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MEASURES OF LOCALIZATION AND QUANTITATIVE
NYQUIST DENSITIES

LUÍS DANIEL ABREU AND JOÃO MORAIS PEREIRA

Abstract: We obtain quantitative versions of the Nyquist density, by estimating,
in terms of ε, the increase in the degrees of freedom resulting upon allowing the
functions to contain a certain prescribed amount of energy ε outside a region de-
limited by a set in time and a set in frequency. At the technical level, we study
a pseudospectra version of the classical spectral problem of Landau-Slepian-Pollak.
Analogue results are obtained for Gabor localization operators in a compact region
of the time-frequency plane.

1. Introduction
1.1. The Nyquist rate. Let D[−T,T ] and B[−Ω,Ω] denote the operators
which cut the time content outside [−T, T ] and the frequency content outside
[−Ω,Ω], respectively. In a nowadays classical paper [15], whose purpose was
to “examine the true in the engineering intuition that there are approximately
2TΩ/π independent signals of bandwidth Ω concentrated on an interval of
length T”, Landau and Pollak have considered the eigenvalue problem

D[−T,T ]B[−Ω,Ω]D[−T,T ]f = λf . (1.1)

The operator involved in this problem can be written explicitly as

(D[−T,T ]B[−Ω,Ω]D[−T,T ]f)(x) =

{ ∫ T
−T

sin Ω(x−t)
π(x−t) f(t) if |x| < T

0 if |x| > T
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The cornerstone of the results in [15] is the following asymptotic estimate for
the number of eigenvalues λn of (1.1) which are close to one:

#{n : λn > 1− δ} =
2TΩ

π
+ log T , (1.2)

as T →∞. Since the eigenvalues of the equation (1.1) are the same as those
of the operator B[−Ω,Ω]D[−T,T ], whose eigenfunctions satisfy∫

[−T,T ]

|f |2 = λ ‖f‖2 ,

the estimate (1.2) provides us with the number of orthogonal eigenfunctions
of (1.1) such that ∫

[−T,T ]

|f |2 ∼ ‖f‖2 ,

asymptotically when T →∞. Within mathematical signal analysis (see, for
instance the discussion in [5, pag. 23] and the recent book [12]), (1.2) is
viewed as a mathematical formulation of the Nyquist rate, the fact that a
time- and bandlimited region [−T, T ]× [−Ω,Ω] corresponds to 2TΩ/π “de-
grees of freedom”. In other words, there exist, up to a small error, 2TΩ/π
independent functions that are essentially timelimited to [−T, T ] and ban-
dlimited to [−Ω,Ω].

1.2. Quantitative versus qualitative. The main goal of this note is to
formulate the concentration problem in a more quantitative way and to prove
the resulting quantitative versions of (1.2).

Let us be more precise in order to define what we mean by “quantitative”;
ideally, one would like to count the number of orthogonal functions in L2(R),
which are time and band-limited to a bounded region like [−T, T ]× [−Ω,Ω].
Unfortunately, such functions do not exist (because band-limited functions
are analytic). All we can do is to count the number of orthogonal functions in
L2(R) which are approximately time and band-limited to a bounded region
like [−T, T ] × [−Ω,Ω]. An optimal solution to this problem is given by the
number of eigenfunctions of (1.1) whose eigenvalues are very close to one.
The number of eigenfunctions with such a quality is given by (1.2). Thus,
the eigenvalue approach can be seen as leading towards a qualitative solution
of the concentration problem. In contrast, a quantitative solution would tell
us the number of orthogonal functions in L2(R) with a prescribed quantity
ε of time-frequency content outside the bounded region [−T, T ]× [−Ω,Ω]. In
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order to do so, we propose to count the number of orthogonal functions in
L2(R), ε-localized in the sense that∥∥D[−T,T ]B[−Ω,Ω]D[−T,T ]f − f

∥∥ ≤ ε. (1.3)

From our main result it follows that (1.2) has the following analogue in
this setting: if η(ε, [−T, T ] , [−Ω,Ω]) stands for the maximum number of
orthogonal functions of L2(R) satisfying (1.3), then, as T →∞,

2TΩ

π
(1+ε2)+log T ≤ η(ε, [−T, T ] , [−Ω,Ω]) ≤ 2TΩ

π
(1−4ε2)−1+log T . (1.4)

1.3. Localization operators. Our understanding of the concentration
problem is based on the study of operators which localize signals in bounded
regions of the time-frequency plane. Such operators are known in a broad
sense as time-frequency localization operators; their eigenfunctions are or-
thogonal sequences of functions with optimal concentration properties. The
quantitative formulation of the concentration problem can be seen in terms of
localization operators as follows: rather than looking for the optimal concen-
trated functions in a given region of the time-frequency plane, we will allow
the functions to contain a certain prescribed amount of energy outside the
given region, and estimate the resulting increase in the degrees of freedom.
Given an operator L, instead of counting the eigenfunctions of

Lf = λf

associated with eigenvalues λ close to one, we will count orthogonal functions
ε-localized with respect to L in the sense that

‖Lf − f‖ ≤ ε. (1.5)

1.4. Pseudospectra and ε−localization. The result of Landau and Pollak
has later been improved by Landau to several dimensions and more general
sets than intervals in [13] and [14]. Also in [14], Landau introduced the con-
cept of ε-approximated eigenvalues and eigenfunctions. This concept is a
forerunner of what is nowadays known as the pseudospectra in the numer-
ical analysis of non-normal matrices [18]. Recent developments in spectral
approximation theory involve the concept of n-pseudospectrum, which has
been introduced in [11] with the purpose of approximating the spectrum of
bounded linear operators on an infinite dimensional, separable Hilbert space,
and then used in the proof of the computability of the spectrum of a linear
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operator on a separable Hilbert space [10]. We will recall Landau’s original
definition, which was the following:

Definition 1. λ is an ε-approximate eigenvalue of L if there exists f with
‖f‖ = 1, such that ‖Lf − λf‖ ≤ ε. We call f an ε-approximate eigenfunction
corresponding to λ.

Thus, our quantitative measure (1.5) for the time-frequency localization of
f is equivalent to f being a ε-approximate eigenfunction corresponding to 1.

Example 1. Consider functions satisfying

‖DrTBΩDrTf − f‖ ≤ ε, (1.6)

Then, ε measures how well the function is concentrated in the frequency
band set Ω and in the time set rT . Suppose that ϕ is an eigenfunction of
DrTBΩDrT with eigenvalue λ. Then

‖DrTBΩDrTf − f‖ = 1− λ.

Thus, every eigenfunction of DrTBΩDrT is a (1−λ)-pseudoeigenfunction with
pseudoeigenvalue 1.

The relevant fact is that there are more pseudoeigenfunctions with pseu-
doeigenvalue 1. A large class of functions satisfying (1.2) arises from the set
of almost bandlimited functions in the sense of Donoho-Stark’s concept of
ε-concentration.

Example 2. According to [7], f is εT -concentrated in T if

‖DTf − f‖ ≤ εT

and Tf is εΩ-concentrated in Ω if

‖BΩf − f‖ ≤ εΩ. (1.7)

An application of the triangle inequality shows that if f is εT -concentrated in
T and Tf is εΩ-concentrated in Ω then

‖BΩDTf − f‖ ≤ εT + εΩ.

and another application of the triangle inequality gives

‖DTBΩDTf − f‖ ≤ 2εT + εΩ. (1.8)

Thus, if f is εT -concentrated in T and Tf is ε-concentrated in Ω, then f is
an (2εT + εΩ)-localized with respect to DTBΩDT .
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1.5. Organization of the paper. We have organized the ideas in the fol-
lowing way. The next section describes the setting of multivariated functions
which are bandlimited to a measurable set and the main notations, the main
result and corresponding proof are presented. In the last section we outline
the setting of Gabor localization operators and formulate an analogue of the
quantitative Nyquist densities in the Gabor setting. The proofs are very
similar to those in section 2 and are omitted.

2. Notations and main results
2.1. Time- and band- limiting operators. We will use the notation

Tf(ξ) =
1

(2π)d/2

∫
Rd

f(t)e−iξtdt

for the Fourier transform of a function f ∈ L1(Rd) ∩ L2(Rd). The subspaces
of L2(Rd) consisting, respectively, of the functions supported in T and of
those whose Fourier transform is supported in Ω are

D(T ) = {f ∈ L2(Rd) : f(x) = 0, x /∈ T}
B(Ω) = {f ∈ L2(Rd) : Tf(ξ) = 0, ξ /∈ Ω}.

Let DT be the orthogonal projection of L2(Rd) onto D(T ), given explicitly
by the multiplication of a characteristic function of the set T by f :

DTf(t) = χT (t)f(t)

and let BΩ be the orthogonal projection of L2(Rd) onto B(Ω), given explicitly
as

BΩf = T−1χΩTf =
1

(2π)d/2

∫
Rd

h(x− y)f(y)dy,

where Th = χΩ. The following proposition, comprising Lemma 1 and The-
orem 1 of [14] gives important information concerning the spectral problem
associated to the operator DrTBΩDrT . This information will be essential in
our proofs.

Proposition 1. [14] The operator DrTBΩDrT is bounded by 1, self-adjoint,
positive, and completely continuous. Denoting its set of eigenvalues, arranged
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in nonincreasing order, by {λk(r, T,Ω)}, we have
∞∑
k=0

λk(r, T,Ω) = rd (2π)−d |T | |Ω|

∞∑
k=0

λ2
k(r, T,Ω) = rd (2π)−d |T | |Ω| − o(rd).

Moreover, given 0 < γ < 1, the number Mr(γ) of eigenvalues which are not
smaller than γ, satisfies, as r →∞,

Mr(γ) = (2π)−d |T | |Ω| rd + o(rd).

We are now in a position to state and prove our main theorem. The
lower inequality is proved by constructing a set of orthonormal functions
of L2(Rd) satisfying (1.6). The proof of the upper inequality uses some of
the techniques contained in Landau’s proof of the non-hermitian Szegö-type
theorem [14, Theorem 3].

Theorem 1. Let η(ε, rT,Ω) stand for the maximum number of orthonormal
functions of L2(Rd) such that

‖DrTBΩDrTf − f‖ ≤ ε. (2.1)

Then, as r →∞, the following inequalities hold:

|T | |Ω|
(2π)d

(1 + ε2) ≤ lim
r→∞

η(ε, rT,Ω)

rd
≤ |T | |Ω|

(2π)d
(
1− 4ε2

)−1
. (2.2)

Proof : We first prove the lower inequality in (2.2). Let σ > 0 and F = {φk}
be the normalized system of eigenfunctions of the operator DrTBΩDrT with
eigenvalues λk > 1− σ. Given f ∈ L2(Rd), write

f =
∑

akφk + h, (2.3)

with h ∈ Ker (DrTBΩDrT ). Then

DrTBΩDrTf =
∑

akλkφk (2.4)

and

‖DrTBΩDrTf − f‖2 =
∥∥∥∑(1− λj)akφk + h

∥∥∥2

≤ σ
∑
|ak|2 + ‖h‖2

= σ2 ‖f‖2 + (1− σ2) ‖h‖2 . (2.5)
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Now let n be an integer number such that

n ≤ 1

ε2
≤ n+ 1 (2.6)

and consider the following partition of F into subsets Fi, each of them con-
taining n functions:

F = F1 ∪ ... ∪ Fl ∪ Fresidual, (2.7)

where the partition is made in such a way that the set Fresidual contains
only o(r) functions. This is possible to do because Proposition 1 tells us that

#F = |T ||Ω|
(2π)d

+o(r). For each set Fi choose hi such that hi ∈ Ker (DrTBΩDrT )

and such that

〈hi, hj〉 = δi,j. (2.8)

This can be done since Ker (DrTBΩDrT ) has infinite dimension, due to the

inclusion D(Rd − rT ) ⊂ Ker (DrTBΩDrT ). Now, for each i, let {ψ(i)
j }n+1

j=1 be
a set of linear combination of functions of F such that〈

ψ
(i)
k , ψ

(i)
j

〉
=

{
− 1
n+1 if k 6= j

1− 1
n+1 if k = j

, (2.9)

which can be constructed using a linear algebra argument as in the next
paragraph.

Consider a linear transformation T : Rn −→ Fi mapping each vector of
the canonical basis of Rn to each of the given n orthogonal functions of
Fi. Let V be the subspace of Rn+1 which is orthogonal to the vector v0 =[√

1
n+1 , ...,

√
1

n+1

]T
∈ Rn+1 and let {v1, ..., vn} be an orthonormal basis of V .

Clearly, ‖v0‖ = 1 and, for i = 1, ..., n, 〈v0, vi〉 = 0. Thus, the matrix

Q =
[
v0 v1 ... vn+1

]
∈ R(n+1)×(n+1)

is orthogonal. If u1, ..., un+1 ∈ Rn+1 are the rows of Q then

QT =
[
u1 ... un+1

]
∈ R(n+1)×(n+1)

is also orthogonal, we have 〈ui, uj〉 = δi,j. Let u′1, ..., u
′
n+1 ∈ Rn be the rows

of Q without the elements of the first column. They satisfy〈
u′k, u

′
j

〉
= 〈uk, uj〉 −

1

n+ 1
=

{
− 1
n+1 if k 6= j

1− 1
n+1 if k = j

,

and the functions in (2.9) are obtained setting ψ
(i)
j = Tu′j.
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We are now in a position to construct the desired orthonormal system.

Define a sequence of orthonormal functions {Φ(i)
j }li=1 using the functions ψ

(i)
j

from (2.9):

Φ
(i)
j = ψ

(i)
j +

√
1

n+ 1
hi. (2.10)

Since ψ
(i)
j are linear combinations of elements of F = {φk}, (2.10) is a

representation of the form (2.3). Thus, (2.9) and (2.8) show that indeed〈
Φ

(i)
k ,Φ

(i)
j

〉
= δk,j and we can apply (2.5) and (2.6) to obtain∥∥∥DrTBΩDrTΦ

(i)
j − Φ

(i)
j

∥∥∥2

≤ σ2 + (1− σ2)ε2. (2.11)

By construction, #{Φ(i)
j }n+1

j=1 = n+ 1 and #Fi = n. Thus,

#{Φ(i)
j }

n+1
j=1 =

n+ 1

n
#Fi.

Now, the cardinality of the union of all the sequences {Φ(i)
j } obtained accord-

ing to the above procedure is

#
[
∪li=1{Φ

(i)
j }

n+1
j=1

]
=

n+ 1

n
#
[
∪li=1Fi

]
=

n+ 1

n
# [F − Fresidual]

=
n+ 1

n
(rd (2π)−d |T | |Ω|+ o(r))

≥
1
ε2 + 1

1
ε2

rd (2π)−d |T | |Ω|+ o(r)

= (1 + ε2)rd (2π)−d |T | |Ω|+ o(r).

We have used Proposition 1 in the third equality (the fact that the dimension

of F is rd (2π)−d |T | |Ω| + o(r) and the fact that Fresidual contains only o(r)
functions). Since the resulting estimate

#
[
∪li=1{Φ

(i)
j }

n+1
j=1

]
≥ (1 + ε2)rd (2π)−d |T | |Ω|+ o(r)

holds for any σ > 0, we can take the limit σ → 0 in (2.11) to yield∥∥∥DrTBΩDrTΦ
(i)
j − Φ

(i)
j

∥∥∥ ≤ ε,
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for every i and j. Thus, ∪li=1{Φ
(i)
j }n+1

j=1 contains at least (1+ε2)rd (2π)−d |T | |Ω|+
o(r) orthonormal functions satisfying (2.1). This proves the lower inequality
in (2.2).

Let us now prove the upper inequality in (2.2). Consider again f =∑
akφk + h with h ∈ Ker (DrTBΩDrT ). Then, using (2.4) and

‖BΩDrTf‖2 = 〈DrTBΩDrTf, f〉 =
∑
|ak|2 λk,

together with the fact that DrT is a projection, one can write

‖BΩDrTf −DrTBΩDrTf‖2 = ‖BΩDrTf‖2−‖DrTBΩDrTf‖2 =
∑
|ak|2 λk(1−λk).

(2.12)
Now, for δ > 0 define E(δ) as the subspace generated by the eigenfunctions
of DrTBΩDrT such that the corresponding eigenvalues satisfy δ < λk < 1−δ,
and let

F(δ) =

{
f ∈ L2(Rd) : ‖f‖ = 1

∑
δ<λk<1−δ

|ak|2 ≤ δ

}
.

For f ∈ F(δ),

‖BΩDrTf −DrTBΩDrTf‖2

=
∑
λk≤δ

|ak|2 λk(1− λk) +
∑

δ<λk<1−δ

|ak|2 λk(1− λk) +
∑

λk≥1−δ

|ak|2 λk(1− λk) ≤ 2δ.

Thus, δ can be choosen in such a way that

‖BΩDrTf −DrTBΩDrTf‖ ≤ ε. (2.13)

Let us assume the existence of a set N of η(ε, rT,Ω) orthonormal functions
of L2(Rd) satisfying (2.1). To estimate how many of them belong to F(δ),
consider two subspaces E and G with corresponding projections E,G, and
dimensions e and g respectively, with e < g. Let v1, ..., vg be an orthonormal

set in G. Then
∑
‖Evi‖2 =

∑
(Evi, vi) =

∑
(GEGvi, vi) represents the trace

of the operator GEG, independent of the choice of basis. Choose the basis
{wi} such that the first vectors are in GE and the remaining vectors in the
orthogonal complement in G of GE . For each of the latter, (GEGw,w) = 0,
while the dimension of GE is at most e. Hence

∑
‖Evi‖2 =

∑g
1 (Ewi, wi) ≤∑e

1 (GEGwi, wi) ≤ e. Thus, the number of orthonormal vectors {vi} for

which
∑
‖Evi‖2 ≥ δ cannot exceed e/δ.
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As a result of the previous paragraph, after excluding from N at most∑ dim E(δ)
δ elements, those remaining are in F(δ). Since, from Proposition 1,

we have dim E(δ) = o(rd), there are η(ε, rT,Ω)−o(rd) functions in N ∩F(δ).
Let f be one of them. Now we can use (2.1), (2.13) and the triangle inequality
to obtain

1− ‖BΩDrTf‖2 ≤ ‖BΩDrTf − f‖ ≤ 2ε,

leading to ‖BΩDrTf‖2 ≥ 1− 4ε2, for each of the η(ε, rT,Ω)− o(rd) orthonor-
mal functions. Since ‖BΩDrTf‖2 = 〈DrTBΩDrTf, f〉, the sum of these terms
for any orthonormal set cannot exceed the trace of DrTBΩDrT . Thus, using
the trace obtained in Proposition 1, we conclude that

(1− 4ε2)
(
η(ε, rT,Ω)− o(rd)

)
≤

∞∑
k=0

λk(r, T,Ω) = rd (2π)−d |T | |Ω| ,

leading to the upper inequality in (2.2).

Remark 1. In the case where T and Ω are finite unions of bounded intervals,
the term o(r) in Proposition 1 can be replaced by log r [15], [13]. Thus, (1.4)
follows using this estimate in our proofs of Theorem 1 and Theorem 2. See
the recent monograph [12] for more estimates on the eigenvalues of the time-
and band- limiting operator.

Remark 2. It is possible to obtain analogues of Theorem 1 and Theorem 2 in
the set up of the Hankel transform. The result corresponding to Proposition
1 has been proved in [1].

3. Gabor localization operators
The Gabor (or short-time Fourier) transform of a function or distribution

f with respect to a window function g ∈ L2(Rd) is defined to be, for z =
(x, ξ) ∈ R2d:

Vgf(z) = Vgf(x, ξ) =

∫
Rd

f(t)g(t− x)e−2πiξtdt. (3.1)

The localization operator which concentrates the time-frequency content of
a function in the region S operator CS : L2(Rd) → L2(Rd) can be defined
weakly as

〈CSf, h〉 =

∫ ∫
S

Vgf(x, ξ)Vgh(x, ξ)dxdξ,
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for all f, g ∈ L2(Rd). These operators have been introduced in time-frequency
analysis by Daubechies [4]. Since then, applications and connections to sev-
eral mathematical topics, namely complex and harmonic analysis [17], [2], [3],
[9] have been found. The eigenvalue problem has been object of a detailed
study in [16], [8] and [6].

The image of L2(Rd) under the Gabor transform with the window g will
be named as the Gabor space Gg. It is the following subspace of L2(R2d):

Gg =
{
Vgf : f ∈ L2(Rd)

}
.

The reproducing kernel of the Gabor space Gg is

Kg(z, w) = 〈πzg, πwg〉L2(Rd) (3.2)

and the projection operator Pg : L2(R2d)→ Gg,

PgF (z) =

∫
F (w)Kg(z, w)dw.

It is shown in [16] that, for F ∈ Gg,

VgCSV−1
g F (z) =

∫
S

F (w)Kg(z, w)dw = PgDSF (z).

For the whole L2(R2d) one can write

VgCSV∗g = PgDS.

Thus, the spectral properties of CS are identical to those of PgDS. Moreover,
the operator DSPgDS in L2(R2d) and the operator PgDS have the same
nonzero eigenvalues with multiplicity (see Lemma 1 in [16]). The analogue
of Proposition 1 in this context is the following.

Proposition 2. [16]The operator DrSPgDrS is bounded by 1, self-adjoint,
positive, and completely continuous. Denoting its set of eigenvalues, arranged
in nonincreasing order, by {λk(rS)}, we have

∞∑
k=0

λk(rS) = rd |S|

∞∑
k=0

λ2
k(rS) = rd |S| − o(rd).
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Moreover, given 0 < γ < 1, the number Mr(γ) of eigenvalues which are not
smaller than γ, satisfies, as r →∞,

Mr(γ) = rd |S|+ o(rd).

Now that we have described the Gabor set-up in a close analogy to the
band- time- limiting case, we obtain an analogue of Theorem 1 by performing
minor adaptations in the proof.

Theorem 2. Let η(ε, rS) stand for the maximum number of orthogonal func-
tions F ∈ L2(R2d) such that

‖DrSPgDrSF − F‖ ≤ ε. (3.3)

Then, as r →∞, the following inequalities hold:

|S| (1 + ε2) ≤ lim
r→∞

η(ε, rS)

r2d
≤ |S|

1− 4ε2
.

Proof : The proof mimics the proof of Theorem 1, replacing DrTBΩDrT by
DrSPgDrS, BΩDrT by PgDrS and Proposition 1 by Proposition 2.

Acknowledgement. The authors thank José Lúıs Romero for his con-
structive cricticism of earlier versions of the manuscript, leading to a better
formulation of the results.
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