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ON TOEPLITZ OPERATORS AND LOCALIZATION
OPERATORS

LUIS DANIEL ABREU AND NELSON FAUSTINO

Abstract: This note is a contribution to a problem of Lewis Coburn concerning
the relation between Toeplitz operators and Gabor-Daubechies localization oper-
ators. We will show that, for any localization operator with a general window
w ∈ F2(C) (the Fock space of analytic functions square-integrable on the complex
plane), there exists a differential operator of infinite order D, with constant coef-
ficients explicitly determined by w, such that the localization operator with symbol
f coincides with the Toeplitz operator with symbol Df . This extends results of
Coburn, Lo and Engliš, who obtained similar results in the case where w is a poly-
nomial window. Our technique of proof combines their methods with a direct sum
decomposition in true polyanalytic Fock spaces. Thus, polyanalytic functions are
used as a tool to prove a theorem about analytic functions.

1. Introduction
Let Lp(C) (1 ≤ p <∞) be the weighted Lp−space of functions with norm

‖u‖Lp(C) =

(∫
C
|u(z)|pe−

π
2 p|z|

2

dz

) 1
p

,

dz being the area measure on C and L∞(C) the space of measurable functions
on C such that |u(z)|e−π2 |z|2 is bounded, endowed with the norm

‖u‖L∞(C) = sup
z∈C
|u(z)|e−

π
2 |z|

2

.

LetH be a Hilbert space contained in L2(C), with reproducing kernelK(ζ, z).
For f ∈ L∞(C), the Toeplitz operator Toepf with symbol f(z) is the operator
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acting on H defined by

(Toepfg)(ζ) =

∫
C
f(z)g(z)K(ζ, z)e−π|z|

2

dz,∀ g ∈ H.

Denote by Fp(C) the space of entire functions with membership in Lp(C).
The Weyl operator

Wzw(ζ) = eπzζ−
π
2 |z|

2

w(ζ − z) (1.1)

acts unitarily on L2(C). If w ∈ L2(C) and f ∈ L∞(C), the Gabor-Daubechies

localization operator L
(w)
f , with “window” w and “symbol” f , is the operator

acting on F2(C) defined, in the weak sense, by〈
L

(w)
f u, v

〉
=

∫
C
f(z)〈u,Wzw〉dµ 〈Wzw, v〉dµ dz,∀ u, v ∈ F2(C).

A considerable research activity on localization operators has been motivated
by the article of Daubechies [5]. See also [9], [4]. An interesting connection
between localization and Toeplitz operators has been observed by Coburn
[3].

In this note we will investigate further the relation between localization and
Toeplitz operators. Our main contribution is simply outlined in the following
paragraph.

Denote by Fp(C) the space of entire functions with membership in Lp(C).
We will show that it is possible to write a localization operator with a window
w ∈ F2(C) as

L
(w)
f = ToepD(w)f

where, in the right hand side, we have a Toeplitz operator whose symbol is
obtained from the symbol of the localization operator by the action of a differ-
ential operator D(w), whose coefficients are constants explicitly determined
by w.

Our methods of proof build on previous work of Coburn [3], Lo [12] and
Engliš [6], but contain a technical innovation, based on polyanalytic functions.

A polyanalytic function of order n is a polynomial of order n− 1 in z with
analytic functions {ϕk(z)}n−1

k=0 as coefficients:

F (z) =
n−1∑
k=0

zkϕk(z), (1.2)
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so that an analytic function is a polyanalytic function of order 1. Alterna-
tively, F satisfies the generalized Cauchy-Riemann equations

(∂z)
n F (z) =

1

2n

(
∂

∂x
+ i

∂

∂ξ

)n
F (x+ iξ) = 0. (1.3)

A simple example of a polyanalytic function of order 2 is

F (z) = 1− |z|2 = 1− zz.

Observe that

∂zF (z) = −z, while (∂z)
2 F (z) = 0.

Polyanalytic functions have applications in signal analysis [1], [2] and deter-
minantal point processes [11].

We would like to emphasize that, in our proofs, polyanalytic functions are
used as a tool to prove a theorem about analytic functions. Indeed, to extend
Coburn-Lo-Engliš theorem from the polynomial case to a general window,
we will use an idea of Vasilevski [14], who has shown that arbitrary L2(C)
functions can be decomposed using a sequence of orthogonal spaces which
are “slices” of Fock spaces of polyanalytic functions. Vasilevski coined the
expression true polyanalytic Fock spaces to quote such slices. We will require
a slightly more general version of his result, since an essential step in the
proof requires the decomposition of a non-analytic function of L1(C) into
polyanalytic basis functions. For this purpose we will use the direct sum
decomposition of Lp(C) [2] into Lp−counterparts of true polyanalytic Fock
spaces. Polyanalytic functions were already implicit in the papers of Coburn
[3], Lo [12] and Engliš [6]. There is a time-frequency interpretation of this
fact: if one takes a Hermite function as a window in a Gabor transform, the
result is, up to a weight, a polyanalytic version of the Bargmann transform
[1], [2].

The paper is organized in the following way: section 2 describes the main
result and gives a brief account of its forerunners. In section 3 we collect the
preliminar material about polyanalytic expansions and Engliš preparatory
results which we will use in section 4, where the main result is proved.
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2.Main result
For an element z = x + iω in C, consider the Cauchy-Riemann operator

and its conjugate,

∂z =
d

dz
=

1

2

(
∂

∂x
+ i

∂

∂ω

)
, ∂z =

d

dz
=

1

2

(
∂

∂x
− i ∂

∂ω

)
.

It is clear from (1.1) that Wz1 = eπzζ−
π
2 |z|

2

and 〈F,Wz1〉dµ = e−
π
2 |z|

2

F (z),
since eπzζ is the reproducing kernel of F2(C). This gives, for w(z) = 1
and f ∈ L∞(C), the following relation between Toeplitz and localization
operators in the weak sense for any g, h ∈ F2(C):

〈Toepfg, h〉dµ = 〈L(1)
f g, h〉dµ.

This is equivalent to L
(1)
f g = Toepfg for any g ∈ F2(C). In case the constant

polynomial e0(z) = 1 is replaced by e1(z) =
√
πz or e2(z) = π

2z
2, Coburn’s

result (cf. [3]) under the change of variable z 7→
√
πz gives

L
(e1)
f = Toepf+ 1

π∂z∂zf
, L

(e2)
f = Toepf+ 1

π∂z∂zf+2( 1
π∂z∂z)

2f .

The above relations are satisfied by every symbol f(z) which is either a
polynomial in z and z or belongs to the algebra Ba(C) of Fourier-Stieltjes
transforms with compactly supported measures. Coburn has also shown in
[3] that for any polynomial w ∈ F2(C) and polynomial f in z and z, there
exists a unique polynomial differential operator D depending on ∂z, ∂z and
w such that

L
(w)
f = ToepD(w)f . (2.1)

Coburn conjectured that the coefficients of the polynomial D(w) were con-
stant and that (2.1) holds for any f ∈ Ba(C). This conjecture was proved
by Lo in [12] when Toepf acts on analytic polynomials on C. Moreover, Lo
extended relation (2.1) to the following class of symbols E(C) which includes
C[z, z] and Ba(C):

E(C) =
{
f ∈ C∞(C) : ∀ k ∈ N0 ∃ C, α > 0 s.t. |Dkf(z)| ≤ Ceα|z|, z ∈ C

}
.

An alternative proof of (2.1) has been obtained by Engliš [6]. Engliš approach
works for the whole F2(C) and analytic polynomial windows w. It also
provides an explicit formula for D. Our main result is the extension of the
Coburn-Lo-Engliš theorem to the case of a general window w ∈ F2(C). If
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the window is not a polynomial, then the differential operator is of infinite
order. Recall that the monomials

ek(z) =

(
πk

k!

) 1
2

zk

span Fp(C). Consider also the sequence of polyanalytic orthogonal polyno-
mials defined as

ej,k(z) =

(
πj

j!

) 1
2

eπ|z|
2

(∂z)
j
[
e−π|z|

2

ek(z)
]

. (2.2)

Let BC∞(C) be the space of all C∞(C) functions whose partial derivatives
are bounded. With this notation, our result is the following statement:

Theorem 1. For any w ∈ F2(C) and for each symbol f ∈ BC∞(C), the
operator D(w) := D (−∂z,−∂z) satisfying

L
(w)
f = ToepD(w)f

is uniquely determined by

D(w)f =
∞∑

j,k=0

hj,k (−∂z)j (−∂z)k f,

where hj,k =
(
πj+kj!k!

)− 1
2 〈|w|2 , ej,k〉L2(C,dµ). Moreover D(w)f ∈ L∞(C) only

if f ∈ BC∞(C).

We first present the results from [6], [14] and [2] that will be used in the
proof of Theorem 1.

3. Preliminary results
3.1. Direct sum decomposition of Lp(C). We say that a function F
belongs to the true polyanalytic Fock space F j+1

p (C) if ‖F‖Lp(C) < ∞ and
there exists an entire function H such that

F (z) =

(
πj

j!

) 1
2

eπ|z|
2

(∂z)
j
[
e−π|z|

2

H(z)
]
.
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The following Lp-extension of Vasilevskii’s orthogonal decomposition [14] has
been proved in [2, Corollary 1]:

Lp(C) =
∞⊕
j=0

F j
p(C) (3.1)

It has been shown in [2, Proposition 1] that, for fixed j the linear span of the
sequence of polynomials {ej,k : k ≥ 0} is dense in F j+1

p (C). Combining this
statement with (3.1) it follows that every F ∈ Lp(C) can be written in the
form

F (z) =
∞∑

j,k=0

hj,k ej,k(z),

where hj,k = 〈F, ej,k〉dµ represents the Fourier-Hermite coefficients.
Similar decompositions appeared in the study of middle Hankel operators

on Bergman spaces [13].

3.2. Berezin symbols. Let T be a bounded linear operator on F2(C) and
set

Kζ(z) = K(ζ, ζ)−
1
2K(z, ζ).

We define the Berezin symbol T̃ (ζ) as T̃ (ζ) = 〈T Kζ , Kζ〉dµ. In the case of

z = ζ, K(ζ, ζ) = eπ|ζ|
2

. This gives

Kζ(z) = Wζe0(z). (3.2)

On the other hand, since W ∗
z = W−z is the adjoint of Wz on L2(C), it is easy

to check the above relations:

W ∗
zKζ = eiπ=(ζz)Kζ−z.

The following relations from [6, (17), pg. 6 ] will be used in the proof of the
main result.

Proposition 1. Let T a bounded linear operator on F2(C). Then the follow-
ing statements hold:

(1)
∣∣∣T̃ (ζ)

∣∣∣ ≤ ‖T‖ for each ζ ∈ C.

(2) 〈TF,Kζ〉dµ = e−
π
2 |ζ|

2

(T F )(ζ) for any F ∈ F2(C).

(3) T is uniquely determined by T̃ (ζ)

(4) For any z ∈ C we have ˜[W ∗
z TWz] (ζ) = ˜T (ζ + z) .
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The boundedness of the operator L
(w)
f follows from the following proposi-

tion.

Proposition 2. For any w ∈ F2(C) and f ∈ L∞(C), the operator L
(w)
f

satisfies the boundeness condition:∥∥∥L(w)
f

∥∥∥ ≤ ‖f‖L∞(C)‖w‖2
L2(C).

4. Proof of the main result
Let w ∈ F2(C) and consider

k(z) = |w(z)|2 e−π|z|2

and

h(z) = e−π|z|
2

.

Using the same arguments as in [6, pg. 6-7 ], in terms of the standard
convolution on C:

(g ∗ f)(ζ) =

∫
C
g(z)f(ζ − z)dz,

we can we see that

L̃
(w)
f (ζ) = (k ∗ f)(ζ) (4.1)

˜Toepf(ζ) = (h ∗ f)(ζ). (4.2)

Now, if w(z) ∈ F2(C), then |w|2 ∈ L1(C). Thus, we can use the results in sec-
tion 3.1 with p = 1 and find Fourier-Hermite coefficients hj,k = 〈|w|2 , ej,k〉dµ
such that

|w(z)|2 =
∞∑

j,k=0

hj,kej,k(z) = H(z, z). (4.3)

Now let D(z, z) be the (uniformly convergent on compact sets) series in z
and z:

D(z, z) =
∞∑

j,k=0

(
πj+kj!k!

)− 1
2 hj,k z

jzk. (4.4)

From Proposition 2 and statements (1), (2) and (4) of Proposition 1, for

each f ∈ L∞(C) the Berezin symbols L̃
(w)
f (ζ) and moreover, ˜Toepf(ζ), are

invariant under translations. Then, for each w ∈ F2(C), the function k(z) =
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|w(z)|2 e−π|z|2 in (4.1) is uniquely determined. Thus, from Proposition 1 (3),

the proof of L
(w)
f = ToepD(w)f amounts to showing that

L̃
(w)
f (ζ) = ˜ToepD(w)f(ζ).

By (4.1) and (4.2) this consists of verifying, for |w(z)|2 = H(z, z), the
following identity:

H(., .)e−π|.|
2 ∗ f(.) = e−π|.|

2 ∗D(w)f ,

or, using the notation (4.4),∫
C
D (−∂z,−∂z) f(ζ − z)e−π|z|

2

dz =

∫
C
f(ζ − z)H(z, z)e−π|z|

2

dz. (4.5)

Let us prove (4.5). First, a direct computation shows that

(−∂z)j (−∂z)k
(
e−π|z|

2
)

= (πj+kj!k!)
1
2e−π|z|

2

ej,k(z).

Then, we make repeated use of Green´s formula on the disk Dr = {z ∈
C : |z| ≤ r}, valid for f, g ∈ C1(Dr):∫

Dr

f(z)∂zg(z)dz = −
∫
Dr

∂zf(z)g(z)dz +
1

i

∫
δDr

f(z)g(z)dz, (4.6)∫
Dr

f(z)∂zg(z)dz = −
∫
Dr

∂zf(z)g(z)dz +
1

i

∫
δDr

f(z)g(z)dz. (4.7)

where the line integral over the circle δDr is oriented counterclockwise. The
result is∫
Dr

(−∂z)k (−∂z)j f(ζ − z)e−π|z|
2

dz = (πj+kj!k!)
1
2

∫
Dr

f(ζ − z)ej,k(z)e−π|z|
2

dz,

(4.8)
since the assumption f ∈ BC∞(C) assures that all the line integrals appear-
ing after the application of Green´s formula are zero. Since D(z, z) converges
uniformly on |z| ≤ r, we can use (4.4) and (4.8), interchange the sum with
the integral, and use (4.3) to get∫

Dr

D (−∂z,−∂z) f(ζ − z)e−π|z|
2

dz =

∫
Dr

f(ζ − z)H(z, z)e−π|z|
2

dz.

Letting r →∞ we obtain (4.5).
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Remark 1. Our methods of proof apply also for windows w(z) ∈ Fp(C),
p ≥ 2. However, we believe that the investigation of the case 1 ≤ p ≤ 2
may be an interesting problem, since it includes the Feichtinger algebra [7]
(corresponding to p = 1) which is of particular interest in several applications
[8].
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