polyanalytic Fock spaces are likely to find ana-
logues in the hyperbolic setting, but the methods of proof can be quite dif-
ferent. The topic is currently under investigation.

7.5. An orthogonal decomposition of L2
α (D). A standart Cayley trans-

form provides and isomorphism between L2
α (C+) and L2

α (D) . This moti-
vates the study of certain polyanalytic spaces in the unit disc which, al-
thought not having a direct connection to wavelets, have been recently con-
sidered for their intrinsic mathematical content [61] [22]. Let L2

α (D) be
the space of square-integrable functions in the unit disc, with respect to
dAα(w) = (1−|w|)αdA(w), where dA(w) is the standart area measure in the
unit disc. Denote by An

α(D) the polyanalytic Bergman space consisting of all
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functions in L2
α (D) satisfying the higher order Cauchy-Riemann equation.

The spaces An
α(D) can be decomposed in a direct sum of true polyanalytic

Bergman spaces [61]:

An(D) = A1
α(D)⊕ ...⊕Anα(D). (7.7)

The space A1
α(D) = Aα(D) = A1

α(D) is the Bergman space of analytic func-
tions in the unit disc. The spaces An+1

α (D) are constituted by functions in
L2
α (D) which can be written in the form

F (z) =
(

1− |z|2
)−α( d

dz

)n [(
1− |z|2

)α+n

f(z)

]
,

for some f(z) ∈ Aα(D). In companion to (7.7) they provide an orthogonal
decomposition for the whole L2

α space:

L2
α (D) =

∞⊕
n=0

Anα(D).

Remark 4. The interested reader can verify that, althought the correspon-
dence

F →
(

1

1− w

)α+1

F

(
i
w + 1

1− w

)
provides an unitary mapping between the spaces An

α(C+) and the spaces
An
α(D), it does not provide an unitary mapping between the spaces Anα(D)

and Anα(C+). This means that the “true” spaces are different if we move
from the unit circle to the upper half plane and need to be studied separately.
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34 LUÍS DANIEL ABREU AND HANS G. FEICHTINGER

[6] L. D. Abreu, Wavelet frames, Landau levels and Bergman spaces of polyanalytic functions ,
ongoing work.

[7] L. D. Abreu, M. de Gosson, Displaced coherent states and true polyanalytic Fock spaces,
ongoing work.

[8] L. D. Abreu, N. Faustino, On Toeplitz operators and Localization operators, Proc. Amer. Math.
Soc., to appear.

[9] M. L. Agranovsky, Characterization of polyanalytic functions by meromorphic extensions into
chains of circles, J. d’Analyse Math., 113, (2011), 305-329.

[10] S. T. Ali, J. P. Antoine, J. P. Gazeau, Coherent states and their generalizations, Springer,
Berlin (2000).

[11] Y. Ameur, H. Hedenmalm, N. Makarov, Berezin transform in polynomial Bergman spaces,
Comm. pure Appl. Math. 63 (2010) 1533–1584.

[12] G. Ascensi, J. Bruna, Model space results for the Gabor and Wavelet transforms, IEEE Trans.
Inform. Theory 55 (2009), 2250-2259.

[13] N. Askour, A. Intissar, Z. Mouayn, Espaces de Bargmann généralisés et formules explicites
pour leurs noyaux reproduisants. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 707–712.

[14] R. Balan, Multiplexing of signals using superframes, In SPIE Wavelets applications, volume
4119 of Signal and Image processing XIII, pag. 118-129 (2000).

[15] M. B. Balk, Polyanalytic Functions, Akad. Verlag, Berlin (1991).
[16] H. Begehr, G. N. Hile, A hierarchy of integral operators. Rocky Mountain J. Math. 27 (1997),

669–706.
[17] H. Begehr, Orthogonal decompositions of the function space L2(D,C). J. Reine Angew. Math.

549 (2002), 191–219.
[18] J. Ben Hough, , M. Krishnapur, Y. Peres, B. Virág, Zeros of Gaussian Analytic Functions and

Determinantal Point Processes, University Lecture Series Vol. 51, x+154, American Mathe-
matical Society, Providence, RI (2009).

[19] A.J. Bracken, P. Watson, The quantum state vector in phase space and Gabor’s windowed
Fourier transform, J. Phys. A 43 (2010), art. no. 395304.

[20] S. Brekke and K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock
space. III. Math. Scand., 73 (1993), 112–126.

[21] K. Bringmann and K. Ono, Dyson’s ranks and Maass forms Ann. of Math., 171 (2010), pp.
419-449.

[22] Z. Cuckovic, T. Le, Toeplitz operators on Bergman spaces of polyanalytic functions, Bull.
London Math. Soc. (2012) 44 (5): 961-973.

[23] I. Daubechies, ”Ten Lectures On Wavelets”, CBMS-NSF Regional conference series in applied
mathematics (1992).

[24] M. Dörfler, J. L. Romero, Frames adapted to a phase-space cover, preprint arXiv:1207.5383,
(2012).

[25] P. Duren, E. A. Gallardo-Gutiérrez, A. Montes-Rodŕıguez, A Paley-Wiener theorem for
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[45] K. Gröchenig, J. Stoeckler, Gabor frames and totally positive functions.,To appear in Duke

Math. J. Duke Math. J. (to appear).
[46] S. M. Girvin. T. Jach, Formalism for the Quantum-Hall effect: Hilbert space of analytic

functions, Phy. Rev. B, 29, 5617-5625 (1984).
[47] D. Han, D. R. Larson, Frames, bases and group representations. Mem. Amer. Math. Soc. 147

(2000), no. 697.
[48] A. Jaffe, F. Quinn, Theoretical mathematics: Toward a cultural synthesis of mathematics and

theoretical physics. Bull. Amer. Math. Soc. (N.S.), 29, (1993) 1-13.
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