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ASYMPTOTIC LIMITS FOR THE DOUBLY NONLINEAR EQUATION
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ABSTRACT: This article is concerned with the asymptotic limits of the solutions of the
homogeneous Dirichlet problem associated to a doubly nonlinear evolution equation of the
form ut = ∆pum + g, in a bounded domain, as the parameters p and m tend to infinity.
We will address the limits in p and m separately and in sequence, eventually completing
a convergence diagram for this problem. We prove, under additional assumptions on the
domain and initial data, that the equation satisfied at the limit is independent of the order in
which we take the limits in p and m.
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1.Introduction
In this paper, we study the asymptotic limits of nonnegative solutions of the

following boundary value problem associated to the doubly nonlinear equation
(DNE) 

ut = ∆pum +g in ΩT := (0,T )×Ω

um = 0 on Σ := (0,T )×∂Ω

u(0) = u0,

(1.1)

where ∆p is the p-Laplacian. Both the initial datum u0 and the source term g are
integrable and u0 is nonnegative. To analyze the limit when p→ ∞, we take Ω to
be any bounded domain of RN with smooth boundary ∂Ω. To evaluate the limit as
m goes to infinity, we further assume that Ω is a ball of radius R, which we denote
by B(0,R).

The equation in (1.1) is a doubly nonlinear parabolic equation with a double
degeneracy in the slow diffusion case m(p−1)> 1. It arises as a model in several
physical contexts, for example in the study of non-Newtonian fluids [27], turbulent
flow of a gas in porous media ([28]) and glaciology ([16],[24]).
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Since the early eighties, extensive work has been done for the asymptotic limit
of initial-value problems associated to the porous medium equation (PME), cor-
responding to the case p = 2,

ut = ∆um (m > 1),

as m tends to infinity ([8], [13], [15], [33]), as well as for the p-Laplace equation
(PLE), corresponding to m = 1,

ut = ∆pu (p > 2),

as p goes to infinity ([3], [22]).
However, very few references appear in the literature on the asymptotic limits

for the doubly nonlinear equation, when both m 6= 1 and p 6= 2. As far as we
know, only some studies have been done in the case that p is fixed and m goes
to infinity, specially for the associated Cauchy problem ([12], [23] and [25]). In
[23] it was proved, under very strong geometric assumptions on the initial data,
that the nonnegative solutions of the Cauchy problem associated to the doubly
nonlinear equation in the real line with g ≡ 0 converge to a function, which is
one on an interval, determined by the initial data, and equal to the initial data
outside that interval. It was conjectured in [12] and [25] by Bénilan and Igbida
that the solutions of problem (1.1) with g ≡ 0 and any open domain Ω ⊆ RN

converge to a function that solves a generalized mesa problem with plateau of
height one. Precisely, the function equals one on a set, which is characterized as
the noncoincidence set of a variational inequality involving the p-Laplacian, and
equals the initial data outside that set. The authors also proved that the conjecture
holds in RN for radial, nondecreasing initial data. The main contribution of this
paper is to shed some light into the complete picture by generalizing some of the
results known for the prototype equations (PME) and (PLE) to the (DNE).

We start with some properties of the doubly nonlinear equation within nonlinear
semigroup theory, using mainly the results in [7] and [25]. Let us define the
nonlinear operator Ap,m in L1(Ω) by

Ap,mu =−∆pum,

D(Ap,m) = { u ∈ L∞(Ω); um ∈W 1,p
0 (Ω)and ∆pum ∈ L1(Ω) },

(1.2)

where rm denotes |r|m−1r for all r ∈ R. Then problem (1.1) can be recasted as{
ut +Ap,mu = g on (0,T )

u(0) = u0.
(1.3)
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Let us now consider the functional Φp : L2(Ω)→ [0,+∞] defined by

Φp(u) =


1
p

∫
Ω

|∇u|pdx if u ∈W 1,p
0 (Ω)∩L2(Ω)

+∞ otherwise.
(1.4)

The functional Φp is convex, proper, lower semicontinuous (l.s.c), Φp(0) = 0 and
for all h ∈ H0, where H0 is given by

H0 := {h ∈C1(R)| h(0) = 0 and 0≤ h′ ≤ 1}, (1.5)

we have

Φp(w+h(ŵ−w))+Φp(ŵ−h(ŵ−w))≤Φp(w)+Φp(ŵ), ∀w, ŵ∈ L2(Ω). (1.6)

As already noted in [25], v = Ap,m(u) in D ′(Ω) if and only if u ∈ L∞(Ω), um ∈W 1,p
0 (Ω)∩L2(Ω)

Φp(η)≥Φp(um)+
∫

Ω

v(η−um)dx, ∀η ∈ L∞(Ω).
(1.7)

Then, by [7], it is known that Ap,m is a T -accretive operator in L1(Ω), which
satisfies R(I + λAp,m) ⊇ L∞(Ω) for all λ > 0 and its domain D(Ap,m) is dense
in L1(Ω). Furthermore, the following condition is satisfied for all λ > 0 and
f ∈ L∞(Ω)

(I +λAp,m)
−1 f � f , (1.8)

where, for all u,v ∈ L1(Ω), we write u� v if and only if∫
Ω

j(u)dx≤
∫

Ω

j(v)dx for all j : R→ [0,∞] convex, l.s.c and j(0) = 0.

Hence, problem (1.1) admits a unique solution in the mild sense, as defined in
[19] and [25], which we will denote by up,m. We refer to [6], [10] and [31] for
more on mild solutions and general results regarding non-linear semigroup theory.
Moreover, if g ≡ 0 and m(p− 1) > 1, then Ap,m (the closure of Ap,m in L1(Ω))
generates a nonlinear semigroup of contractions in L1(Ω) denoted by Sp,m(t), and
it can be proved that the mild solution of (1.1) satisfies the standard notion of weak
solution ([12], see also [25] for details).

Let us now define A∞,∞ in the following way

v ∈ A∞,∞(u)⇐⇒


u,v ∈ L1(Ω), ∃w ∈W 1,∞(Ω)∩C0(Ω) with w ∈ K̃,

u ∈ sign(w) and 0≥
∫

Ω

v(ξ −w)dx, ∀ξ ∈ K̃.
(1.9)
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with
K̃ := {ξ ∈ L1(Ω)| |∇ξ | ≤ 1 a.e.}, (1.10)

where

sign(r) =

 −1 if r < 0,
[−1,+1] if r = 0,
1 if r > 0.

(1.11)

We will show later that the operator Ap,m converges in the resolvent sense to the
operator A∞,∞ as p and m tend to infinity, independently of whichever limit we
take first. To be precise, we will prove the following.

Theorem 1.1. Let the domain Ω be a ball in RN and f ∈ L∞(Ω), be radial and
non-negative. Then, we have, for all λ > 0,

L1− lim
p→∞

lim
m→∞

(I+λAp,m)
−1 f =L1− lim

m→∞
lim
p→∞

(I+λAp,m)
−1 f =(I+λA∞,∞)

−1 f .

Thus, by means provided by the nonlinear semigroup theory, we will obtain the
convergence diagram for the solutions up,m of problem (1.1). We will eventually
need to restrict to the case in which the domain Ω is a ball to obtain the complete
convergence diagram for the solutions. We will also require the initial data (which
will be denoted by u0m to emphasize its dependence on the parameter m) to be
radial, non-negative, and such that um

0m
∈ K̃ and ‖u0m‖∞ ≤ 1.

The operators to which Ap,m will converge, in the resolvent sense, as p and
m tend to infinity, will be denoted by A∞,m and Ap,∞, respectively, and will be
defined in the sequel. Under the conditions on the initial data u0m already stated,
we prove that the solutions of problem (1.1) reformulated as the abstract evolution
problem (1.3) converge as p and m tend to inifinity to the solutions of the Dirichlet
problem associated to the operators A∞,m and Ap,∞ (see theorem 2.4 and theorem
3.7 below). Finally, the convergence of the solutions of these problems to the
solutions of the Dirichlet problem associated to A∞,∞ will be proved in theorem
4.2 and theorem 4.4. Therefore, we show that the equation it satisfies in the limit
is independent of the order in which we take the limits in p and m.

The results can be summarized in the convergence diagram below.
The paper is organized as follows. In section 2, we examine the asymptotic limit

of problem (1.1) as p tends to infinity and we do a similar study in secion 3 for
the asymptotic limit with respect to the parameter m. In section 4, we conclude
by proving that the solutions of the problems obtained in section 2 and 3 both
converge to the same limit problem.



ASYMPTOTIC LIMITS FOR THE DOUBLY NONLINEAR EQUATION 5

(up,m)t +Ap,mup,m = g

up,m(0) = u0m

(um)t +A∞,mum 3 g

um(0) = u0m

(up)t +Ap,∞up 3 g

up(0) = u0∞

ut +A∞,∞u 3 g

u(0) = u0∞

p→ ∞

m→ ∞m→ ∞

p→ ∞

FIGURE 1. Complete convergence diagram

2.Limit of solutions as p→ ∞

Since when m = 1, the equation in (1.1) reduces to (PLE), we will first recall
some known results for the asymptotic limit as p→ ∞ of the parabolic p-Laplace
equation. The motivation, in this case, has been mainly the physical significance
of the evolution problem obtained at the limit, when p→ ∞, for example, a sand-
pile model ([3], [22], [32]), a Bean’s critical-state model for type II superconduc-
tivity ([5], [35] and [36]) and river networks ([32], see also [18]). We refer to [14],
[30] and [29] for the limiting behaviour of the variable exponent p-Laplacian and
to [1] and [2] for the limit as p→ ∞ of the nonlocal analogous of the p-Laplace
equation.

Let us briefly recall some results for the Cauchy problem associated to the par-
abolic p-Laplace equation{

(up)t−div(|∇up|p−2∇up) = g in (0,T )×RN

up = u0 on {t = 0}×RN,
(2.1)

which was investigated in [3] (see also [22]), where N +1≤ p < ∞, u0 is a Lips-
chitz function with compact support, satisfying

‖∇u0‖L∞(RN) ≤ 1, (2.2)

and the function g is smooth, with compact support in [0,T ]×RN for each T > 0.
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The following reinterpretation of the p-parabolic problem in (2.1){
g− (up)t = ∂ Ip(up) a.e. t > 0

up = u0 t = 0

was used, where ∂ Ip denotes the single-valued subdifferential of the functional Ip
defined as

Ip(v) =


1
p

∫
RN
|∇v|pdx if v ∈ L2(RN), |∇v| ∈ Lp(RN),

+∞ otherwise.
(2.3)

The passage to the limit under the conditions listed above was completely solved
in [3] and the main results are summarized in the following proposition.

Proposition 2.1. [3, Theorem 3.2] Consider the Cauchy problem for the parabolic
p-Laplacian in (2.1), with conditions on the initial value u0 and source term g as
explained above. Then we can extract a subsequence {pi}, pi tending to infinity,
and a limit u such that, for each T > 0,{

upi → u a.e. and in L2((0,T )×RN)

∇upi ⇀ ∇u, (upi)t ⇀ ut weakly in L2((0,T )×RN),
(2.4)

and the limit function u satisfies{
g−ut ∈ ∂ I∞(u) a.e. t > 0

u = u0 t = 0,
(2.5)

where ∂ I∞ is the subdifferential of the convex functional

I∞(v) =

{
0 if v ∈K,

+∞ otherwise,

for
K= {w ∈ L2(RN)| |∇w| ≤ 1 a.e.}.

To analyze the asymptotic behaviour with respect to the parameter p, the main
ingredient necessary to pass to the limit will be the convergence of the operator
Ap,m, as p tends to infinity. We observe that, by (1.7), the operator Ap,m continues
to “act as a subdifferential” even when m 6= 1. It seems reasonable then, that
when p goes to infinity, the operator A∞,m, obtained at the limit, will also “act as
a subdifferential” of an indicator function of a convex set K̃.
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We know from [11] that, for all λ > 0 and f ∈ L2(RN),

(I +λ∂ Ip)
−1 f → (I +λ∂ I∞)

−1 f in L2(RN), (2.6)

when p→ ∞.
Let us now define Φ∞ : L1(Ω)→ [0,+∞] by

Φ∞(u) =

{
0 u ∈ K̃= {ξ | |∇ξ | ≤ 1 a.e.}

+∞ otherwise.

Then, using the same notation as in [9],

∂L1Φ∞ =

{
(u,v) ∈ K̃×L1(Ω)|

∫
(u−w)v≥ 0, for w ∈ K̃ with (u−w)v ∈ L1(Ω)

}
.

We would expect Ap,m to converge to some operator A∞,m that acts as ∂L1Φ∞(um).
We will prove that the limit operator A∞,m behaves as

v ∈ A∞,mu⇐⇒

 u,v ∈ L1(Ω), um ∈W 1,∞(Ω)∩C0(Ω),

um ∈ K̃ and 0≥
∫

Ω

v(ξ −um)dx ∀ξ ∈ K̃,
(2.7)

where K̃ is as in (1.10).
For this purpose, let us focus on the elliptic equation associated to the operator

Ap,m, i.e., zp,m := (I +Ap,m)
−1 f for f ∈ L∞(Ω), since we will be interested in the

properties of the resolvent operator, JAp,m

λ
:= (I +λAp,m)

−1, to pass to the limit.
By properties of the operator Ap,m, we see that for every f ∈ L∞(Ω), zp,m is the

unique solution of the problem{
zp,m−∆pzm

p,m = f on Ω

zp,m = 0 on ∂Ω,
(2.8)

in the following sense{
zp,m ∈ L∞(Ω), zm

p,m ∈W 1,p
0 (Ω) and

−∆pzm
p,m = f − zp,m in D ′(Ω).

(2.9)

Theorem 2.2. Let Ω be a bounded domain in RN , f ∈ L∞(Ω) and zp,m be the
solution of (2.8). Then, when p→ ∞, we have

zp,m→ zm in L1(Ω),
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and for any q > 1
zm

p,m ⇀ zm
m in W 1,q(Ω).

Furthermore, zm
m satisfies

‖∇zm
m‖∞ ≤ 1,

and zm is the unique solution of the problem zm ∈ L1(Ω), zm
m ∈W 1,∞∩C0(Ω)

0≥
∫

Ω

( f − zm)(ξ − zm
m)dx ∀ξ ∈ K̃

where K̃ is defined in (1.10).

Proof : By the properties of the operator Ap,m and the known a priori estimates
for the elliptic p-Laplace equation ([26]) the convergence of the sequences {zp,m}
and {zm

p,m} follow. The L∞-bound for |∇zm
m| is proved as in Lemma 3.2 in [22].

We can then pass to the limit using (1.7) to obtain the result.

Corollary 2.3. For all f ∈ L∞(Ω) and λ > 0, we obtain, when p→ ∞,

(I +λAp,m)
−1 f → (I +λA∞,m)

−1 f in L1(Ω). (2.10)

Remark 2.1. In the case that g ≡ 0, then for all f ∈ L1(Ω) such that f m ∈ K̃, we
obtain

(I +λAp,m)
−1 f → f in L1(Ω),

for all λ > 0, as p→ ∞.

Hence, if we consider m >
1

p−1
, up,m a solution of (1.1) with g≡ 0 and um

0 ∈ K̃
then, when p→ ∞, we have

up,m→ u0 in C([0,T );L1(Ω)).

The main theorem of this section then follows.

Theorem 2.4. Consider the problem (1.1), where Ω is a bounded domain in RN ,
u0 ∈ L1(Ω), um

0 ∈ K̃ and g ∈ L1(ΩT ). Then, there exists a subsequence pi tending
to infinity and a function um such that, for each T > 0,

upi,m→ um in C([0,T ];L1(Ω)),

and um is the unique mild solution of{
g− (um)t ∈ A∞,m(um) in (0,T ]×Ω

um = u0 {t = 0}×Ω,
(2.11)
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where A∞,m is given by (2.7)-(1.10).

Proof : Since the operator A∞,m is T -accretive (see [4] for details), then from corol-
lary 2.3 we can deduce the convergence in the resolvent sense of the operator Ap,m
to the m-T -accretive operator A∞,m. Besides, by the conditions imposed on the ini-
tial data, we have that u0 ∈D(A∞,m). Hence, the result follows by a classical result
in nonlinear semigroup theory, which states that if each Ak, k = 1, · · · ,∞ is a m-
accretive operator in a Banach space X , u0k ∈ D(Ak) and uk is the mild solution
of

duk

dt
+Akuk 3 gk, uk(0) = u0k,

then (I + Ak)
−1 f → (I + A∞)

−1 f for f ∈ X , u0k → u0∞
in X and gk → g∞ in

L1(0,T ;X), implies uk→ u∞ in C([0,∞);X) (see, for example, [17] and [21] for
statement and references).

Remark 2.2. When m = 1, the operator Ap,m reduces to the p-Laplace operator
defined in L1(Ω), which restricted to L2(Ω) coincides with the subdifferential ∂ Ip
in bounded domains. The same argument applies to show that A∞,m coincides
with ∂ I∞ when m = 1 and restricted to L2(Ω). Hence, theorem 2.4 serves as a
generalization (in the mild sense) of proposition 2.1.

Remark 2.3. When there is no source term, i.e., g ≡ 0, we can study the singular
limit of the solutions of problem (1.1) as p→ ∞. This is the case when um

0 /∈ K̃
and we assume u0 is nonnegative and um

0 is Lipschitz with

||∇um
0 ||L∞(Ω) = L > 1.

Observe that for u ∈ D(Ap,m) and λ > 0, we have that

λu ∈ D(Ap,m) and Ap,m(λu) = λ
β Ap,m(u),

where β = m(p−1). Therefore Ap,m is a homogeneous operator and we can use a
scaling argument which applies to the general setting of abstract nonlinear evolu-
tion equations governed by homogeneous accretive operators as in [11]. We con-
sider the natural rescaling, taking into account what has been done for the problem
(DNE)p,m, when m = 1 in [22] and for p = 2 in [13], which is the following

v j,m(t,x) = tup j,m

(
tm(p j−1)

m(p j−1)
,x

)
, (0≤ t ≤ 1). (2.12)
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Thus, using the convergence of the operators established in corollary 2.3, as well
as remark 2.1, the passage to the limit in this case is solved by the methods in
[11]. We obtain that there exists a limit function vm such that, when p j→ ∞,

up j,m(t)→ vm(1) in L1(Ω),

and vm satisfies the following properties:

(i) vm(t) = tu0 for any t ∈ [0,τ] where τ = 1/L1/m < 1 ,
(ii) vm is the unique mild solution of the evolution problem

vm

t
− (vm)t ∈ A∞,mvm (τ < t ≤ 1)

vm = v0 = τu0 (t = τ).

(2.13)

3.Limit of solutions as m→ ∞

We move on to study the asymptotic limit as m goes to infinity. When p = 2,
the equation in (1.1) simplifies to the (PME). Hence, we recall the result for the
asymptotic limit, as m goes to infinity, of the following Dirichlet porous medium
problem 

(um)t = ∆|um|m−1um in (0,∞)×Ω

um = 0 on (0,∞)×∂Ω

um(0) = u0 on Ω,

(3.1)

where Ω is an open domain of RN not necessarily bounded, m ≥ 1, and u0 ∈
L1(Ω).

Theorem 3.1. [8, Theorem 2] Let um be the solution of problem (3.1) with initial
value u0 ∈ L1(Ω), u0 ≥ 0. Then there exists a time-indepedent limit function u0
such that, when m→ ∞,

um→ u0 = u0χ[w=0]+χ[w>0] in L1(Ω),

uniformly for t in a compact set in (0,∞), where w satisfies

w ∈ H2(Ω)∩H1
0 (Ω), w≥ 0, 0≤ ∆w+u0 ≤ 1 in D ′(Ω), w(∆w+u0−1) = 0,

or equivalently w is the solution of the mesa problem

u0,w ∈ L1(Ω)+, sign(w)−∆w 3 u0 in D ′(Ω), u0 ∈ sign(w). (3.2)
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Let us now define the operator Ap,∞ as

v ∈ Ap,∞u⇐⇒

{
u,v ∈ L1(Ω), ∃w ∈V, u ∈ sign(w) a.e. in Ω

−∆pw = v in D ′(Ω),
(3.3)

where V denotes W 1,p
0 (Ω) or W 1,p(RN), depending on whether the domain Ω is

bounded or the whole of RN . It was proved by Bénilan and Igbida in ([12], see
[25] for details) that Ap,m converges in the resolvent sense to the operator Ap,∞ in
the case that the domain is the whole of RN .

Note that since the nonlinearity |u|m−1u converges in the sense of graphs to the
multivalued maximal monotone graph φ∞ defined as

φ∞(r) =



/0 if r <−1

(−∞,0] if r =−1

{0} if |r|< 1

[0,+∞) if r = 1

/0 if r > 1,

(3.4)

and φ∞(r) = sign−1(r), then it is natural to seek the convergence of the operator
Ap,m to Ap,∞ as defined above.

We will show that the convergence holds for the particular case that the domain
Ω is a ball in RN of radius R and f ∈ L∞(Ω), is non-negative and radial. Once
again, we will need to examine the properties of the stationary problem associated
to the operator Ap,m, as defined in (2.8).

Remark 3.1. To prove the result in RN , it was used that JAp,m

λ
is invariant by trans-

lation, together with the L1- contraction properties of solutions of (2.8), to obtain

‖zp,m‖1 ≤ ‖ f‖1,

‖zp,m(x+h)− zp,m(x)‖1 ≤ ‖ f (x+h)− f (x)‖1 ∀h > 0.

Therefore zp,m is relatively compact in L1
loc(R

N). Since we are interested in work-
ing in a bounded domain, we no longer have the translation invariance to make use
of, and we need a different compactness result. We emphasize that all the other



12 M ASTUDILLO

results in [25], used for the convergence of the operators, apply to general open
domains in RN , not necessarily bounded.

We will, from this point on in this section, restrict the choice of domain to the
ball of radius R and the case that f is non-negative and radial, that is, there exists
a function l such that f (x) = l(|x|). Since JAp,m

λ
is invariant by rotation, then the

solution of (2.8) is radial and there exists vp,m such that zp,m(x) = vp,m(|x|) and
verifies  v− (rN−1|(vm)r|p−2(vm)r)r

rN−1 = l in I = (0,R)

v(0) = v(R) = 0,
(3.5)

where we momentarily suppress the subscripts m and p. We are interested in
obtaining a smooth approximation for this problem. For this purpose, let us con-

sider as well ρ ∈C∞
0 (I), ρ ≥ 0,

∫
ρ = 1 and for any function k let us define the

convolution
ρε ∗ k(x) =

∫
ρε(x− y)k(y)dy, ε > 0,

where ρε(y) = ρ(y/ε)/ε . Then, adapting accordingly the results in [20], which
apply for the one dimensional doubly nonlinear diffusion equation in (1.1), to our
radial case, we have the following result.

Theorem 3.2. Let v be the unique solution of (3.5) for l ≥ 0, l ∈ L∞(B(0,R)). For
p > N, m > 0, there exists a smooth approximation Ψε(v,b) of the nonlinearity
Ψ(b) = rN−1b|b|p−2 with

Ψε(v,b) = rN−1b|b|p−2 +
nε

m
vn−mb,

where n = (p− 1)(m+ 1)− 1 and r ∈ (0,R), such that for lε = ε + ρε ∗ l and
v0ε

= ε , the problem{
vε − (rN−1|(vm

ε )x|p−2(vm
ε )r)r− ε(vn

ε)rr = vε − (Ψε(vε ,(vm
ε )r))r = lε in I

vε(0) = vε(R) = v0ε
,

(3.6)
where I = (0,R), has a unique solution vε ∈C∞(I) satisfying
(i) 0 < ε < vε < ε +‖ f‖∞.
(ii) vε converges uniformly in compact subsets of I to v.
(iii) (vm

ε )r→ (vm)r as ε → 0 a.e. r ∈ I.
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Remark 3.2. If p < N, then the previous theorem continues to hold. However, de-
pending on the relationship between p and m, a different approximation operator
Ψε would be needed to pass to the limit in ε .

Theorem 3.3. Let zp,m be a solution of (2.8). If Ω = B(0,R) and f is radial and
non-negative, then the total variation of zp,m is uniformly bounded.

Proof : As explained above, if f is radial and non-negative then the solution zp,m
of (2.8) has a radial representative vp,m which verifies (3.5). Since the total varia-

tion of zp,m,
∫

B(0,R)
|∇zp,m(x)|dx, and

∫ R

0
|(vm,p)r|rN−1dr differ only by a constant

which is independent of m then it is enough to prove the uniform bound of the sec-
ond. Morever, by theorem 3.2, there exists a smooth approximation of the solution
vp,m of (3.5), which we will continue to denote by vε and satisfies

{
rN−1vε − (rN−1|(vm

ε )r|p−2(vm
ε )r + ε

n
mvn−m

ε (vm
ε )r)r = lεrN−1 in (0,R)

vε(0) = vε(R) = v0ε
.

(3.7)

We differentiate the equation in (3.7) with respect to r to obtain

(rN−1vε)r− (rN−1|(vm
ε )r|p−2(vm

ε )r + ε
n
m

vn−m
ε (vm

ε )r)rr = (lεrN−1)r.

Denote now bε = (vm
ε )r and consider a sequence of functions hδ which satisfy

hδ ∈ C∞(R), h′
δ
≥ 0, 0 = hδ (0) ≤ |hδ | ≤ 1. We multiply the above equation by

hδ (bε) and integrate over (0,R) to obtain∫ R

0
(rN−1vε)rhδ (bε)dr =

∫ R

0
(rN−1|bε |p−2bε + ε

n
m

vn−m
ε bε)rrhδ (bε)dr

+
∫ R

0
(lεrN−1)rhδ (bε)dr

≤ −
∫ R

0
(rN−1|bε |p−2bε + ε

n
m

vn−m
ε bε)r(hδ (bε))r

+∑
∂ I

hδ (bε)(rN−1|bε |p−2bε + ε
n
m

vn−m
ε bε)r

+
∫ R

0
|(lεrN−1)r|

≤ RN−1(v0ε
− lε(R))+

∫ R

0
|(lεrN−1)r|dr.
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Therefore∫ R

0
(vε)rrN−1hδ (bε)dr =

∫ R

0
(vεrN−1)rhδ (bε)dr−

∫ R

0
(rN−1)rvεhδ (bε)dr

≤ RN−1(v0ε
− lε(R))+

∫ R

0
|(lεrN−1)r|dr

−
∫ R

0
(rN−1)rvεhδ (bε)dr

≤ RN−1(v0ε
− lε(R))+

∫ R

0
|(lε)r|rN−1dr+C(R)‖lε‖∞.

Taking hδ such that hδ (s)→ sign0(s) as δ → 0, then∫ R

0
|(vε)r|rN−1dr ≤ RN−1(v0ε

− lε(R))+
∫ R

0
|(lε)r|rN−1dr+C(R)‖lε‖∞.

Hence, as ε → 0,∫ R

0
|(vp,m)r|rN−1dr ≤

∫ R

0
|lr|rN−1dr+C(R)‖l‖∞.

Once we have established the substitute to the compactness result in RN to our
particular case, we can use the following set of lemmas to show the convergence
of the operators.

Lemma 3.4. [25, Lemma 2.7] If zp,m is the solution of (2.8) then zm
p,m is uniformly

bounded in W 1,p
0 (Ω).

Lemma 3.5. [25, Lemma 2.11] For all m≥ 1, let wm ∈W 1,p
0 (Ω) and gm ∈ L1(Ω)

be such that
−∆pwm = gm in D ′(Ω).

If there exists w∞ ∈W 1,p
0 (Ω) and g∞ ∈ L1(Ω) such that, when m→ ∞, we have

gm→ g∞ in L1(Ω), (3.8)

wm ⇀ w∞ in W 1,p(Ω), (3.9)

gmwm→ g∞w∞ in L1(Ω), (3.10)

then
−∆pw∞ = g∞ in D ′(Ω), (3.11)
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and furthermore, we have

∇wm→ ∇w∞ , in (Lp(Ω))N, when m→ ∞. (3.12)

The convergence in the resolvent sense of the operators then follows adapting
Theorem 2.1 in [25] as follows.

Lemma 3.6. Let Ω = B(0,R) and f ∈ L∞(Ω), f ≥ 0 and radial. Then, we have
that

(I +λAp,m)
−1 f → (I +λAp,∞)

−1 f in L1(Ω),

for all λ > 0, when m→ ∞.

Proof : The proof follows as in theorem 2.1 in [25], using instead of the relative
compactness in L1(RN), the uniform bound proved in theorem 3.3. Indeeed, Let
f ∈ L∞(Ω), radial and non-negative, and zp,m be a solution of (2.8), by theorem
3.3, then there exists zp such that

zp,m→ zp in L1(Ω), (3.13)

and by lemma 3.4 there exists some wp such that

zm
p,m ⇀ wp in W 1,p

0 . (3.14)

Therefore zp ∈ sign(wp) a.e. in Ω. Since we also have that

‖zp,m‖∞ ≤ ‖ f‖∞,

then
( f − zp,m)(zp,m)

m→ ( f − zp)w in L1(Ω)

and all the hypothesis of lemma 3.5 are satisfied, from which we obtain

−∆pwp = f − zp in D ′(Ω)

and
∇zm

p,m→ ∇wp in Lp(Ω).

Thus, recalling that zp,m := (I +Ap,m)
−1 f and denoting (I +Ap,∞)

−1 f by zp, we
see that the result holds.

Remark 3.3. By proposition 2.3 and lemma 3.4 in [25] we know that given f such
that || f ||∞ ≤ 1, then when m→ ∞, we have

(I +λAp,m)
−1 f → f in L1(Ω)
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for all λ > 0. Hence, if up,m is a solution of (1.1) with g≡ 0 and ‖u0‖∞ ≤ 1, then
when m→ ∞ we have

up,m→ u0 in C([0,T );L1(Ω))

for all λ > 0.

The main theorem in this section then reads as follows.

Theorem 3.7. Let up,m be the solution of the problem (1.1), where Ω = B(0,R)
and u0 is radial such that 0≤ u0≤ 1 and g∈ L1(ΩT ). Then, there exists a function
up such that, when m→ ∞, for each T > 0,

up,m→ up in C([0,T ];L1(Ω))

and up is the unique mild solution of{
(up)t +Ap,∞(up) 3 g in Ω× [0,T ]

up(0) = u0,
(3.15)

where Ap,∞ is given by (3.3).

Proof : The proof follows the same reasoning as theorem 2.4, using the accretivity
of operator Ap,∞, lemma 3.6 and the fact that u0 ∈ D(Ap,∞).

Remark 3.4. In the case that the domain Ω is a bounded interval in R the results
of theorem 3.3 and thus of theorem 3.7 continue to hold.

Remark 3.5. Let us consider up,m the solution of (1.1) with g≡ 0, assuming Ω =
B(0,R) and u0 is radial, non-negative and ‖u0‖∞ = M > 1. Then, considering the
same stretching of the time variable as in remark 3.3

vp, j(t,x) = tup,m j

(
tm j(p−1)

m j(p−1)
,x

)
(3.16)

and the arguments already stated there, we can show the existence of a singular
limit and the equation it satisfies. To be precise, by the results in [11], as well as
lemma 3.6 and remark 3.3, we see that there exists a function vp such that when
m j→ ∞,

up,m j → vp(1) in L1(Ω) uniformly for t in a compact set of (0,∞) (3.17)

and where vp is given by
(i) vp(t) = tu0 for any t ∈ [0,b], and b = 1/M,
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(ii) vp is the unique mild solution of the evolution problem
(vp)t +Ap,∞vp 3

vp

t
in (b,∞)

vp(b) = bu0.

(3.18)

4.Asymptotic behaviour of the limit equations
In this section, we will analyze the asymptotic limits of the mild solutions of the

equations obtained in section 2 and section 3, when, respectively, m and p go to
infinity. Taking into account the restrictions already imposed on the initial data,
as well as the domain, we will be able to study the equations satisfied by these
limits. By the results of the previous sections, we have identified the convergence
of the operator Ap,m as p and m tend to infinity. Hence, it is only left to show that
the operators A∞,m and Ap,∞ both converge in the resolvent sense to the operator
A∞,∞ defined in (1.9) and thus the equation that is satisfied at the limit is the same
independently of the order of the limits in p and m.

We follow the same line of ideas as in previous sections and study the stationary
problem associated to A∞,m. Denoting zm := (I +A∞,m)

−1 f , by theorem 2.2, the
problem has a solution in the sense that zm ∈ L1(Ω), zm

m ∈W 1,∞(Ω)∩C0(Ω),

|∇zm
m| ≤ 1 a.e., 0≥

∫
Ω

( f − zm)(ξ − zm
m)dx, ∀ξ ∈ K̃,

(4.1)

and we next prove the convergence in the resolvent sense of the operator A∞,m to
A∞,∞.

Lemma 4.1. Let Ω be a bounded domain. Then, for all f ∈ L∞(Ω) and λ > 0, we
have,

(I +λA∞,m)
−1 f → (I +λA∞,∞)

−1 f in L1(Ω),

when m→ ∞.

Proof : We would like to show that there exists a unique function z such that, when
m→ ∞,

zm→ z in L1(Ω) (4.2)

and

z ∈ sign(w) is such that 0≥
∫

Ω

( f − z)(ξ −w)dx, ∀ξ ∈ K̃. (4.3)
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Since zm
m is Lipschitz continuous, taking y ∈ ∂Ω, we have

|zm
m(x)| ≤ |zm

m(x)− zm
m(y)|+ |zm

m(y)| ≤ ‖∇zm
m‖∞|x− y| ≤ diam(Ω).

Therefore, there exists a subsequence {mi} such that, for some w,

zmi
mi
→ w, (4.4)

and
∇zmi

mi

∗
⇀ ∇w in L∞(Ω : RN). (4.5)

Moreover
‖∇w‖∞ ≤ liminf

mi→∞
‖∇zmi

mi
‖∞ ≤ 1. (4.6)

Recall now that, by property (1.8), for f ∈ L∞(Ω) and zp,m a solution of (2.8),
we have

‖zp,m‖r ≤ ‖ f‖r for any 1≤ r ≤ ∞,

and taking p→ ∞, it continues to hold that

‖zm‖r ≤ ‖ f‖r for 1≤ r ≤ ∞, (4.7)

We will now use the Frechét-Kolmogorov’s theorem to prove the relative com-
pactness in L1(Ω) of {zm, m > 1}. According to this result, by (4.7), it would be
enough to prove that for every y ∈ RN small enough and Ω′ ⊂⊂Ω, the following
holds

sup
m
‖zm(x+ y)− zm(x)‖L1(Ω′) ≤ ‖ f (x+ y)− f (x)‖L1(Ω′). (4.8)

To this end, let us consider the equation in (4.1). Then, for all Ω′⊂⊂Ω, ξ1, ξ2 ∈ K̃
with suppξi ⊂Ω′ and y ∈RN such that |y|< dist(suppξi,∂Ω), i = 1,2, we obtain

0≥
∫

Ω′
( f (x)− zm(x))(ξ1(x)− zm

m(x))dx (4.9)

and
0≥

∫
Ω′
( f (x+ y)− zm(x+ y))(ξ2(x)− zm

m(x+ y))dx. (4.10)

Let us take a sequence of functions hδ ∈C∞(Ω), 0≤ h′
δ
≤ 1, 0 = hδ (0)≤ |hδ | ≤ 1

and the following choices for ξ1 and ξ2

ξ1(x) = hδ (z
m
m(x+ y)− zm

m(x))+ zm
m(x),

and
ξ2(x) =−hδ (z

m
m(x+ y)− zm

m(x))+ zm
m(x+ y).
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Adding (4.9) and (4.10), we have∫
Ω′

hδ (z
m
m(x+ y)− zm

m(x))(zm(x+ y)− zm(x))dx

≤
∫

Ω′
( f (x+ y)− f (x))hδ (z

m
m(x+ y)− zm

m(x))dx

≤
∫

Ω′
| f (x+ y)− f (x)|dx.

Taking hδ such that hδ (r)→ sign0(r) as δ → 0,∫
Ω′
|zm(x+ y)− zm(x)|dx≤

∫
Ω′
| f (x+ y)− f (x)|dx

and (4.8) is satisfied. By (4.2) and (4.4), it then follows that z ∈ sign(w). Recall,
by (4.7), that

‖zm‖∞ ≤ ‖ f‖∞.

Therefore, using also (4.4), taking the limit as m tends to infinity in (4.1), we get

0≥ lim
m→∞

∫
Ω

( f − zm)(ξ − zm
m)dx =

∫
Ω

( f − z)(ξ −w)dx.

To prove uniqueness, let us suppose that there exist two solutions, that is, zi ∈
sign(wi), i = 1,2, which satisfy

0≥
∫

Ω

( f − z1)(ξ −w1)dx (4.11)

and

0≥
∫

Ω

( f − z2)(ξ −w2)dx. (4.12)

Substituting ξ = w2 and ξ = w1 respectively in (4.11) and (4.12), since w ∈ K̃, by
(4.6), we obtain

0≥
∫

Ω

(z1− z1)(w1−w2)

and therefore the solution is unique.

We are now ready to obtain the regular limit of the solutions um and the equation
it satisfies, under the additional condition that the initial data which we will denote
by u0m satisfies ‖u0m‖∞ ≤ 1. The following theorem holds.
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Theorem 4.2. Consider the problem in (2.11), where u0m and g satisfy the same
conditions as in theorem 2.4, as well as ‖u0m‖∞ ≤ 1. Then, there exists a subse-
quence mi tending to infinity, and a unique function u such that, for each T > 0,

umi → u in C([0,T ];L1(Ω)),

with

u0m → u0∞
in L1(Ω),

and u is the unique mild solution of{
ut +A∞,∞(u) 3 g in Ω× (0,T ]

u(0) = u0∞
,

(4.13)

where A∞,∞ is given by (1.9).

Proof : Observe that since um
0m
∈ K̃ and ‖u0m‖∞≤ 1, then as m→∞, we obtain that

there exists a u0∞
such that

u0m → u0∞
in L1(Ω),

with u0∞
∈ D(A∞,∞). Hence, using also lemma 4.1 and the fact that A∞,∞ is T -

accretive, the result follows by the same classical result in nonlinear semigroup
theory as in theorem 2.4.

We do the same analysis for the elliptic problem associated to the operator Ap,∞.
Denoting zp := (I +Ap,∞)

−1 f for all f ∈ L∞(Ω), this problem has a solution in
the following sense:{

zp ∈ L1(Ω), ∃wp ∈W 1,p
0 (Ω), zp ∈ sign(wp) a.e. in Ω

−∆pwp = f − zp in D ′(Ω).
(4.14)

Observe that given what we know about the behaviour of the p-Laplace operator
when p→∞ (see (2.6)), it is natural to seek the convergence in the resolvent sense
of the operator Ap,∞ to the operator A∞,∞ as defined in (1.9).

Lemma 4.3. For all f ∈ L∞(Ω) and λ > 0, we have

(I +λAp,∞)
−1 f → (I +λA∞,∞)

−1 f in L1(Ω),

when p→ ∞.
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Proof : Recall that by property (1.8), for f ∈ L∞(Ω) and zp,m a solution of (2.8),
we have

‖zp,m‖r ≤ ‖ f‖r for any 1≤ r ≤ ∞,

and taking m→ ∞, it continues to hold

‖zp‖r ≤ ‖ f‖r for 1≤ r ≤ ∞, (4.15)

for zp = (I +Ap,∞)
−1 f . On the other hand, we see that there exists a wp which is

a solution of the equation in (4.14) and therefore satisfies∫
Ω

|∇wp|p−2
∇wp ·∇ϕdx =

∫
Ω

( f − zp)ϕdx ∀ϕ ∈D(Ω).

By density, we can consider ϕ = wp in the previous expression to obtain∫
Ω

|∇wp|pdx ≤ ‖ f − zp‖∞‖wp‖1

≤ C‖ f − zp‖∞‖∇wp‖1

≤ 2C‖ f‖L∞(Ω)

(∫
Ω

|∇wp|pdx
) 1

p

|Ω|1−
1
p .

The second inequality is due to Poincaré’s inequality, with p = 1, and for the third
we use (4.15) and Hölder’s inequality. We have as well, by Hölder’s inequality,

‖∇wp‖q ≤ ‖∇wp‖p|Ω|
1
q−

1
p ,

for any p > q and we obtain that {wp} is uniformly bounded in W 1,q
0 (Ω) for any

q > 1. Hence, there exists a subsequence {pi} and a function w such that, when
pi→ ∞,

wpi ⇀ w in W 1,q(Ω), for any q > 1.
Thus, passing as necessary to yet another subsequence and relabelling, we deduce{

wpi → w in Lq(Ω),
wpi → w a.e. (4.16)

By the bound in (4.15),we have that there exists a function z such that, for q′ the
conjugate of q, when pi→ ∞,

zpi ⇀ z in Lq′(Ω).

Recalling that zp ∈ sign(wp), then by [34, Lemma A.2], it continues to hold in the
limit that z ∈ sign(w). Moreover,

zpi → z a.e.
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This together with (4.15) gives us the following strong convergence

zpi → z in L1(Ω). (4.17)

Besides, by the equation in (4.14), we also have that, for all ξ ∈ L∞(Ω)∩W 1,p
0 (Ω),

1
p

∫
Ω

|∇ξ |pdx≥ 1
p

∫
Ω

|∇wp|pdx+
∫

Ω

( f −zp)(ξ−wp)dx≥
∫

Ω

( f −zp)(ξ−wp)dx.

Taking ξ ∈ K̃, assuming by approximation that ξ has compact support, we have
by (4.16) and (4.15),

0≥ lim
pi→∞

∫
Ω

( f − zpi)(ξ −wpi)dx =
∫

Ω

( f − z)(ξ −w)dx.

Moreover, we have that,
‖∇w‖∞ ≤ 1. (4.18)

Indeed, just as in Lemma 3.2 in [22], taking η > 0 and denoting

Aη = {x ∈Ω | |∇w| ≥ 1+η},

then

(1+η)|Aη | ≤
∫

Aη

|∇w|dx≤ liminf
p→∞

(∫
Ω

|∇wp|pdx
)1/p

|Aη |1−1/p ≤ |Aη |

and |Aη |= 0, showing that (4.18) holds. Uniqueness follows as in lemma 4.1.

Therefore, by the results of corollary 2.3, lemmas 3.6, 4.1 and 4.3, the claims
in theorem 1.1 are satisfied. Moreover, we can now obtain the regular limit of the
solutions up and therefore show the final link in the convergence diagram (see fig.
1).

Theorem 4.4. Let Ω = B(0,R) and consider the problem (3.15), where Ap,∞ is
defined in (3.3), g∈ L1(ΩT ), and u0 is radial, non-negative and such that ‖u0‖∞≤
1. Then, there exists a function u such that, for each T > 0,

up→ u in C([0,T ];L1(Ω))

and u is the unique mild solution of{
ut +A∞,∞u 3 g in Ω× [0,T ]

u(0) = u0,
(4.19)

where A∞,∞ is defined in (1.9).
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Proof : The result follows by the same arguments as in theorem 4.2, using lemma
4.3 and the fact that u0 ∈ D(A∞,∞).
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