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NIJENHUIS FORMS ON L∞-ALGEBRAS

A. J. AZIMI, C. LAURENT-GENGOUX AND JOANA M. NUNES DA COSTA

Abstract: We investigate Nijenhuis deformations of L∞-algebras, a notion that
unifies several Nijenhuis deformations, namely those of Lie algebras, Lie algebroids,
Poisson structures and Courant structures. Additional examples, linked to Lie n-
algebras and n-plectic manifolds, are included.

Introduction

L∞-algebras, introduced by Lada and Stasheff [15], who called them strongly
homotopy Lie algebras, are collections of n-ary operations, assumed to sat-
isfy some quadratic relations that reduce to the Jacobi identity, when only
the binary operation is not trivial. These structures gained notoriety when
Kontsevitch used L∞-morphisms to prove the existence of star-products on
Poisson manifolds [10]. Voronov [23] derived an L∞-algebra from a Poisson
element and an abelian subalgebra of a differential graded Lie algebra. For
instance, an L∞-algebra encodes a Poisson structure in a neighborhood of a
coisotropic submanifold, provided that a linear transversal is given, see [6]
and [5]. This makes L∞-algebras a central tool for studying Poisson brack-
ets, but there are more occurences. Roytenberg and Weinstein [22] gave a
description of the so-called Courant algebroids in terms of Lie 2-algebras.
In the same vein, Rogers [19] encodes n-plectic manifolds by Lie n-algebras
and Frégier, Roger and Zambon [7] used this formalism to construct moment
maps of those.
In this paper we develop a theory of Nijenhuis forms on L∞-algebras. Here,

by Nijenhuis forms, we mean a generalization of the notion of Nijenhuis (1, 1)-
tensors on manifolds, i.e., (1, 1)-tensors whose Nijenhuis torsion vanishes. On
manifolds, Nijenhuis tensors are unary operations on the Lie algebra of vector
fields. Since, when dealing with L∞-algebras, one has to replace Lie algebra
brackets by collections of n-ary brackets for all integers n ≥ 1, we also want to
define Nijenhuis forms that are collections of n-ary operations for all integers
n ≥ 1. Our main idea is based on the fact that, given a Lie algebra (g, [., .])
and a linear endomorphism N of g, N is Nijenhuis if deforming twice by N
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the original bracket yields the original bracket deformed by N2. We translate
this idea to L∞-algebras, where the brackets to be deformed are their n-ary
brackets.
We present several examples of Nijenhuis forms on L∞-algebras. The first

example is universal, in the sense that every L∞-structure admits it: the
Euler map S, that multiplies an element by its degree. Nijenhuis operators
on ordinary graded Lie algebras are among the most trivial examples. Poisson
elements, and more generally, Maurer-Cartan elements of differential graded
Lie algebras are also examples, which are not purely made of vector valued 1-
forms, but which are the sum of a vector valued 1-form with a vector valued
0-form. Less trivial examples are given on Lie n-algebras. On those, we
have Nijenhuis forms which are the sum of a family of vector valued k-forms.
An interesting case is when the Lie n-algebra is associated to an n-plectic
manifold [19]. The case of Lie 2-algebras is treated separately, and we have
Nijenhuis forms which are the sum of a vector valued 1-form with a vector
valued 2-form.
We discuss how Nijenhuis tensors on Courant algebroids [4, 12, 2, 3] fit in

our defintion of Nijenhuis forms on some L∞-algebras. In order to include
Lie algebroids in our examples, we recall the concept of multiplicative L∞-
algebras (related to P∞-algebras in [5]). In the last part of the paper, our
examples come from well-known structures on Lie algebroids, defined by
pairs of compatible tensors [14, 1, 3], such as ΩN -, Poisson-Nijenhuis [13]
and PΩ-structures.
Very recently, while we were about to finish this paper, a notion of Ni-

jenhuis operator on Lie 2-algebras was introduced in [18], using a different
perspective. That definition is a particular case of ours, as we explain in
Remark 4.14.
The paper is organized in seven sections. In Section 1 we introduce a

bracket of graded symmetric vector valued forms on a graded vector space
that we call Richardson-Nijenhuis bracket, because it reduces to the usual
Richardson-Nijenhuis bracket of vector valued forms on a (non-graded) vector
space. With this graded bracket, we characterize L∞-structures as Poisson
elements on the graded Lie algebra of graded symmetric vector valued forms.
In Section 2 we present our main definition of Nijenhuis vector valued form
with respect to an L∞-algebra, or more generally, with respect to a vector
valued form of degree 1. Relaxing a bit the definition of Nijenhuis vector
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valued form, yields the notions of weak Nijenhuis and co-boundary Nijen-
huis forms, which provide interesting examples to be discussed in the next
sections. Section 2 also contains the first examples of Nijenhuis forms on sym-
metric graded Lie algebras and symmetric differential graded Lie algebras:
the Euler map, Poisson and Maurer-Cartan elements. Section 3 is devoted
to Nijenhuis forms on Lie n-algebras. We construct examples of Nijenhuis
forms on general Lie n-algebras, in particular on those defined by n-plectic
manifolds. The case n = 2 is treated separately, in Section 4. There, we find
necessary and sufficient conditions to have a Nijenhuis form which is the sum
of vector valued 1-form with a vector valued 2-form. The importance of Lie 2-
algebras appears in Section 5, where we focus on Courant algebroids. Using a
construction established in [22], we associate a Lie 2-algebra to each Courant
algebroid and we relate (1, 1)-tensors with vanishing Nijenhuis torsion on a
Courant algebroid, with Nijenhuis forms on the corresponding associated Lie
2-algebra. In Section 6, we study multiplicative L∞-algebras and its relation
with pre-Lie and Lie algebroids. We introduce the notions of extension by
derivation of (1, 1)-tensors and of k-forms on a Lie algebroid, needed to con-
struct examples of Nijenhuis forms on Lie algebroids in the last section. In
Section 7, the last one, we obtain, out of ΩN -, Poisson-Nijenhuis and PΩ-
structures on a Lie algebroid, examples of weak Nijenhuis and co-boundary
Nijenhuis vector valued forms.

1. Richardson-Nijenhuis bracket and L∞-algebras

In this section we extend the usual Richardson-Nijenhuis bracket of vector
valued forms on vector spaces [9] to graded symmetric vector valued forms
on graded vector spaces. Then, we use it to characterize L∞-structures on
graded vector spaces. We start by fixing some notations on graded vector
spaces.
Let E be a graded vector space over a field K = R or C, that is, a vector

space of the form ⊕i∈ZEi. For a given i ∈ Z, the vector space Ei is called
the component of degree i, elements of Ei are called homogeneous elements
of degree i, and elements in the union ∪i∈ZEi are called the homogeneous
elements. We denote by |X| the degree of a non-zero homogeneous element
X. Given a graded vector space E = ⊕i∈ZEi and an integer p, one may shift
all the degrees by p to get a new grading on the vector space E. We use the
notation E[p] for the graded vector space E after shifting the degrees by p,
that is, the graded vector space whose component of degree i is Ei+p.
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We denote by S(E) the symmetric space of E which is, by definition, the
quotient space of the tensor algebra ⊗E by the two-sided ideal I ⊂ ⊗E

generated by elements of the type X ⊗ Y − (−1)|X ||Y |Y ⊗ X, with X and
Y arbitrary homogeneous elements in E. For a given k ≥ 0, Sk(E) is the
image of ⊗kE through the quotient map ⊗E 7→ ⊗E

I
= S(E) and one has the

following decomposition

S(E) = ⊕k≥0S
k(E),

where S0(E) is simply the field K. Moreover, when all the components in
the graded space E are of finite dimension, the dual of Sk(E) is isomorphic
to Sk(E∗), for all k ≥ 0. In this case, there is a one to one correspondence
between

(i) graded symmetric k-linear maps on the graded vector space E,
(ii) linear maps from the space Sk(E) to E,
(iii) Sk(E∗)⊗ E.

Elements of the space Sk(E∗)⊗E are called symmetric vector valued k-forms.
Notice that S0(E∗)⊗E, the space of vector valued zero-forms, is isomorphic
to the space E.
Having the decomposition S(E) = ⊕k≥0S

k(E), every element in S(E) is
the sum of finitely many elements in Sk(E), k ≥ 0. We absolutely need to
consider also infinite sums, which is often referred in the literature as taking
the completion of S(E). By a formal sum, we mean a sequence φ : N

⋃
{0} →

S(E) mapping an integer k to an element ak ∈ Sk(E): we shall, by a slight
abuse of notation, denote by

∑∞
k=0 ak such an element. We denote the set

of all formal sums by S̃(E). The algebra structure on S(E) extends in an
unique manner to S̃(E). For two formal sums a =

∑∞
k=0 ak and b =

∑∞
k=0 bk

we define a+b to be
∑∞

k=0(ak+bk), while the product of a and b is the infinite

sum
∑∞

k=0 ck with ck =
∑k

i=0 ai · bk−i (with · being the product of S(E)).
When all the components in the graded space E are of finite dimension,

there is a one to one correspondence between

(i) collections indexed by k ≥ 0 of graded symmetric k-linear maps on
the graded vector space E,

(ii) collections indexed by k ≥ 0 of linear maps from Sk(E) to E,
(iii) S̃(E∗)⊗ E.

Elements of the space S̃(E∗)⊗ E are called symmetric vector valued forms
and shall be written as infinite sums

∑
Ki with Ki ∈ Si(E∗)⊗ E.
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Let E be a graded vector space, E = ⊕i∈ZEi. The insertion operator of a
symmetric vector valued k-form K is an operator

ιK : S(E∗)⊗ E → S(E∗)⊗ E

defined by

ιKL(X1, ..., Xk+l−1) =
∑

σ∈Sh(k,l−1)

ǫ(σ)L(K(Xσ(1), ..., Xσ(k)), ..., Xσ(k+l−1)),

(1)
for all L ∈ Sl(E∗) ⊗ E, l ≥ 0 and X1, · · · , Xk+l−1 ∈ E, where Sh(i, j − 1)
stands for the set of (i, j− 1)-unshuffles and ǫ(σ) is the Koszul sign which is
defined as follows

Xσ(1) ⊗ · · · ⊗Xσ(n) = ǫ(σ)X1 ⊗ · · · ⊗Xn,

for all X1, · · · , Xn ∈ E. If L is an element in S0(E∗) ⊗ E ≃ E, then (1)
should be understood as meaning that ιKL = 0, for all vector valued forms
K and

ιLK(X1, ..., Xk−1) = K(L,X1, ..., Xk−1),

for all vector valued k-form K.
Allowing L and K to be symmetric vector valued forms, that is, L =∑
i≥0Li andK =

∑
i≥0Ki, with Li andKi vector valued i-forms, the previous

definition of insertion operator extends in the obvious way.
If K is an element in Si(E∗), i.e. a linear form on Si(E), i ≥ 0, one may

define ιK by a formula similar to (1). Moreover, ιK : S̃(E∗) → S̃(E∗), with
K ∈ S̃(E∗)⊗ E, is the zero map if and only if K = 0.
Now, we define a bracket on the space S̃(E∗) ⊗ E as follows. Given a

symmetric vector valued k-form K ∈ Sk(E∗) ⊗ E and a symmetric vector
valued l-form L ∈ Sl(E∗)⊗E, the Richardson-Nijenhuis bracket of K and L

is the symmetric vector valued (k + l − 1)-form [K,L]
RN
, given by

[K,L]
RN

= ιKL− (−1)K̄L̄ιLK, (2)

where K̄ is the degree of K as a graded map, that is K(X1, · · · , Xk) ∈
E1+···+k+K̄, for all Xi ∈ Ei. For an element X ∈ E, X̄ = |X|, that is, the
degree of a vector valued 0-form, as a graded map, is just its degree as an
element of E.

Proposition 1.1. The space S̃(E∗)⊗E, equipped with the Richardson-Nijenhuis
bracket, is a graded (skew-symmetric) Lie algebra.
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If K ∈ Sk(E∗)⊗ E is a vector valued k-form, an easy computation gives

K(X1, · · · , Xk) = [Xk, · · · , [X2, [X1, K]
RN
]
RN

· · · ]
RN
, (3)

for all X1, · · · , Xk ∈ E.

In [16], the authors defined a multi-graded Richardson-Nijenhuis bracket,
in a graded vector space, but their approach is different from ours.

Next, we recall the notion of L∞-algebra, following [8].

Definition 1.2. An L∞-algebra is a graded vector space E = ⊕i∈ZEi together
with a family of symmetric vector valued forms (li)i≥1 of degree 1, with
li : ⊗iE → E satisfying the following relation:

∑

i+j=n+1

∑

σ∈Sh(i,j−1)

ǫ(σ)lj(li(Xσ(1), · · · , Xσ(i)), · · · , Xσ(n)) = 0, (4)

for all n ≥ 1 and all homogeneous X1, · · · , Xn ∈ E, where ǫ(σ) is the Koszul
sign. The family of symmetric vector valued forms (li)i≥1 is called an L∞-
structure on the graded vector space E. Usually, we denote this L∞-structure
by µ :=

∑
i≥1 li and we say, by an abuse of language, that µ has degree 1.

A slight generalization of an L∞-algebra is the so-called curved L∞-algebra.
In this case, the family of symmetric vector valued forms is (li)i≥0 that is,
there is an extra symmetric vector valued 0-form l0 ∈ E1, called the curvature,
such that l1(l0) = 0 and Equation (4) is replaced by

ln+1(l0, X1, · · · , Xn)

+
∑

i+j=n+1

∑

σ∈Sh(i,j−1)

ǫ(σ)lj(li(Xσ(1), · · · , Xσ(i)), · · · , Xσ(n)) = 0.

There is an equivalent definition of L∞-algebra in terms of graded skew-
symmetric vector valued forms l′i of degree i − 2. This was, in fact, the
original definition introduced in [15]. The equivalence of both definitions is
established by the so-called décalage isomorphism

li(X1, · · · , Xi) 7→ (−1)(i−1)|X1|+(i−2)|X2|+···+|Xi−1|l′i(X1, · · · , Xi),

X1, · · · , Xi ∈ E. The family of graded skew-symmetric brackets (l′i)i≥1 de-
fines an L∞-structure on the graded vector space E if each l′i has degree i−2
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and
∑

i+j=n+1

∑

σ∈Sh(i,j−1)

(−1)i(j−1)ǫ(σ) sign(σ)lj(li(Xσ(1), · · · , Xσ(i)), · · · , Xσ(n)) = 0,

for all n ≥ 1 and all X1, · · · , Xn ∈ E, with sign(σ) being the sign of the
permutation σ.
Next, we see that some well-known structures on (graded) vector spaces

are examples of L∞-algebras.
We start with a symmetric graded Lie algebra, which is a graded vector

space E = ⊕i∈ZEi endowed with a binary graded symmetric bracket [., .] = µ

of degree 1, satisfying the graded Jacobi identity i.e.

[X, [Y, Z]] = (−1)|X |+1[[X, Y ], Z] + (−1)(|X |+1)(|Y |+1)[Y, [X,Z]], (5)

for all homogeneous elementsX, Y, Z ∈ E. Note that when the graded vector
space is concentrated on degree −1, that is, all the vector spaces Ei are zero,
except E−1, then (5) is the usual Jacobi identity and we get a Lie algebra
with symmetric bracket. We would like to remark that (5) can be written as

µ(µ(X, Y ), Z) + (−1)|Y ||Z|µ(µ(X,Z), Y ) + (−1)|X |(|Y |+|Z|)µ(µ(Y, Z), X) = 0,
(6)

for all homogeneous elements X, Y, Z ∈ E. This means that a symmetric
graded Lie algebra is simply an L∞-algebra such that all the multi-brackets
are zero except the binary one. From this, we also conclude that a Lie algebra
is an L∞-algebra on a graded vector space concentrated on degree −1, for
which all the brackets are zero except the binary bracket.
Another special case of an L∞-algebra is a symmetric differential graded

Lie algebra. It is an L∞-structure on E = ⊕i∈ZEi, with all the brackets,
except l1 and l2, being zero. In other words, a symmetric differential graded
Lie algebra is a symmetric graded Lie algebra (⊕i∈ZEi, [., .] = l2) endowed
with a differential d = l1, that is, a linear map d : ⊕i∈ZEi → ⊕i∈ZEi of degree
1 and squaring to zero, satisfying the compatibility condition

d[X, Y ] + [d(X), Y ] + (−1)|X |[X, d(Y )] = 0,

for all homogeneous elements X, Y ∈ E. We shall denote a symmetric differ-
ential graded Lie algebra by (E, d, [., .]) or by (E, l1 + l2).
We may also consider two particular cases of a curved L∞-algebra, that

is to say, a curved symmetric graded Lie algebra and a curved symmetric
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differential graded Lie algebra. More precisely, a curved symmetric differen-
tial graded Lie algebra on a graded vector space E = ⊕i∈ZEi is a symmetric
differential graded Lie algebra (E, d, [., .]) together with an element C ∈ E1

such that:

d(C) = 0 and [C, X] + d
2X = 0, for all X ∈ E.

We shall denote the curved symmetric differential graded Lie algebra by
(E,C, d, [., .]) or by (E,C+ l1+ l2). When d = 0, the curved symmetric differ-
ential graded Lie algebra is simply a curved symmetric graded Lie algebra.
The Richardson-Nijenhuis bracket on graded vector spaces, introduced pre-

viously, is intimately related to L∞-algebras. In the next theorem, that ap-
pears in an implicit form in [21], we use the Richardson-Nijenhuis bracket to
characterize (curved) L∞-structures on a graded vector space.

Theorem 1.3. Let E = ⊕i∈ZEi be a graded vector space, (li)i≥1 : ⊗iE → E

be a family of symmetric vector valued forms on E of degree 1 and l0 ∈ E1 be
a symmetric vector valued 0-form. Set µ =

∑
i≥1 li and µ′ =

∑
i≥0 li. Then,

i) µ is an L∞-structure on E if and only if [µ, µ]
RN

= 0;
ii) µ′ is a curved L∞-structure on E if and only if [µ′, µ′]

RN
= 0.

Proof : (i) It is a direct consequence of the following equalities that can be
obtained from (1) and (2):

[µ, µ]
RN

=
∑

n≥1

(
∑

i+j=n+1

[li, lj]RN
) = 2

∑

n≥1

(
∑

i+j=n+1

ιlilj).

The proof of (ii) is easy.

Notice that for the case of symmetric graded Lie algebras, the statement
of Theorem 1.3 appears in a natural way, since equation (6) is equivalent to

1

2
(ιµµ+ ιµµ)(X, Y, Z) =

1

2
[µ, µ]

RN
(X, Y, Z) = 0.

2. Nijenhuis forms on L∞ algebras: definition and first

examples

In this section we define a Nijenhuis vector valued form with respect to
a given vector valued form µ and deformation of µ by a Nijenhuis vector
valued form. We show that deforming an L∞-structure by a Nijenhuis vector
valued form, one gets an L∞-structure. Then, we present the first examples
of Nijenhuis vector valued forms on some L∞-algebras.
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Definition 2.1. Let E be a graded vector space and µ be a symmetric vector
valued form on E of degree 1. A vector valued form N of degree zero is called

• weak Nijenhuis with respect to µ if[
µ,

[
N , [N , µ]

RN

]
RN

]
RN

= 0,

• co-boundary Nijenhuis with respect to µ if there exists a vector valued
form K of degree zero, such that

[
N , [N , µ]

RN

]
RN

= [K, µ]
RN

,

• Nijenhuis with respect to µ if there exists a vector valued form K of
degree zero, such that

[
N , [N , µ]

RN

]
RN

= [K, µ]
RN

and [N ,K]
RN

= 0.

Such a K is called a square of N . If N contains an element of the
underlying graded vector space, that is, N has a component which is
a vector valued zero form, then N is called Nijenhuis (respectively,
co-boundary Nijenhuis) vector valued form with curvature.

It is obvious that the following implications hold:

N Nijenhuis ⇒ N co-boundary Nijenhuis ⇒ N weak Nijenhuis

Remark 2.2. It would be of course tempting to choose K = ιNN in Defin-
tion 2.1, having in mind what happens for manifolds, and the fact that
ιNN = N 2 for vector valued 1-forms. However, it is not what examples
show to be a reasonable definition. Also, for N a vector valued 2-form we
do not have, in general, [ιNN ,N ]

RN
= 0, which says ιNN is not a good

candidate for the square, except maybe for vector valued 1-forms.

Proposition 2.3. Let (E, µ) be a (curved) L∞-algebra and N be a symmetric
vector valued form on E. Then N is weak Nijenhuis with respect to µ if and
only if [N , µ]

RN
is a (curved) L∞-algebra.

Proof : First we observe that [N , µ]
RN

has degree 1 if and only if the degree
of N is zero. Using the Jacobi identity, we get

[µ, [N , [N , µ]
RN
]
RN
]
RN

= [[µ,N ]
RN
, [µ,N ]

RN
]
RN

+ [N , [µ, [N , µ]
RN
]
RN
]
RN

= [[µ,N ]
RN
, [µ,N ]

RN
]
RN

= [[N , µ]
RN
, [N , µ]

RN
]
RN
,

which concludes the proof.
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Given an L∞-structure µ and a symmetric vector valued form of degree
zero N on a graded vector space, we call [N , µ]

RN
the deformation of µ by

N and denote the deformed structure by µN . When µ is deformed k times
by N , the deformed structure is denoted by µN , k...,N or simply µk if there is
no danger of confusion.

Weak Nijenhuis forms do not, in general, give hierarchies in any sense.
However, Nijenhuis forms do.

Theorem 2.4. Let N be a Nijenhuis vector valued form with respect to a
(curved) L∞-structure µ with square K, on a graded vector space E. Then,
for all integers k ≥ 1, µk is a (curved) L∞-structure on E and N is Nijenhuis
with square K, with respect to µk.

Proof : The case k = 1 follows from Proposition 2.3 together with the obser-
vation that if N is Nijenhuis, then it is also weak Nijenhuis with respect to
µ. Assume, by induction, that N is Nijenhuis with respect to µk with square
K. Then we have

[N , [N , µk]RN
]
RN

= [K, µk]RN
,

that implies

[N , [N , [N , µk]RN
]
RN
]
RN

= [N , [K, µk]RN
]
RN
. (7)

Applying the Jacobi identity on the right hand side of (7) and using the
assumption thatN and K commute with respect to the Richardson-Nijenhuis
bracket, we get

[N , [N , µk+1]RN
]
RN

= [K, µk+1]RN
.

Thus, N is Nijenhuis with respect to µk+1, with square K.

Recall from [13] that a Nijenhuis operator on a graded Lie algebra (E, µ =
[., .]) is a linear map N : E → E such that its Nijenhuis torsion with respect
to µ, defined by

TµN(X, Y ) := µ(NX,NY )−N(µ(NX, Y )+µ(X,NY )−N(µ(X, Y ))), (8)

for all X, Y ∈ E, is identically zero. For a binary bracket µ = [., .], the
deformed bracket by N is denoted by [., .]N and is given by [X, Y ]N =
[NX, Y ] + [X,NY ]−N [X, Y ]. It has been shown in [13] that if N is Nijen-
huis on a Lie algebra (E, [., .]), then (E, [., .]N) is also a Lie algebra and N is
a morphism of Lie algebras. Also, it has been shown that N is Nijenhuis if
and only if deforming the original bracket of the Lie algebra twice by N is
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equivalent to deform it once by N2, that is ([X, Y ]N)N = [X, Y ]N2. This can
be stated using the notion of Richardson-Nijenhuis bracket on the space of
vector valued forms on a graded vector space E, as follows:

[N, [N, µ]
RN
]
RN

= [N2, µ]
RN
.

So, we conclude that Nijenhuis operators in the usual and traditional sense
are, of course, Nijenhuis in our sense also.
Next, we present the first examples of Nijenhuis vector valued forms on

L∞-algebras. We start by introducing the Euler map S, the map that simply
counts the degree of homogeneous elements in a graded vector space. More
precisely, given a graded vector space E = ⊕i∈ZEi, S : E → E is defined by
S(X) = −|X|X, for all homogeneous elements X ∈ E of degree |X|.
Notice that S, as a graded map, has degree zero, S̄ = 0. By a simple

computation, using the definition of S, we get the following result.

Lemma 2.5. Let E = ⊕i∈ZEi be a graded vector space. Then,

[S, α]
RN

= ᾱ α,

for every symmetric vector valued form α on E of degree ᾱ.

Proposition 2.6. Let µ be a vector valued form of degree 1 on a graded
vector space E = ⊕i∈ZEi. The Euler map S is a Nijenhuis vector valued
form with respect to µ with square S.

Proof : Let µ =
∑∞

i=1 li. Applying Lemma 2.5 to each li, 1 ≤ i ≤ ∞, and
taking the sum we get:

[S, µ]
RN

=
∞∑

i=1

[S, li]RN
=

∞∑

i=1

li = µ.

Therefore
[S, [S, µ]

RN
]
RN

= [S, µ]
RN
.

Since S̄ = 0, Lemma 2.5 implies that [S, S]
RN

= 0 and this completes the
proof.

Of course, the result can be enlarged for every µ-cocycle, that is, a vector
valued form η such that [µ, η]

RN
= 0.

Proposition 2.7. Let µ =
∑

i≥1 li be a vector valued form of degree 1 on a

graded vector space E. Then, for every element α of degree 0 in S̃(E∗)⊗ E

with [µ, α]
RN

= 0, S + α is Nijenhuis with respect to µ, with square S.
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Next, we give some examples of Nijenhuis forms on symmetric graded and
symmetric differential graded Lie algebras. For that, we need to introduce
the notions of Maurer Cartan and Poisson elements.
A Maurer Cartan element in a symmetric differential graded Lie algebra

(E, d, [., .]) is an element e ∈ E0 such that

d(e)−
1

2
[e, e] = 0.

A Maurer Cartan element in a symmetric curved differential graded Lie al-
gebra (E, C, d, [., .]) is an element e ∈ E0 such that

(d(e)− C)−
1

2
[e, e] = 0.

A Poisson element in a curved L∞-algebra (E, µ =
∑

i≥0 li) is an element
π ∈ E0, such that l2(π, π) = 0.
The next propositions provide examples of Nijenhuis vector valued forms

on symmetric graded Lie algebras and symmetric differential graded Lie al-
gebras.

Proposition 2.8. Let µ = C + l2 be a curved symmetric graded Lie algebra
structure on a graded vector space E = ⊕i∈ZEi and π ∈ E0. Then, N = π+S

is a Nijenhuis vector valued form (with curvature π) with respect to µ and
with square 2π + S if, and only if, π is a Poisson element.
In this case, the deformed structure is the curved symmetric differential

graded Lie algebra (E,C+ l2(π, .) + l2).

Proof : The proof of the equivalence is a direct consequence of the following
equalities:

[π + S,C+ l2]RN
= l2(π, .) + C+ l2, (9)

[π + S, [π + S,C+ l2]RN
]
RN

= l2(π, π) + C+ 2l2(π, .) + l2
= l2(π, π) + [2π + S,C+ l2]RN

and

[π + S, 2π + S]
RN

= 2[π, π]
RN

+ [π, S]
RN

+ 2[S, π]
RN

+ [S, S]
RN

= 0,

where we used [π, S]
RN

= [S, π]
RN

= 0. The last statement follows directly
from (9) and Theorem 2.4.
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Proposition 2.9. Let µ = C+l1+l2 be a curved symmetric differential graded
Lie algebra structure on a graded vector space E = ⊕i∈ZEi and π ∈ E0. Then,
N = π+S is a Nijenhuis vector valued form (with curvature π) with respect
to µ and with square 2π + S if, and only if, π is a Poisson element.
In this case, the deformed structure is the curved symmetric differential

graded Lie algebra (E, (C+ l1(π)) + (l1 + l2(π, .)) + l2).

Proof : The proof of the equivalence follows from:

[π + S,C+ l1 + l2]RN
= C+ l1(π) + (l2(π, .) + l1) + l2, (10)

[π + S, [π + S,C+ l1 + l2]RN
]
RN

= [π + S,C+ l1 + l2 + l1(π) + l2(π, .)]RN

= C+ l1 + l2 + 2l1(π) + 2l2(π, .) + l2(π, π)
= [2π + S,C+ l1 + l2]RN

+ l2(π, π)

and

[π + S, 2π + S]
RN

= 2[π, π]
RN

+ [π, S]
RN

+ 2[S, π]
RN

+ [S, S]
RN

= 0.

The last statement follows directly from (10) and Theorem 2.4.

Notice that, in Proposition 2.9, if we start with a symmetric differential
graded Lie algebra without curvature, that is, if C = 0, then, the deformed
structure is a curved symmetric differential graded Lie algebra with curvature
l1(π).

Proposition 2.10. Let µ = C + l1 + l2 be a curved symmetric differential
graded Lie algebra structure on a graded vector space E = ⊕i∈ZEi and π ∈ E0.
Then, N = IdE+π is a Nijenhuis vector valued form (with curvature π) with
respect to µ and with square IdE + π if, and only if, π is a Maurer-Cartan
element.
In this case, the deformed structure is the curved symmetric differential

graded Lie algebra (E, (l1(π)− C) + l2(π, .) + l2).

Proof : First notice that

[π + IdE,C+ l1 + l2]RN
= (l1(π)− C) + l2(π, .) + l2 (11)
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and

[π + IdE, [π + IdE,C+ l1 + l2]RN
]
RN

= l2(π, π) + l2(π, .)− l1(π) + C+ l2

= −C− 2((l1(π)− C)−
1

2
l2(π, π)) + l1(π) + l2(π, .) + l2

= −2((l1(π)− C)−
1

2
l2(π, π)) + [π + IdE,C+ l1 + l2]RN

.

This, together with the fact that [π+IdE, π+IdE]RN
= 0, imply that IdE+π

is a Nijenhuis vector valued form with respect to µ if, and only if, π is
a Maurer-Cartan element of the curved symmetric differential graded Lie
algebra (E, µ). The last statement follows from (11) and Theorem 2.4.

3. Nijenhuis forms on Lie n-algebras

Lie n-algebras are particular cases of L∞-algebras for which only n + 1
brackets may be non-zero. We define Nijenhuis forms for this special case and
we analyze, in particular, the Lie n-algebra defined by an n-plectic manifold.
A graded vector space E = ⊕i∈ZEi is said to be concentrated in degrees

p1, · · · pk, with p1, · · · , pk ∈ Z, if Ep1, · · · , Epk are the only non-zero compo-
nents of E.

Definition 3.1. A symmetric Lie n-algebra is a symmetric L∞-algebra whose
underlying graded vector space is concentrated on degrees −n, · · · ,−1.

Remark 3.2. Note that by degree reasons, the only non-zero symmetric vector
valued forms (multi-brackets) are l1, · · · , ln+1.

Proposition 3.3. Let (E = E−n ⊕ · · · ⊕ E−1, µ = l1 + · · · + ln+1) be a Lie
n-algebra. Let k be an integer such that n+3

2
≤ k ≤ n + 1 and N be any

symmetric vector valued k-form of degree zero on E. Then, N = S +N is a
Nijenhuis vector valued form with respect to µ, with square S + 2N , and the
deformed Lie n-algebra structure on E is of the form

µN = l1 + · · ·+ lk−1 + (lk + [N, l1]RN
) + · · ·+ (ln+1 + [N, ln−k+2]RN

).

Proof : By Remark 3.2, any vector valued (m+k−1)-form, withm ≥ n−k+3,
is identically zero; hence

[N, lm]RN
= 0, (12)

for all m ≥ n−k+3. Also, any vector valued (2k+m−2)-form, with m ≥ 1,
is identically zero because, from the conditions n+3

2 ≤ k ≤ n+ 1 and m ≥ 1,
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we get 2k +m− 2 ≥ n+ 2. Thus,

[N, [N, lm]RN
]
RN

= 0, (13)

for all m ≥ 1. From Equations (12) and (13), we get

[S +N, µ]
RN

= µ+ [N, l1]RN
+ · · ·+ [N, ln−k+2]RN

(14)

and

[S +N, [S +N, µ]
RN
]
RN

= µ+ 2[N, l1]RN
+ · · ·+ 2[N, ln−k+2]RN

. (15)

On the other hand, using Lemma 2.5, we have

[S +N, S + 2N ]
RN

= 0. (16)

Equations (15) and (16) show that N = S +N is a Nijenhuis vector valued
form with respect to µ, with square S + 2N , and Equation (14) shows that
the deformed Lie n-algebra structure is

µN = l1 + · · ·+ lk−1 + (lk + [N, l1]RN
) + · · ·+ (ln+1 + [N, ln−k+2]RN

).

Proposition 3.3 admits the following generalization.

Proposition 3.4. Let (E = E−n ⊕ · · · ⊕ E−1, µ = l1 + · · · + ln+1) be a Lie
n-algebra. Let N1, · · · , Nl be a family of symmetric vector valued k1, · · · , kl-
forms, respectively, of degree zero on E, with n+3

2
≤ k1 ≤ · · · ≤ kl ≤ n + 1.

Then, N = S +
∑l

i=1Ni is a Nijenhuis vector valued form with respect to µ,

with square S + 2
∑l

i=1Ni. The deformed Lie n-algebra structure is
[
S +

∑l
i=1Ni, µ

]
RN

= µ+
[∑l

i=1Ni, l1

]
RN

+· · ·+
[∑l

i=1Ni, ln−kl+2

]
RN

+
[∑

i 6=lNi, ln−kl+3

]
RN

+· · ·+
[∑

i 6=lNi, ln−kl−1+2

]
RN

+
[∑

i 6=l,l−1Ni, ln−kl+3

]
RN

+· · ·+
[∑

i 6=l,l−1Ni, ln−kl−1+2

]
RN

+ · · ·+
+ [N1, ln−k2+3]

RN
+· · ·+[N1, ln−k1+2]

RN
.

Proof : Let 1 ≤ i, j ≤ l. By Remark 3.2, any vector valued (m+ki−1)-form,
with m ≥ n− ki + 3, is identically zero; hence,

[Ni, lm]
RN

= 0, (17)
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for all m ≥ n− ki + 3. Also, any vector valued (ki + kj +m− 2)-form, with
m ≥ 1 is identically zero, because out of the conditions n+3

2 ≤ k1 ≤ · · · ≤
kl ≤ n+ 1 and m ≥ 1 we get ki + kj +m− 2 ≥ n+ 2. Thus,

[
Ni, [Nj, lm]

RN

]
RN

= 0, (18)

for all m ≥ 1. From Equations (17) and (18), we get
[
S +

∑l
i=1Ni, µ

]
RN

= µ+
[∑l

i=1Ni, l1

]
RN

+· · ·+
[∑l

i=1Ni, ln−kl+2

]
RN

+
[∑

i 6=lNi, ln−kl+3

]
RN

+· · ·+
[∑

i 6=lNi, ln−kl−1+2

]
RN

+
[∑

i 6=l,l−1Ni, ln−kl+3

]
RN

+· · ·+
[∑

i 6=l,l−1Ni, ln−kl−1+2

]
RN

+ · · ·+
+ [N1, ln−k2+3]

RN
+· · ·+[N1, ln−k1+2]

RN

and[
S +

l∑

i=1

Ni,

[
S +

l∑

i=1

Ni, µ

]

RN

]

RN

=µ+2

[
l∑

i=1

Ni, µ

]

RN

=

[
S + 2

l∑

i=1

Ni, µ

]

RN

It follows from the conditions n+3
2 ≤ k1 ≤ · · · ≤ kl ≤ n + 1 that, for 1 ≤

i, j ≤ l, we have ki+kj−1 ≥ n+2. Hence, [Ni, Nj]
RN

= 0 for all 1 ≤ i, j ≤ l,
which implies that

[
S +

l∑

i=1

Ni, S + 2

l∑

i=1

Ni

]

RN

= 0.

Remark 3.5. In Proposition 3.4 one may replace each vector valued ki-form
Ni by a family of symmetric vector valued ki-forms.

Next, we consider a particular class of Lie n-algebras, those associated to
n-plectic manifolds. Let us recall some definitions from [19].

Definition 3.6. An n-plectic manifold is a manifold M equipped with a
non-degenerate and closed (n+ 1)-form ω. It is denoted by (M,ω).

An (n−1)-form α on an n-plectic manifold (M,ω) is said to be a Hamilton-
ian form if there exists a smooth vector field χα on M such that dα = −ιχα

ω.
The vector field χα is called the Hamiltonian vector field associated to α. The



NIJENHUIS FORMS ON L∞-ALGEBRAS 17

space of all Hamiltonian forms on an n-plectic manifold (M,ω) is denoted
by Ωn−1

Ham(M).
Given two Hamiltonian forms α, β on an n-plectic manifold (M,ω), with

Hamiltonian vector fields χα and χβ, respectively, one may define a bracket
{., .} by setting

{α, β} := ιχα
ιχβ

ω.

It turns out that {α, β} is a Hamiltonian form with associated Hamiltonian
vector field [χα, χβ], see [19].
Following [19], we may associate to an n-plectic manifold (M,ω) a sym-

metric Lie n-algebra.

Theorem 3.7. Let (M,ω) be an n-plectic manifold. Set

Ei =

{
Ωn−1

Ham(M), if i = −1,

Ωn+i(M), if − n ≤ i ≤ −2

and E = ⊕−1
i=−nEi. Let the collection lk : E × k. . . × E → E, k ≥ 1, of

symmetric multi-linear maps be defined as

l1(α) =

{
(−1)|α|dα, if α 6∈ E−1,

0, if α ∈ E−1,

lk(α1, · · · , αk) =

=





0, if αi 6∈ E−1 for some 0 ≤ i ≤ k,

(−1)
k
2+1ιχα1

· · · ιχαk
ω, if αi ∈ E−1 for all 0 ≤ i ≤ k and k is even,

(−1)
k−1
2 ιχα1

· · · ιχαk
ω, if αi ∈ E−1 for all 0 ≤ i ≤ k and k is odd,

for k ≥ 2, where χαi
is the Hamiltonian vector field associated to αi. Then,

(E, (lk)k≥1) is a symmetric Lie n-algebra.

Proof : In [19], an L∞-algebra is defined to be a graded vector space L

equipped with a collection lk : L
⊗k

→ L of skew-symmetric maps, with l̄k =
k−2, satisfying a relation so called graded Jacobi identity. However, by trans-
lations of degrees in the graded vector space as Li → L−i, it is equivalent
to say an L∞-algebra is a graded vector space L equipped with a collection
{lk : L⊗k

→ L} of skew-symmetric maps, with l̄k = 2 − k, satisfying a cer-
tain graded Jacobi identity. Now, it is enough to shift, by 1, the degrees
of the graded vector space in Theorem 3.14. in [19] and use the décalage
isomorphism to get the desired result.
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In the next proposition we give an example of a Nijenhuis vector valued
form, with respect to the L∞-algebra (Lie n-algebra) structure associated to
a given n-plectic manifold, which is the sum of a symmetric vector valued
1-form with a symmetric vector valued i-form, with i = 2, · · · , n.

Proposition 3.8. Let (M,ω) be an n-plectic manifold with the associated
symmetric Lie n-algebra structure µ = l1 + · · · + ln+1. For any n-form η on
the manifold M , and any i = 2, . . . , n, define η̃i to be the symmetric vector
valued i-form of degree zero given by

η̃i(β1, · · · , βi) =

{
ιχβ1

· · · ιχβi
η, if βi ∈ E−1,

0, otherwise,
(19)

where χβ1
, · · · , χβn

are the Hamiltonian vector fields of β1, · · · , βn, respec-
tively. Then, S + η̃i is a Nijenhuis vector valued form with respect to µ, with
square S + 2η̃i. The deformed structure is

[S + η̃i, µ]RN
= µ+ [η̃i, l1]RN

+ [η̃i, l2]RN
.

The proof of Proposition 3.8 is based on the following lemma.

Lemma 3.9. For all 2 ≤ i ≤ n, and all homogeneous elements α1, · · · , αi ∈
E, we have:

(1) η̃i(l1(α1), α2, · · · , αi) = 0,

(2) [η̃i, lm]RN
=





0, m ≥ 3

−ιl2η̃i, m = 2

d ◦ η̃i, m = 1

(3) [η̃i, [η̃i, lm]RN
]
RN

= 0, m ≥ 1.

Proof : We start by noticing that from its definition, η̃i vanishes on ⊕−2
i=−nEi

and Im η̃i ⊂ E−i, i ≥ 2. So, to prove item (1), the only case we have
to investigate is when α1 ∈ E−2 and l1(α1), α2, · · · , αi are all Hamiltonian
forms. Let χl1(α1) be the Hamiltonian vector field associated to l1(α1). Then,
we have

ιχl1(α1)
ω = −d(l1(α1)) = −d

2α1 = 0,

thus χl1(α1) = 0, by the non-degeneracy of ω. This proves item (1).
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Let us now compute [η̃i, lm]RN
. When m ≥ 3, from the definitions of lm and

η̃i, we get

lm(η̃i(α1, · · · , αi), · · · , αm+i−1) = 0

and

η̃i(lm(α1, · · · , αm), · · · , αm+i−1) = 0,

for all α1, · · · , αi+m−1 ∈ E, i ≥ 2, so that [η̃i, lm]RN
= 0. Since η̃i takes

value in E−i, we have ιη̃il2 = 0, hence [η̃i, l2]RN
= −ιl2 η̃i. From item (1) and

definition of η̃i we get [η̃i, l1]RN
= d ◦ η̃i.

Last, we prove item (3). For m ≥ 3, [η̃i, [η̃i, lm]RN
]
RN

= 0 is a direct
consequence of item (2). The case m = 2 follows from the fact that η̃i does
not take value in E−1, so l2(η̃i(α1, · · · , αi), αi+1) = 0, for all α1, · · · , αi+1 ∈ E.
Hence, using item (2) we get

ιη̃i[η̃i, l2]RN
= 0 and ι[η̃i,l2]RN

η̃i = 0,

which gives [η̃i, [η̃i, l2]RN
]
RN

= 0. Similar arguments as those used above prove
that [η̃i, [η̃i, l1]RN

]
RN

= 0.

Proof : (of Proposition 3.8) From Lemma 3.9 we have

[S + η̃i, µ]RN
= µ+ [η̃i, l1]RN

+ [η̃i, l2]RN
(20)

and applying [S + η̃i, .]RN
to both sides of Equation (20), we get

[S + η̃i, [S + η̃i, µ]RN
]
RN

= µ+ 2[η̃i, l1]RN
+ 2[η̃i, l2]RN

= [S + 2η̃i, µ]RN
.

Now, the equation

[S + η̃i, S + η̃i]RN
= 0,

holds, for all i ≥ 2, as a consequence of ιη̃iη̃i = 0.

From Proposition 3.8 we immediately get the following result.

Theorem 3.10. Let η be an arbitrary n-form on an n-plectic manifold (M,ω).
Let (E = E−n ⊕ · · · ⊕ E−1, µ = l1 + · · · + ln+1) be the Lie n-algebra associ-
ated to (M,ω). For each 2 ≤ i ≤ n, define the maps η̃i as in (19). Then,
N := S +

∑n
i=2 η̃i is a Nijenhuis vector valued form with respect to the Lie

n-algebra structure µ, with square S + 2
∑n

i=2 η̃i. Moreover, the deformed

structure is of the form [N , µ]
RN

=
∑n+1

i=1 lNi , with lNi being the component in
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the vector valued form [N , µ]
RN

which is a vector valued i-form, and is given
by:

lNi =

{
l1, for i = 1,

li + d ◦ η̃i − ιl2 η̃i−1, for i ≥ 2.

A special case of the previous theorem is considered in the next proposition.

Proposition 3.11. Let (M,ω) be an n-plectic manifold and α a Hamiltonian
form on (M,ω). For each 2 ≤ i ≤ n, define the maps α̃i as

α̃i(β1, · · · , βi) =

{
ιχα

ιχβ1
· · · ιχβi

ω, if βk ∈ E−1 for all 1 ≤ k ≤ i,

0, otherwise

where χα, χβ1
, · · · , χβi

are the Hamiltonian vector fields associated to the
Hamiltonian forms α, β1, · · · , βi, respectively. Then, S +

∑n
i=2 α̃i is a Ni-

jenhuis vector valued form with respect to the Lie n-algebra structure µ =
l1 + · · ·+ ln+1, associated to the n-plectic manifold (M,ω).

Theorem 3.10 can be easily generalized if, instead of taking one n-form on
the manifold M , we take a family of n-forms on M .

Theorem 3.12. Let (ηj)j≥1 be a family of n-forms on an n-plectic manifold
(M,ω). Let (E = E−n ⊕ · · · ⊕ E−1, µ = l1 + · · · + ln+1) be the Lie n-algebra
associated to (M,ω). For each 2 ≤ i ≤ n, define the vector valued i-forms

(̃ηj)i as

(̃ηj)i(β1, · · · , βi) =

{
ιχβ1

· · · ιχβi
ηj, if βk ∈ E−1 for all 1 ≤ k ≤ i,

0, otherwise

where χβ1, · · · , χβi
are the Hamiltonian vector fields associated to the Hamil-

tonian forms β1, · · · , βi, respectively. Then, N := S +
∑

j≥1

∑n
i=2 (̃η

j)i is a
Nijenhuis vector valued form with respect to the Lie n-algebra structure µ.

4. The case of Lie 2-algebras

In this section we treat the case of Lie 2-algebras. We show how to construct
Nijenhuis forms with respect to Lie 2-algebras, which are the sum of a vector
valued 1-form with a vector valued 2-form.
We start by recalling that a Lie 2-algebra is a pair (E, µ), where E is a

graded vector space with degrees concentrated in −2 and −1, that is E =
E−2 ⊕ E−1, and µ = l1 + l2 + l3 with l1, l2 and l3 being symmetric vector
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valued 1-form, 2-form and 3-form, respectively, all of them of degree 1. By
degree reasons, the brackets l1 and l3 are not identically zero in the following
cases:

l1 : E−2 → E−1, l3 : E−1 × E−1 × E−1 → E−2,

while the binary bracket l2 has two parts

l2|E−1×E−2
: E−1 × E−2 → E−2, l2|E−1×E−1

: E−1 × E−1 → E−1.

The equation [µ, µ]
RN

= 0 gives the following relations (by degree reasons,
all the missing cases are identically zero):

[l1, l2]RN
(f, g) = 0, (21)

[l1, l2]RN
(X, f) = 0, (22)

(2[l1, l3]RN
+ [l2, l2]RN

) (X, Y, f) = 0, (23)

(2[l1, l3]RN
+ [l2, l2]RN

)(X, Y, Z) = 0, (24)

[l2, l3]RN
(X, Y, Z,W ) = 0, (25)

with X, Y, Z,W ∈ E−1 and f, g ∈ E−2.
Let us set

l1 = ∂, l3 = ω (26)

and, for all X, Y ∈ E−1 and f ∈ E−2,

l2|E−1×E−1
(X, Y ) = [X, Y ]2 and l2|E−1×E−2

(X, f) = χ(X)f, (27)

with χ : E−1 → End(E−2). Then, we have:

Lemma 4.1. A vector valued form µ = l1+ l2+ l3, with associated quadruple
(∂, χ, [., .]2, ω) given by (26) and (27), is a Lie 2-algebra structure on E =
E−2 ⊕ E−1 if and only if

χ(∂f)g = −χ(∂g)f, (28)

[X, ∂f ]2 = ∂(χ(X)f), (29)

χ([X, Y ]2)f + χ(Y )χ(X)f − χ(X)χ(Y )f + ω(X, Y, ∂f) = 0, (30)

[[X, Y ]2, Z]2 + c.p. = ∂(ω(X, Y, Z)), (31)

χ(W )ω(X, Y, Z)− χ(Z)ω(X, Y,W ) + χ(Y )ω(X,Z,W )

−χ(X)ω(Y, Z,W ) =

−ω([X, Y ]2, Z,W ) + ω([X,Z]2, Y,W )− ω([X,W ]2, Y, Z)

−ω([Y, Z]2, X,W ) + ω([Y,W ]2, X, Z)− ω([Z,W ]2, X, Y ), (32)

for all X, Y, Z,W ∈ E−1 and f ∈ E−2.
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Proof : We have the following equivalences, by applying the definition of
Richardson-Nijenhuis bracket: (21) ⇔ (28), (22) ⇔ (29), (23) ⇔ (30),
(24) ⇔ (31) and (25) ⇔ (32).

The quadruple (∂, χ, [., .]2, ω) of Lemma 4.1 is the quadruple associated to
the Lie 2-algebra structure µ = l1 + l2 + l3.
There is an associated Chevalley-Eilenberg differential to each Lie 2-algebra.

Before giving its definition, we need the next lemma.

Lemma 4.2. Let (E = E−2 ⊕ E−1, µ = l1 + l2 + l3) be a Lie 2-algebra with
corresponding quadruple (∂, χ, [., .]2, ω) and η ∈ Sk(E∗)⊗E be a vector valued
k-form of degree k − 2. Then,

[η, l2]RN
(X0, . . . , Xk) =

k∑

i=0

(−1)iχ(Xi)η(X0, · · · , X̂i, · · · , Xk)

+
∑

0≤i<j≤k

(−1)i+jη([Xi, Xj]2, X0, · · · , X̂i, · · · , X̂j, · · · , Xk),

(33)

for all X0, . . . , Xk ∈ E−1 , where X̂i means the absence of Xi.

Proof : By degree reasons, η has to be of the form η : E−1× k. . .×E−1 → E−2.
Using the Richardson-Nijenhuis bracket definition one gets Equation (33).

Definition 4.3. Let E = E−2⊕E−1 be a graded vector space concentrated on
degrees −2 and −1, Sk(E) ⊂ Sk(E∗) ⊗ E be the subspace of all symmetric
vector valued k-forms of degree k − 2 and S•(E) := ⊕k≥1Sk(E). Let χ :
E−1 → End(E−2) be a representation of vector spaces and [., .] : E−1 ×
E−1 → E−1 a graded symmetric bilinear map. Then, the Chevalley-Eilenberg
differential dCE is the map

d
CE : S•(E) → S•(E)

such that, if η ∈ Sk(E), then d
CEη ∈ Sk+1(E) is defined by

d
CEη(X0, . . . , Xk) =

k∑

i=0

(−1)iχ(Xi)η(X0, · · · , X̂i, · · · , Xk)

+
∑

0≤i<j≤k

(−1)i+jη([Xi, Xj], X0, · · · , X̂i, · · · , X̂j, · · · , Xk),

for all X0, . . . , Xk ∈ E−1, where X̂i means for the absence of Xi.
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In general, the operator dCE does not square to zero. However, according
to Lemma 4.2 it can be written as

d
CE = [., l2]RN

,

and we get, from the graded Jacobi identity of the Richardson-Nijenhuis
bracket, that dCE squares to zero if and only if [l2, l2]RN

= 0.
Next, we explain how a crossed module of Lie algebras can be seen as a

Lie 2-algebra. Let us first recall the definition of a crossed module of Lie
algebras [24]:

Definition 4.4. A crossed module of Lie algebras (g, [., .]g) and (h, [., .]h) is
a homomorphism ∂ : g → h together with an action by derivation of h on g,
that is, a linear map χ : h → Hom(g, g) such that

∂(χ(h)g) = [h, ∂(g)]h, for all g ∈ g, h ∈ h (34)

and

χ(∂(g1))g2 = [g1, g2]
g, for all g1, g2 ∈ g. (35)

Such a crossed module will be denoted by (g, h, ∂, χ).

From a Lie 2-algebra with vanishing vector valued 3-form, we may get a
crossed module of Lie algebras.

Proposition 4.5. Let (E = E−2 ⊕ E−1, µ = l1 + l2 + l3) be a Lie 2-algebra,
with corresponding quadruple (∂, χ, [., .]2, ω) given by (26) and (27). If ω = 0,
then (E−2, E−1, ∂, χ) is a crossed module of Lie algebras.

Proposition 3.3 provides the construction of Nijenhuis forms on Lie n-
algebras. However, for the case n = 2, that proposition does not give the
possibility of having a Nijenhuis vector valued 2-form. We intend to give
an example of Nijenhuis vector valued form with respect to a Lie 2-algebra
structure µ on a graded vector space E−2 ⊕ E−1 which is not purely a 1-
form, i.e. not just a collection of maps from Ei to Ei, i = 1, 2. As we have
mentioned before, elements of degree zero in S̃(E∗)⊗E are necessarily of the
form N + α with N : E → E a linear endomorphism preserving the degree
and α : E × E → E a symmetric vector valued 2-form of degree zero.

Theorem 4.6. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a graded
vector space E = E−2⊕E−1 and α a symmetric vector valued 2-form of degree
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zero. Then, S + α is a Nijenhuis vector valued form with respect to µ, with
square of S + 2α, if and only if

α(l1(α(X, Y )), Z) + c.p. = 0,

for all X, Y, Z ∈ E−1.

Proof : By degree reasons, the only case where the vector valued 3-form
[α, [α, l1]RN

]
RN

is not identically zero is when it is evaluated on elements of
E−1. In this case, we get

[α, [α, l1]RN
]
RN
(X, Y, Z) = [α, l1]RN

(α(X, Y ), Z) + c.p.

−α([α, l1]RN
(X, Y ), Z) + c.p.

= −2α(l1(α(X, Y )), Z) + c.p.,

(36)

for all X, Y, Z ∈ E−1. Again by degree reasons, [α, [α, l2]RN
]
RN

and [α, l3]RN

are identically zero. So, we have

[S + α, [S + α, l1 + l2 + l3]RN
]
RN

=

= [S + α, l1 + l2 + l3 + [α, l1]RN
+ [α, l2]RN

]
RN

= l1 + l2 + l3 + 2[α, l1]RN
+ 2[α, l2]RN

+ [α, [α, l1]RN
]
RN

= [S + 2α, l1 + l2 + l3]RN
+ [α, [α, l1]RN

]
RN
. (37)

On the other hand, Lemma 2.5 and Equation (2) imply that

[S + α, S + 2α]
RN

= 0. (38)

Equations (36), (37) and (38) show that S + α is a Nijenhuis vector valued
form with respect to µ, with square S+2α, if and only if α(l1(α(X, Y )), Z)+
c.p. = 0, for all X, Y, Z ∈ E−1.

Corollary 4.7. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a graded
vector space E = E−2 ⊕ E−1, with l1 = 0. Then, for every vector valued
2-form α of degree zero, S+α is a Nijenhuis vector valued form with respect
to µ, with square S + 2α.

Combining Theorems 4.6 and 2.4 we get the following proposition.

Proposition 4.8. Let µ = l1 + l2 + l3 be a Lie 2-algebra structure on a
graded vector space E = E−2 ⊕ E−1. Let α be a vector valued 2-form of de-
gree zero such that α(l1(α(X, Y )), Z) + c.p. = 0, for all X, Y, Z ∈ E−1. Let
µk stand for the vector valued form defined by µk = [S + α, [S + α, · · · , [S +
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α, µ]
RN

· · · ]
RN
]
RN
, with k copies of S + α. Then, S + α is a Nijenhuis vec-

tor valued form with respect to all the terms of the hierarchy of successive
deformations µk, with square S + 2α.

If µ = l1+l2+l3 is a Lie 2-algebra on E = E−2⊕E−1 with l1 = 0, then [., .]2,
given by (27), is a Lie bracket on E−1. Also, the condition [l2, l3]RN

= 0 means
that l3 is a Chevalley-Eilenberg-closed 3-form of this Lie algebra E−1 valued
in E−2. This kind of Lie 2-algebras are usually called string Lie algebras. A
Lie 2-algebra (E−2 ⊕ E−1, l1 + l2 + l3) with l2 = l3 = 0 and l1 invertible, is
called a trivial Lie 2-algebra. The next example is an application of Theorem
4.6 to a trivial Lie 2-algebra.

Example 4.9. Let g be a vector space and [., .]g be a skew-symmetric bilinear
map on g. Let E−1 := {−1}× g, E−2 := {−2}× g and let ∂ : E−2 → E−1 be
given by (−2, x) 7→ (−1, x). Define α : E−1×E−1 → E−2 to be vector valued
2-form on the graded vector space E = E−2 ⊕ E−1 as ((−1, x), (−1, y)) 7→
(−2, [x, y]g). Then, as a direct consequence of Theorem 4.6, we have that
S + α is Nijenhuis with respect to ∂ if and only if [., .]g is a Lie bracket.

Let us now look at the deformed Lie 2-algebra structure.

Proposition 4.10. Let µ = l1+l2+l3 be a Lie 2-algebra structure on a graded
vector space E = E−2⊕E−1, with associated quadruple (∂, [., .]2, χ, ω). Let α
be a symmetric vector valued 2-form of degree zero on E and set N = S+α.
The deformed structure µN is associated to the quadruple (∂ ′, [., .]′2, χ

′, ω′):

∂ ′f = ∂f,

[X, Y ]′2 = [X, Y ]2 + ∂(α(X, Y )),
χ′(X)f = χ(X)f − α(∂f,X),

ω′(X, Y, Z) = ω(X, Y, Z) + d
CEα(X, Y, Z),

(39)

for all X, Y, Z ∈ E−1 and f ∈ E−2.

Proof : The statement follows from the following easy relations:

[S + α, µ]
RN

= l1 + (l2 + [α, l1]RN
) + (l3 + [α, l2]RN

);
[α, l1]RN

(X, Y ) = l1(α(X, Y )), for all X, Y ∈ E−1;
[α, l1]RN

(X, f) = −α(l1(f), X), for all X ∈ E−1, f ∈ E−2;
[α, l2]RN

= d
CEα.
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Notice that, in the case of Proposition 4.10, the vector valued form S − α

has the inverse effect of S + α, that is, [S − α, [S + α, µ]
RN
]
RN

= µ.
As we have seen previously, string Lie algebras on E−2 ⊕ E−1 are in one

to one correspondence with Lie algebra structures on g := E−1 together
with a representation of the Lie algebra g on the vector space V := E−2

and a Chevalley-Eilenberg 3-cocycle ω for this representation. Hence, we
denote string Lie algebras as triples (g, V, ω). According to Proposition 4.8,
the deformation of a string Lie algebra (g, V, ω) by S + α, just amounts to
change the 3-cocycle ω into ω+d

CEα. So that, for string Lie algebras, adding
up a coboundary, i.e., changing (g, V, ω) into (g, V, ω+ d

CEα) can be seen as
a Nijenhuis transformation by S + α.

A Lie 2-subalgebra of a Lie 2-algebra (E = E−2 ⊕ E−1, µ = l1 + l2 + l3)
is a Lie 2-algebra (E ′ = E ′

−2 ⊕ E ′
−1, µ

′ = l′1 + l′2 + l′3) with E ′
−2 ⊂ E−2 and

E ′
−1 ⊂ E−1 vector subspaces,

l′1 = l1|E′, l′2 = l2|E′×E′ and l′3 = l3|E′×E′×E′.

Let us now investigate Lie 2-algebras structures for which χ = 0. There
may be quite a few such Lie 2-algebras but we are going to show that, after
a Nijenhuis transformation of the form S + α, such Lie 2-algebras will be
decomposed as a direct sum of a string Lie algebra with a trivial Lie 2-
algebra.

Proposition 4.11. Given a Lie 2-algebra structure l1 + l2 + l3 on a graded
vector space E = E−2⊕E−1 and corresponding quadruple (∂, [., .]2, χ, ω), with
χ = 0, there exists a Nijenhuis form S + α, with α a vector valued 2-form of
degree zero, such that the deformed bracket [S + α, l1 + l2 + l3] is the direct
sum of a string Lie 2-algebra with a trivial L∞-algebra.

Proof : We set Et
−1 := Im(∂), Es

−2 := Ker(∂) and we choose two subspaces
Et

−2 ⊂ E−2 and Es
−1 ⊂ E−1 such that the following are direct sums: Et

−2 ⊕
Es

−2 = E−2 and Et
−1 ⊕ Es

−1 = E−1. Since χ = 0, by (29), the bracket [., .]2
vanishes on E−1×Et

−1; so that, there exists a unique skew-symmetric bilinear
map α : E−1 × E−1 → Et

−2 such that

∂α(X, Y ) = −prEt
−1
([X, Y ]2), for all X, Y ∈ E−1,

where prEt
−1

stands for the projection on Et
−1 with respect to Es

−1. Note that

α(X, Y ) = 0 if X or Y belong to Et
−1, therefore we have α(∂α(X, Y ), Z) = 0,
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for all X, Y, Z ∈ E−1. Hence, by Theorem 4.6, S + α is Nijenhuis form
with square S + 2α. We claim that, for the deformed bracket l′1 + l′2 + l′3 :=
[S + α, l1 + l2 + l3]RN

, (Es
−1 ⊕Es

−2, l
′s
1 + l′s2 + l′s3 ) and (Et

−1 ⊕Et
−2, l

′t
1 + l′t2 + l′t3 )

are Lie 2-subalgebras of (E = E−2 ⊕ E−1, µ = l1 + l2 + l3), where l′si and
l′ti stand for the restrictions of l′i to Es

−1 ⊕ Es
−2 and Et

−1 ⊕ Et
−2, respectively.

We also claim that (Es
−1 ⊕ Es

−2, l
′s
1 + l′s2 + l′s3 ) is a string Lie 2-algebra while

(Et
−1 ⊕Et

−2, l
′t
1 + l′t2 + l′t3 ) is a trivial Lie 2-algebra, and that their direct sum

is isomorphic to (E−2 ⊕ E−1, l
′
1 + l′2 + l′3).

Let (∂ ′, [., .]′, χ′, ω′) stand for the corresponding quadruple associated to the
deformed structure l′1+ l′2+ l′3. From [l1, l2]RN

= 0 we get l2(l1(f), X) = 0, for
all f ∈ E−2. This means that l2 vanishes on Et

−1. Also, since α(X, Y ) = 0 if
X or Y belongs to Et

−1, by Equations (39), we have that χ′ = 0 and [., .]′2 = 0
and hence l′2 vanishes on Et

−1. From [l1, l3]RN
= 0, we get that ω(X, Y, Z)

vanishes for all X ∈ Et
−1, so by Equations (39) the restriction of l′3 to Et

−1

vanishes. Since the restriction of l1 to Et
−2 is a bijection onto its image, the

restriction of l′1 + l′2 + l′3 to Et
−1 ⊕Et

−2 is a Lie 2-subalgebra and it is a trivial
Lie 2-algebra.
Next we prove that (Es

−2 ⊕ Es
−1, l

′
1 + l′2 + l′3) is a Lie 2-subalgebra with

l′1(E
s
−2) = 0 and hence is a string Lie algebra. Let X, Y ∈ Es

−1. Then, by
Equations (39) we have

l′2(X, Y ) = [X, Y ]2 + ∂α(X, Y ) = [X, Y ]2 − prEt
−1
([X, Y ]2).

This implies that

l′2(X, Y ) ∈ Es
−1. (40)

Let X, Y, Z ∈ Es
−1. Then, we have l′1(X) = l′1(Y ) = l′1(Z) = 0. Hence, from

(2[l′1, l
′
3]RN

+ [l′2, l
′
2]RN

)(X, Y, Z) = 0, we get

l′1(l
′
3(X, Y, Z)) = l′2(l

′
2(X, Y ), Z). (41)

Using Relation (40), the right hand side of Equation (41) belongs to Es
−1,

while according to the definition of Et
−1, the left hand side of Equation (41)

belongs to Et
−1 and since E−1 = Et

−1 ⊕ Es
−1 is a direct sum, both sides of

Equation (41) should be zero. This implies that

l′3(X, Y, Z) ∈ Es
−2. (42)

Relation (40) and Equation (42) show that (Es
−2⊕Es

−1, l
′
1+ l′2+ l′3) is a Lie 2-

subalgebra. Also, by definition of Es
−2, we have l

′
1(E

s
−2) = 0. This completes

the proof.
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Next, it is interesting to see that Lie algebras themselves can be seen as
Nijenhuis forms. We start by noticing that any vector valued 2-form of degree
zero on a graded vector space E−2 ⊕ E−1 is of the form

α(X, Y ) =

{
−α(Y,X), if X, Y ∈ E−1,

0, otherwise.
(43)

This, together with the fact that α always takes value in E−2, imply that

α(α(X, Y ), Z) + c.p. = 0, (44)

for all X, Y, Z ∈ E−1. Equations (43) and (44) mean that any symmetric
vector valued 2-form α on an arbitrary graded vector space E−2 ⊕ E−1 is a
Lie algebra (not a graded Lie algebra). In the next proposition, we show that
there is also a way to get a Lie bracket on a graded vector space E = E−2⊕E−1

from a Nijenhuis form with respect to a Lie 2-algebra structure µ = l1+l2+l3
on the vector space E.

Proposition 4.12. Let (E = E−2⊕E−1, µ = l1+ l2+ l3) be a Lie 2-algebra,
with corresponding quadruple (∂, [., .]2, χ, ω). Let α be a vector valued 2-form
of degree zero and define a bilinear map α̃ by setting

α̃(X, Y ) =





α(X, Y ), for X, Y ∈ E−1,

α(∂X, Y ), for X ∈ E−2, Y ∈ E−1,

α(X, ∂Y ), for X ∈ E−1, Y ∈ E−2,

α(∂X, ∂Y ), for X, Y ∈ E−2.

Then, S + α is Nijenhuis vector valued 2-form with respect to µ, with square
S + 2α, if and only if (E, α̃) is a Lie algebra.

Proof : By definition, α̃ is a skew-symmetric bilinear map on the vector space
E and we have

α̃(α̃(X, Y ), Z) + c.p. = α(∂α(X, Y ), Z) + c.p.,

α̃(α̃(f, Y ), Z) + c.p. = α(∂α(∂f, Y ), Z) + c.p.,
(45)

for all X, Y, Z ∈ E−1 and f ∈ E−2. Hence, Theorem 4.6 together with (45)
imply that α̃ is a Lie bracket on the vector space E if, and only if, S + α is
a Nijenhuis form with respect to µ, with square S + 2α.

Last, we give a result involving weak Nijenhuis forms on a Lie 2-algebra.
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Proposition 4.13. Let ∂ : E−2 → E−1 be a Lie 2-algebra structure on
a graded vector space E = E−2 ⊕ E−1, that is, a Lie 2-algebra structure
µ = l1 + l2 + l3 on E, with l1 = ∂ and l2 = l3 = 0. Let α be a symmetric
vector valued 2-form of degree zero on the graded vector space E. If S + α

is a weak Nijenhuis vector valued form with respect to ∂, then E−1 is a Lie
algebra with a representation on E−2.

Proof : According to Proposition 2.3, S+α is a weak Nijenhuis vector valued
form with respect to ∂ if and only if [S + α, ∂]

RN
is an L∞-structure on the

graded vector space E which, in turn, is equivalent to

[[S + α, ∂]
RN
, [S + α, ∂]

RN
]
RN

= 0

or to

[[α, ∂]
RN
, [α, ∂]

RN
]
RN

= 0.

Therefore, S + α is a weak Nijenhuis vector valued form with respect to ∂ if
and only if

∂α(∂α(X, Y ), Z) + c.p.(X, Y, Z) = 0 (46)

and

α(∂α(X, Y ), ∂f) + c.p.(X, Y, ∂f) = 0, (47)

for all X, Y, Z ∈ E−1 and f ∈ E−2. Equation (46) means that [X, Y ] :=
∂α(X, Y ) defines a Lie bracket on E−1 since clearly it is skew-symmetric. If
we define a map · : E−1×E−2 → E−2 by setting X ·f := α(X, ∂f), then (47)
can be written as

[X, Y ] · f = X · (Y · f)− Y · (X · f),

which means that · is a representation of E−1 on E−2.

Remark 4.14. A notion of Nijenhuis operator on a Lie 2-algebra indepen-
dently appeared in [18], while the present paper was about to be completed.
This notion is a particular case of ours, by the following reasons. First, in
[18], a Nijenhuis operator is necessarily a vector valued 1-form. Second, if
N = (N0, N1) is a Nijenhuis operator in the sense of Definition 3.2. in [18],
with respect to a Lie 2-algebra l1 + l2 + l3, then

[N , [N , li]RN
]
RN

= [N 2, li]RN

holds for i = 1, 2 and 3, which means that N is a Nijenhuis vector valued
form, in our sense, with square N 2.
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5. Nijenhuis forms on Courant algebroids

We recall that one can associate a Lie 2-algebra to a Courant algebroid
[22]. We use this construction to see how (1, 1)-tensors on a Courant al-
gebroid, with vanishing Nijenhuis torsion, are related with Nijenhuis forms
with respect to the associated Lie 2-algebra.

Definition 5.1. A Courant algebroid is a vector bundle E → M together
with a non-degenerate inner product 〈., .〉, a morphism of vector bundles
ρ : E → TM and a bilinear operator ◦ : Γ(E)×Γ(E) → Γ(E), such that the
following axioms hold:

(i) (Γ(E), ◦) is a Leibniz algebra, i.e.,X◦(Y ◦Z) = (X◦Y )◦Z+Y ◦(X◦Z),
(ii) ρ(X)〈Y, Z〉 = 〈X ◦ Y, Z〉+ 〈Y,X ◦ Z〉,
(iii) ρ(X)〈Y, Z〉 = 〈X, Y ◦ Z〉+ 〈X,Z ◦ Y 〉,

for all X, Y, Z ∈ Γ(E).

When item (i) in Definition 5.1 does not hold, the quadruple (E, ◦, ρ, 〈., .〉)
is called a pre-Courant algebroid [2].
The next proposition is stated in [11], for Courant algebroids. Since the

proof does not use the fact of ◦ being a Leibniz bracket, the result also holds
for pre-Courant algebroids.

Proposition 5.2. For every pre-Courant algebroid (E, ◦, ρ, 〈., .〉) we have

X ◦ (fY ) = f(X ◦ Y ) + (ρ(X)f)Y,

for all X, Y ∈ Γ(E) and f ∈ C∞(M).

Corollary 5.3. Let (E, ◦, ρ, 〈., .〉) and (E, ◦′, ρ′, 〈., .〉) be two pre-Courant al-
gebroids. If ◦ = ◦′, then ρ = ρ′.

Proof : Assume that (E, ◦, ρ, 〈., .〉) and (E, ◦, ρ′, 〈., .〉) are both pre-Courant
algebroids. By Proposition 5.2 we have

(ρ(X)f)Y = (ρ′(X)f)Y,

for all X, Y ∈ Γ(E) and f ∈ C∞(M), which implies that ρ = ρ′.

We intend to define Nijenhuis deformation of Courant structures. Let
(E, ◦, ρ, 〈., .〉) be a Courant algebroid. For a given endomorphismN : E → E,
the deformed bracket by N is a bilinear operation ◦N , defined as:

X ◦N Y := NX ◦ Y +X ◦NY −N(X ◦ Y ),
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for all X, Y ∈ Γ(E). The deformation of ρ by N is the map ρN given by
ρN(X) = ρ(NX), X ∈ Γ(E). The Nijenhuis torsion of N , with respect to
the bracket ◦, is defined as:

T◦N(X, Y ) := NX ◦NY −N(X ◦N Y ),

for all X, Y ∈ Γ(E). A direct computation shows that

T◦N =
1

2
(◦N,N − ◦N

2

).

All maps N : Γ(E) → Γ(E) that will be considered here are C∞(M)-linear,
that is to say they are (1, 1)-tensors, that is, smooth sections of endomor-
phisms of E. We denote an endomorphism (vector bundle morphism) of E
and the induced map on Γ(E) by the same letter.
According to [4], for every vector bundle E → M , if (Γ(E), ◦) is a Leibniz

algebra and N : E → E is any endomorphism whose Nijenhuis torsion
vanishes, then the pair (Γ(E), ◦N) is a Leibniz algebra. However, given a
Courant algebroid (E, ◦, ρ, 〈., .〉) and a (1, 1)-tensor N , (E, ◦N , ρN , 〈., .〉) may
fail to be a pre-Courant algebroid, even if the Nijenhuis torsion of N vanishes.
Indeed, from [4] we have the following:

Theorem 5.4. If N is an endomorphism on a pre-Courant algebroid
(E, ◦, ρ, 〈., .〉), then the quadruple (E, ◦N , ρN , 〈., .〉) is a pre-Courant algebroid
if and only if

X ◦ (N+N∗)Y = (N +N∗)(X ◦Y ) and (N+N∗)(Y ◦Y ) = ((N+N∗)Y )◦Y

for all X, Y ∈ Γ(E), where N∗ stands for the transpose of N , with respect to
〈., .〉.

Remark 5.5. In fact, Theorem 5.4 is slightly different from Theorem 4 in [4],
because there, the authors start from a Courant algebroid. But the same
proof is still valid for the case of pre-Courant.

A Casimir function or simply a Casimir on a Courant algebroid (E, ◦, ρ, 〈., .〉)
is a function f ∈ C∞(M) such that ρ(X)f = 0, for all X ∈ Γ(E). It is easy
to check that f is a Casimir if and only if Df = 0, where D : C∞(M) → Γ(E)
is given by

〈Df,X〉 = ρ(X)f. (48)

Also, if f is a Casimir, then

(fX) ◦ Y = f(X ◦ Y ) = X ◦ (fY ) (49)
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holds for all sections X, Y ∈ Γ(E).
The next lemma is a slight generalization of a result in [4].∗

Lemma 5.6. Given a pre-Courant algebroid (E, ◦, ρ, 〈., .〉) and a map N :
Γ(E) → Γ(E), if N+N∗ = λIdΓ(E), for some Casimir function λ ∈ C∞(M),

then (E, ◦N , ρN , 〈., .〉) is a pre-Courant algebroid.

Proof : This lemma is a direct consequence of Theorem 5.4 together with
(49).

Theorem 5.7. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid and N a (1, 1)-
tensor on E whose Nijenhuis torsion vanishes and such that

N +N∗ = λIdΓ(E),

with λ being a Casimir function. Then, (E, ◦N , ρN , 〈., .〉) is a Courant alge-
broid.

Proof : Note that (E, ◦) is a Leibniz algebra, so that (E, ◦N) is also a Leibniz
algebra since the Nijenhuis torsion ofN vanishes. This, together with Lemma
5.6, prove the theorem.

Remark 5.8. For a (pre-)Courant algebroid (E, ◦, ρ, 〈., .〉), and a (1, 1)-tensor
N on E with N +N∗ = λIdΓ(E) and λ a Casimir function, we have

ρN(X)f = ρ(NX)f = 〈NX,Df〉 = 〈X,N∗Df〉 = 〈X, (−N + λIdΓ(E))Df〉,

for all X ∈ Γ(E), f ∈ C∞(M). This means that the operator DN : C∞(M) →
Γ(E) associated with the (pre-)Courant algebroid (E, ◦N , ρN , 〈., .〉), is given
by

DN = (−N + λIdΓ(E)) ◦ D. (50)

If we consider the skew-symmetrization of ◦, we obtain the bracket [., .]
used in the original definition of Courant algebroid [17]:

[X, Y ] =
1

2
(X ◦ Y − Y ◦X), (51)

with X, Y ∈ Γ(E). The deformation of [., .] by a (1, 1)-tensor N on E is the
bracket [., .]N on Γ(E), given by

[X, Y ]N := [NX, Y ] + [X,NY ]−N [X, Y ] =
1

2
(X ◦N Y − Y ◦N X).

∗In [4], λ is a real number.
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The next lemma is an axiom included in the original definition of Courant
algebroid [20].

Lemma 5.9. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid and D its associated
operator, given by (48). Then,

[X, fY ] = f [X, Y ] + (ρ(X)f)Y −
1

2
〈X, Y 〉Df,

for all X, Y ∈ Γ(E) and f ∈ C∞(M), where [., .] is the bracket given by (51).

Remark 5.10. From the proof of Proposition 2.6.5 in [20], we realize that
Lemma 5.9 also holds in the case of a pre-Courant algebroid.

In [22], it was proved that to each Courant algebroid corresponds a Lie
2-algebra. The result in [22] is established using the graded skew-symmetric
version of a Lie 2-algebra and the definition of Courant algebroid with skew-
symmetric bracket. With our conventions it goes as follows.
Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid over M , with associated operator

D, given by (48). Consider the graded vector space V = C∞(M) ⊕ Γ(E),
where the elements of C∞(M) have degree −2 and the elements of Γ(E) have
degree −1, and the following symmetric vector valued forms l1, l2 and l3 on
V , defined by:

l1f = Df

l2(X, Y ) = 1
2
(X ◦ Y − Y ◦X)

l2(X, f) = 1
2
〈X,Df〉,

l3(X, Y, Z) = 1
12
〈X ◦ Y − Y ◦X,Z〉+ c.p.,

(52)

for all X, Y, Z ∈ Γ(E) and f ∈ C∞(M), with l1, l2 and l3 being identically
zero in all the other cases. Notice that l2|Γ(E)×Γ(E) coincides with the bracket
[., .] given by (51).

Proposition 5.11. If (E, ◦, ρ, 〈., .〉) is Courant (respectively, pre-Courant)
algebroid, then the pair (V, l1 + l2 + l3), constructed in above, is a symmetric
Lie (respectively, pre-Lie†) 2-algebra.

We call this symmetric Lie 2-algebra the symmetric Lie 2-algebra associated
to the Courant algebroid (E, ◦, ρ, 〈., .〉).

†A pre-Lie 2-algebra is a pair (E = E−2 ⊕ E−1, l1 + l2 + l3), where E is a graded vector space
concentrated in degrees −2 and −1, and l1, l2 and l3 are symmetric graded vector valued 1-form,
2-form and 3-form, respectively, of degree 1.
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Starting with a (1, 1)-tensor on a Courant algebroid with vanishing Ni-
jenhuis torsion we construct, in the next proposition, a Nijenhuis form for
the Lie 2-algebra associated to that Courant structure. First, we need the
following lemma.

Lemma 5.12. Let (E, ◦, ρ, 〈., .〉) be a pre-Courant algebroid with the asso-
ciated symmetric pre-Lie 2-algebra structure µ = l1 + l2 + l3, on the graded
vector space V = C∞(M)⊕ Γ(E). Let N be a (1, 1)-tensor on E such that

N +N∗ = λ IdΓ(E),

with λ a Casimir function. Then, the pre-Lie 2-algebra structure associated
to the pre-Courant algebroid (E, ◦N , ρN , 〈., .〉) is [N , l1 + l2 + l3]RN

, with N
defined as follows:

N|Γ(E) = N and N|C∞(M) = λ IdC∞(M). (53)

Proof : Let us denote the pre-Lie 2-algebra associated to the pre-Courant
algebroid (E, ◦N , ρN , 〈., .〉) by lN1 + lN2 + lN3 . Using (50) and (52) and taking
into account the fact that D is a derivation, we have, for all f ∈ C∞(M) and
for all X, Y, Z ∈ Γ(E),

lN1 f = DNf = λDf −NDf = l1(N f)−N l1(f) = [N , l1]RN
(f), (54)

lN2 (X, Y ) = 1
2
(X ◦N Y − Y ◦N X) = l2(NX, Y ) + l2(X,NY )−Nl2(X, Y )

= [N , l2]RN
(X, Y ),

(55)

lN2 (X, f) = 1
2
〈X,DNf〉 = 1

2
〈X, (−N + λ IdΓ(E))Df〉 = 1

2
〈X,N∗Df〉

= 1
2
〈NX,Df〉 = l2(NX, f) + λl2(X, f)− λl2(X, f)

= l2(NX, f) + l2(X,N f)−N l2(X, f)
= [N , l2]RN

(X, f)

(56)
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and

lN3 (X, Y, Z) =
1

12
〈X ◦N Y − Y ◦N X,Z〉+ c.p.(X, Y, Z)

=
1

6
〈lN2 (X, Y ), Z〉+ c.p.(X, Y, Z)

=
1

6
(〈l2(NX, Y )+l2(X,NY ) + (N∗−λIdΓ(E))l2(X, Y ), Z〉)+c.p.(X, Y, Z)

=
1

6
(〈l2(NX, Y ), Z〉+ 〈l2(X,NY ), Z〉+ 〈l2(X, Y ), NZ〉 − λ〈l2(X, Y ), Z〉)

+c.p.(X, Y, Z)

=
1

6
(〈l2(NX, Y ), Z〉+ c.p.(NX, Y, Z) + 〈l2(X,NY ), Z〉+ c.p.(X,NY, Z)

+〈l2(X, Y ), NZ〉+ c.p.(X, Y,NZ)− λ〈l2(X, Y ), Z〉+ c.p.(X, Y, Z))

= l3(NX, Y, Z) + l3(X,NY, Z) + l3(X, Y,NZ)−N l3(X, Y, Z)

= [N , l3]RN
(X, Y, Z). (57)

Equations (54), (55), (56) and (57) complete the proof.

For the case of a Courant algebroid, we have the following result.

Corollary 5.13. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with the associated
symmetric Lie-2 algebra structure µ = l1+ l2+ l3, on the graded vector space
V = C∞(M)⊕ Γ(E). Let N be a (1, 1)-tensor on E such that

{
N +N∗ = λ IdΓ(E),

(Γ(E), ◦N) is a Leibniz algebra,

with λ a Casimir function. Then, the Lie 2-algebra structure associated to
the Courant algebroid (E, ◦N , ρN , 〈., .〉) is [N , l1 + l2 + l3], with N given by
(53).

Proposition 5.14. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with the asso-
ciated symmetric Lie 2-algebra structure µ = l1+ l2+ l3, on the graded vector
space V = C∞(M) ⊕ Γ(E). Let N be a (1, 1)-tensor on E whose Nijen-
huis torsion with respect to the bracket ◦ vanishes and satisfies the following
conditions {

N +N∗ = λ IdΓ(E)

N2 + (N2)∗ = γ IdΓ(E),
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with λ and γ Casimir functions. Define N and K as

N|Γ(E) = N and N|C∞(M) = λ IdC∞(M),

K|Γ(E) = N2 = λN +
γ − λ2

2
IdΓ(E) and K|C∞(M) = γ IdC∞(M).

Then, N is a Nijenhuis vector valued 1-form with respect to µ, with square
K.

Proof : Since the Nijenhuis torsion of N vanishes, (E, ◦N) and (E, ◦N
2

) are
Leibniz algebras [4], [2]. Applying Corollary 5.13 for the Courant algebroid
(E, ◦, ρ, 〈., .〉), the (1, 1)-tensor N and the vector valued 1-form N , twice, we
get

l
N,N
1 + l

N,N
2 + l

N,N
3 = [N , [N , l1 + l2 + l3]RN

]
RN
, (58)

where lN,N
1 + l

N,N
2 + l

N,N
3 stands for the Lie 2-algebra structure associated to

the Courant algebroid (E, ◦N,N , ρN,N , 〈., .〉). Applying again Corollary 5.13
for the Courant algebroid (E, ◦, ρ, 〈., .〉), the (1, 1)-tensor N2 and the vector
valued 1-form K, we get

lN
2

1 + lN
2

2 + lN
2

3 = [K, l1 + l2 + l3]RN
, (59)

where lN
2

1 + lN
2

2 + lN
2

3 stands for the Lie 2-algebra structure associated to the
Courant algebroid (E, ◦N

2

, ρN
2

, 〈., .〉). On the other hand, since the Nijen-
huis torsion of N vanishes, the Courant algebroids (E, ◦N,N , ρN,N , 〈., .〉) and
(E, ◦N

2

, ρN
2

, 〈., .〉) coincide. Therefore, (58) and (59) imply that

[N , [N , l1 + l2 + l3]RN
]
RN

= [K, l1 + l2 + l3]RN
.

Finally, an easy computation shows that [N ,K]
RN

vanishes both on functions
and on sections of E.

Since the Lie 2-algebra structure entirely encodes the Courant algebroid
structure, there was a hope that we could, given a Courant structure, find
a Nijenhuis deformation by a Nijenhuis tensor which is the sum of a vector
valued 1-form and a vector valued 2-form of the corresponding Lie 2-algebra
structure, and prove, eventually, that the Lie 2-algebra structure obtained by
this procedure comes from a Courant structure. But this fails, at least when
the anchor is not identically zero, as it is shown in the next proposition.
First, notice that every C∞(M)-linear vector valued form of degree 0 on
E−2⊕E−1, where E−2 := C∞(M) and E−1 := Γ(E), is the sum of a 2-form α,
a (1, 1)-tensor N and an endomorphism of C∞(M) of the form f 7→ λf for
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some smooth function λ. Hence, we denote a C∞(M)-linear vector valued
form of degree zero on E−2 ⊕ E−1 as a sum, λ+N + α.

Theorem 5.15. Let (◦, ρ, 〈., .〉) be a Courant structure on a vector bundle
E → M with the associated Lie 2-algebra structure l1 + l2 + l3 on the graded
vector space V = E−2 ⊕ E−1, where E−2 := C∞(M) and E−1 := Γ(E). Let
N = λ + N + α be a C∞(M)-linear vector valued form of degree zero on
V . Assume also that ρ is not equal to zero on a dense subset of the base
manifold. If [N , l1 + l2 + l3]RN

is the Lie 2-algebra associated to a Courant
structure with the same scalar product 〈., .〉, then

(1) λ is a Casimir,
(2) α = 0,
(3) N +N∗ = λIdΓ(E).

In this case, the Courant structure that [N , l1 + l2 + l3]RN
is associated to, is

(◦N , ρN , 〈., .〉).

Proof : Set µ = l1 + l2 + l3 and denote the i-form component of [N , µ]
RN

by
[N , µ]iRN , i = 1, 2. Then, for all X, Y ∈ Γ(E) and f ∈ C∞(M), we have

[N , µ]1RN(f) = ([λ, l1]RN
+ [N, l1]RN

)(f)
= l1(λf)−Nl1(f)
= λl1(f) + fl1(λ)−Nl1(f).

The first equation in (52) implies that, if [N , µ]
RN

is a Lie 2-algebra associ-
ated to a Courant algebroid, then [N , µ]1RN has to be a derivation, and this
happens if and only if l1(λ) = 0. So, we get that λ is a Casimir and

[N , µ]1RN(f) = (λIdΓ(E) −N)l1(f). (60)

On the other hand,

[N , µ]2
RN
(X, f) = ([λ, l2]RN

+ [N, l2]RN
+ [α, l1]RN

)(X, f)
= l2(X, λf)− λl2(X, f) + l2(NX, f)− α(X, l1(f))
= 1

2λ〈X, l1(f)〉 −
1
2λ〈X, l1(f)〉+

1
2〈NX, l1(f)〉 − α(X, l1(f))

= 1
2〈NX, l1(f)〉 − α(X, l1(f)),

(61)
and the same computations for (f,X) instead of (X, f) gives

[N , µ]2
RN
(f,X) =

1

2
〈NX, l1(f)〉 − α(l1(f), X). (62)
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Since [N , µ]2
RN
(X, f) = [N , µ]2

RN
(f,X), from (61) and (62) we get α(X, l1(f)) =

0, for all X ∈ Γ(E) and f ∈ C∞(M); so,

[N , µ]2
RN
(X, f) =

1

2
〈NX, l1(f)〉. (63)

For any X, Y ∈ Γ(E), we have

[N , µ]2
RN
(X, Y ) = ([λ, l2]RN

+ [N, l2]RN
+ [α, l1]RN

)(X, Y )
= l2(NX, Y ) + l2(X,NY )−Nl2(X, Y ) + l1α(X, Y ).

(64)
According to Lemma 5.9, if [N , µ]

RN
is a Lie 2-algebra associated to a Courant

structure, then we must have:

[N , µ]2
RN
(X, fY ) = f [N , µ]2

RN
(X, Y )+2[N , µ]2

RN
(X, f).Y−

1

2
〈X, Y 〉[N , µ]1RN(f).

(65)
Using (60), (63) and (64), we get

[N , µ]2
RN
(X, fY ) = l2(NX, fY ) + l2(X,NfY )−Nl2(X, fY ) + l1α(X, fY )

= fl2(NX, Y ) + 2l2(NX, f)Y −
1

2
〈NX, Y 〉l1(f)

+fl2(X,NY ) + 2l2(X, f)NY −
1

2
〈X,NY 〉l1(f)

−fNl2(X,NY )− 2l2(X, f)NY +
1

2
〈X, Y 〉Nl1(f)

+fl1α(X, Y ) + α(X, Y )l1(f)

= f(l2(NX, Y ) + l2(X,NY )−Nl2(X, Y ) + l1α(X, Y )) + 2l2(NX, f)Y

−
1

2
〈X, (N +N∗)Y 〉l1(f) +

1

2
〈X, Y 〉Nl1(f) + α(X, Y )l1(f) (66)

and

f [N , µ]2
RN
(X, Y ) + 2[N , µ]2

RN
(X, f).Y −

1

2
〈X, Y 〉[N , µ]1RN(f) (67)

= f(l2(NX, Y ) + l2(X,NY )−Nl2(X,NY ) + l1α(X, Y )) + 2l2(NX, f).Y

−
1

2
〈X, Y 〉(λ IdΓ(E) −N)l1(f).

Now, Equations (65), (66) and (67) show that

1

2
〈X, (N +N∗ − λ IdΓ(E))Y 〉l1(f) = α(X, Y )l1(f),
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for allX, Y ∈ Γ(E) and f ∈ C∞(M). Since α is skew-symmetric, 〈., (N+N∗−
λ Id).〉 is symmetric on Γ(E)× Γ(E) and the anchor is not zero everywhere,
which implies that l1(f) is not always zero, we have α = 0 and N + N∗ −
λ IdΓ(E) = 0.

Corollary 5.16. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with anchor ρ

being different from zero on a dense subset of E and let µ be the associated
Lie 2-algebra structure on the graded vector space C∞(M) ⊕ Γ(E). Then,
there is a one to one correspondence between:

(i) quadruples (N,K, λ, γ) with N,K being (1, 1)-tensors on E and λ, γ

being Casimir functions satisfying the following conditions:




◦N,N = ◦K,

NK −KN = 0,

N +N∗ = λ IdΓ(E),

K +K∗ = γ IdΓ(E),

(Γ(E), ◦N) and (Γ(E), ◦K) are Leibniz algebras.

(ii) Nijenhuis vector valued forms N with respect to µ, with square K, such
that the deformed brackets [N , µ]

RN
and [K, µ]

RN
are Lie 2-algebras

associated to Courant structures with the same scalar product.

Proof : Given a quadruple (N,K, λ, γ) satisfying conditions in item (i), we de-
fine vector valued 1-formsN andK on the graded vector space C∞(M)⊕Γ(E)
as N (f) = λf , K(f) = γf , N (X) = NX and K(X) = KX, for all X ∈ Γ(E)
and f ∈ C∞(M). We prove that N is a Nijenhuis vector valued form with
respect to µ, with square K. First, notice that using Corollary 5.3, the as-
sumption ◦N,N = ◦K implies that (E, ◦N,N , ρN,N , 〈., .〉) and (E, ◦K, ρK , 〈., .〉)
are the same pre-Courant algebroid, hence, they have the same associated
pre-Lie 2-algebras. On the other hand, using Lemma 5.12, the pre-Lie
2-algebra associated to the pre-Courant algebroid (E, ◦N,N , ρN,N , 〈., .〉) is
[N , [N , µ]

RN
]
RN

and the pre-Lie 2-algebra associated to the pre-Courant al-
gebroid (E, ◦K, ρK, 〈., .〉) is [K, µ]

RN
. Hence,

[N , [N , µ]
RN
]
RN

= [K, µ]
RN
. (68)

Also, using the assumption NK −KN = 0, we get

[N ,K]
RN

= 0. (69)
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Equations (68) and (69) show that N is a Nijenhuis vector valued 1-form
with respect to µ, with square K. By Corollary 5.13, [N , µ]

RN
is a Lie 2-

algebra associated to the Courant algebroid (E, ◦N , ρ, 〈., .〉) and [K, µ]
RN

is a
Lie 2-algebra associated to the Courant algebroid (E, ◦K, ρ, 〈., .〉).
Conversely, assume that N is a Nijenhuis vector valued form with respect

to µ, with square K, such that [N , µ]
RN

and [K, µ]
RN

are Lie 2-algebras
associated to Courant algebroids. Then, by Theorem 5.15, N is of the
form λ + N with N + N∗ = λ IdΓ(E) and K is of the form γ + K, with
K +K∗ = γ IdΓ(E). Moreover, the Courant algebroid which is associated to

the Lie 2-algebra [N , µ]
RN

(respectively, [K, µ]
RN
) is (E, ◦N , ρN , 〈., .〉) (respec-

tively, (E, ◦K, ρK , 〈., .〉) ). From this, we get that (Γ(E), ◦N) and (Γ(E), ◦K)
are Leibniz algebras. Since N is a Nijenhuis vector valued form with respect
to µ, with square K, we have

[N , [N , µ]
RN
]
RN

= [K, µ]
RN

(70)

and
[N ,K]

RN
= 0. (71)

Applying both sides of Equation (70) on a pair of sections X, Y ∈ Γ(E) we
get X ◦N,N Y = X ◦K Y , which implies ◦N,N = ◦K. Lastly, Equation (71)
implies KN −NK = 0.

Using Lemma 5.9 and Remark 5.10, and also taking into account the fact
that the operator D associated to a pre-Courant algebroid (E, ◦, ρ, 〈., .〉),
given by (48), is a derivation, we may restate Theorem 5.15.

Theorem 5.17. Let (◦, ρ, 〈., .〉) be a Courant structure on a vector bundle
E → M , with the associated symmetric Lie 2-algebra structure l1+ l2+ l3 on
the graded vector space V = E−2 ⊕ E−1, where E−2 := C∞(M) and E−1 :=
Γ(E). Let N = λ +N + α be a C∞(M)-linear vector valued form of degree
zero on V . Assume also that ρ is not equal to zero on a dense subset of the
base manifold. If [N , l1 + l2 + l3]RN

= l′1 + l′2 + l′3, where the vector valued
forms l′1, l

′
2, l

′
3 are obtained from a pre-Courant algebroid, with the same scalar

product, by the construction given in (52), then

(1) λ is a Casimir,
(2) α = 0,
(3) N +N∗ = λ IdΓ(E).

In this case, the Courant structure that [N , l1 + l2 + l3]RN
is associated to, is

(◦N , ρN , 〈., .〉).
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And this leads to the next result:

Corollary 5.18. Let (E, ◦, ρ, 〈., .〉) be a Courant algebroid with anchor ρ

being different from zero on a dense subset of E, with the associated Lie 2-
algebra structure µ = l1 + l2 + l3 on the graded vector space C∞(M)⊕ Γ(E).
Then, there is a one to one correspondence between:

(i) quadruples (N,K, λ, γ) with N,K being (1, 1)-tensors and λ, γ being
Casimir functions satisfying the following conditions:





◦N,N = ◦K ,

NK −KN = 0,

N +N∗ = λ IdΓ(E),

K +K∗ = γ IdΓ(E).

(72)

(ii) Nijenhuis vector valued forms N with respect to µ, with square K,
such that the deformed bracket is of the form [N , µ]

RN
= l′1 + l′2 + l′3

and l′1, l
′
2, l

′
3 are constructed by the procedure in (52) obtained from a

pre-Courant algebroid, with the same scalar product.

Proof : Let N be a Nijenhuis vector valued form with respect to the Lie 2-
algebra structure µ = l1 + l2 + l3, with square K, and assume that [N , µ]

RN

is obtained from a pre-Courant algebroid. Let N|Γ(E) = N ,N|C∞(M) =
λ IdC∞(M), K|Γ(E) = K and K|C∞(M) = γ IdC∞(M). By Theorem 5.17,

N + N∗ = λ IdΓ(E) and (E, ◦N , ρN , 〈., .〉) is a pre-Courant algebroid (it is,
in fact, the pre-Courant algebroid which [N , µ]

RN
is obtained from). Hence,

by Lemma 5.6, (E, ◦N,N , ρN,N , 〈., .〉) is a pre-Courant algebroid. Now, Lemma
5.12 implies that [K, µ]

RN
=

[
N , [N , µ]

RN

]
RN

is obtained from the pre-Courant

algebroid (E, ◦N,N , ρN,N , 〈., .〉), by the construction given in (52). Therefore,
by Theorem 5.17, K + K∗ = γ IdΓ(E). The assumption [N ,K]

RN
= 0 im-

plies that NK − KN = 0, while
[
N , [N , µ]

RN

]
RN

= [K, µ]
RN

implies that

◦N,N = ◦K.
Conversely, assume that we are given a quadruple (N,K, λ, γ) satisfying

the properties in (72). By Lemma 5.6, (E, ◦N , ρN , 〈., .〉) is a pre-Courant
and by Lemma 5.12, the pre-Lie 2-algebra structure associated to the pre-
Courant algebroid (E, ◦N , ρN , 〈., .〉) is [N , µ]

RN
. Similar arguments prove

that the pre-Lie 2-algebra structure associated to the pre-Courant algebroid
(E, ◦N,N , ρN,N , 〈., .〉) is

[
N , [N , µ]

RN

]
RN

and the pre-Lie 2-algebra structure
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associated to the pre-Courant algebroid (E, ◦K, ρK , 〈., .〉) is [K, µ]
RN
. Now,

the assumption ◦N,N = ◦K and Lemma 5.3 imply that (E, ◦N,N , ρN,N , 〈., .〉)
and (E, ◦K, ρK , 〈., .〉) are the same pre-Courant algebroid; therefore, we have[
N , [N , µ]

RN

]
RN

= [K, µ]
RN
. It follows from the assumption NK −KN = 0

that [N ,K] = 0. Hence, N is a Nijenhuis vector valued form with respect to
the Lie 2-algebra structure µ, with square K.

6.Multiplicative L∞-structures

Adapting the notion of P∞-structure on a graded vector space [5] to the
symmetric graded case, we define, in this section, multiplicativeL∞-structures.
We classify all multiplicative L∞-structures on Γ(∧A)[2], for A → M an ar-
bitrary vector bundle over a manifold M . When A → M is equipped with a
Lie algebroid structure, given a (1, 1)-tensor N on A, we define the extension
of N by derivation, which is a symmetric vector valued 1-form on Γ(∧A)[2],
of degree zero. For a k-form on the Lie algebroid, we also define its exten-
sion by derivation, yielding a symmetric vector valued form k-form of degree
k − 2. These multi-derivations will be used in the next section to construct
examples of Nijenhuis forms.
There is an important graded Lie subalgebra of (S̃(E∗)⊗E, [., .]RN), when

E itself is equipped with a graded commutative associative algebra structure
on E[2], denoted by ∧, that is, a bilinear operation such that for all X ∈
Ei, Y ∈ Ej, Z ∈ Ek

• X ∧ Y ∈ Ei+j+2,
• (X ∧ Y ) ∧ Z = X ∧ (Y ∧ Z),
• X ∧ Y = (−1)|X ||Y |Y ∧X,

where |X| = i+ 2 and |Y | = j + 2.

Definition 6.1. Let E be a graded vector space equipped with an associative
graded commutative algebra structure, that is a graded symmetric bilinear
map ∧ of degree zero which is associative. An element D ∈ Sd(E∗) ⊗ E is
called a multi-derivation vector valued d-form, if

D(X1, · · · , Xi−1, Y ∧ Z,Xi+1, · · · , Xd) (73)

= (−1)|Z|(|Xi+1|+···+|Xd|)D(X1, · · · , Xi−1, Y,Xi+1, · · · , Xd) ∧ Z

+(−1)|Y |(|X1|+···+|Xi−1|+D̄)Y ∧D(X1, · · · , Xi−1, Z,Xi+1, · · · , Xd),
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for all X1, · · · , Xd, Y, Z ∈ E, where D̄ is the degree of D as a graded map.

Remark 6.2. The graded commutativity of the product ∧ implies that Equa-
tion (73) is equivalent to

D(X1, · · · , Xd−1, Y ∧ Z)

= D(X1, · · · , Xd−1, Y ) ∧ Z + (−1)|Y ||Z|D(X1, · · · , Xd−1, Z) ∧ Y.

We denote the space of all multi-derivation vector valued forms by
MultiDer(E). Elements of S1(E∗) ⊗ E are simply called derivations. By
definition, E ⊂ MultiDer(E) and we have the following:

Proposition 6.3. MultiDer(E) is a graded Lie subalgebra of (S̃(E∗) ⊗
E, [., .]

RN
).

We shall use the following lemmas in the proof of Proposition 6.3.

Lemma 6.4. Let D1 and D2 be two derivations. Then, [D1, D2]RN
is also a

derivation.

Proof : We have

[D1, D2]RN
= D2 ◦D1 − (−1)D̄1D̄2D1 ◦D2

= −(−1)D̄1D̄2[D1, D2],

where [., .] is the graded commutator on the space of derivations of the graded
associative commutative algebra (E, ∧). Since [D1, D2] is a derivation, so is
[D1, D2]RN

.

Lemma 6.5. If D ∈ Sd(E∗)⊗E is a multi-derivation vector valued d-form,
then for all X ∈ E, [X,D]

RN
is a multi-derivation vector valued (d−1)-form.

Proof : It is a direct consequence of

[X,D]
RN
(X1, · · · , Xd−2, Y ∧ Z) = D(X,X1, · · · , Xd−2, Y ∧ Z),

which holds for all elements Y, Z,X1, · · · , Xd−2 ∈ E.

Proof : (of Proposition 6.3) Let D,D′ be two multi-derivation vector valued
d-form and d′-form, respectively. We show that [D,D′]

RN
is a multi-derivation

vector valued (d+d′−1)-form, using induction on the number n = d+d′−1.
Lemmas 6.4 and 6.5 prove the case n = 1. Assume, by induction, that
[D,D′]

RN
is a multi-derivation vector valued (d+d′− 1)-form and let D1 and
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D2 be two multi-derivation vector valued d1- and d2-forms respectively, such
that d1 + d2 − 1 = n+ 1. From (3) we have

[D1, D2]RN
(X1, · · · , Xd1+d2−2, Y ∧ Z)

= [Y ∧ Z, [Xd1+d2−2, · · · , [X1, [D1, D2]RN
]
RN

· · · ]
RN
]
RN
,

or, using the graded Jacobi identity of [., .]
RN
,

[D1, D2]RN
(X1, · · · , Xd1+d2−2, Y ∧ Z)

= [Y ∧ Z, [Xd1+d2−2, · · · , [[X1, D1]RN
, D2]RN

· · · ]
RN
]
RN

+(−1)D̄1X̄1[Y ∧ Z, [Xd1+d2−2, · · · , [D1, [X1, D2]RN
]
RN

· · · ]
RN
]
RN
,

for all X1, · · · , Xd1+d2−2, Y, Z ∈ E. By Lemma 6.5, [X1, D1]RN
and [X1, D2]RN

are multi-derivation vector valued (d1−1)- and (d2−1)-forms respectively, and
hence using the assumption of induction, [[X1, D1]RN

, D2]RN
and [D1, [X1, D2]RN

]
RN

are multi-derivation vector valued n-forms. Therefore,

[D1, D2]RN
(X1, · · · , Xd1+d2−2, Y ∧ Z)

= [[X1, D1]RN
, D2]RN

(X2, · · · , Xd1+d2−2, Y ∧ Z)

+(−1)D̄1X̄1[D1, [X1, D2]RN
]
RN
(X2, · · · , Xd1+d2−2, Y ∧ Z)

= [[X1, D1]RN
, D2]RN

(X2, · · · , Xd1+d2−2, Y ) ∧ Z

+(−1)|Y ||Z|[[X1, D1]RN
, D2]RN

(X2, · · · , Xd1+d2−2, Z) ∧ Y

+(−1)D̄1X̄1[D1, [X1, D2]RN
]
RN
(X2, · · · , Xd1+d2−2, Y ) ∧ Z

+(−1)D̄1X̄1(−1)|Y ||Z|[D1, [X1, D2]RN
]
RN
(X2, · · · , Xd1+d2−2, Z) ∧ Y

= [D1, D2]RN
(X1, · · · , Xd1+d2−2, Y ) ∧ Z

+(−1)|Y ||Z|[D1, D2]RN
(X1, · · · , Xd1+d2−2, Z) ∧ Y,

which completes the induction and also the proof (see Remark 6.2).

Let us now define multiplicative L∞-algebra.

Definition 6.6. An L∞-structure µ =
∑∞

i=1 li on a graded vector space E

equipped with a graded commutative product ∧ : Ei × Ej → Ei+j is called
multiplicative if all the multi-linear brackets li are multi-derivations.

Next, we discuss the relation between multiplicative L∞-structures and Lie
algebroids.
A pre-Lie algebroid structure on a vector bundle A → M over a manifold

M is a pair (ρ, [., .]), with ρ : A → TM a vector bundle morphism over
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the identity of M , called anchor map, and [., .] a skew-symmetric bilinear
endomorphism of Γ(A) subject to the so-called Leibniz identity:

[X, fY ] = f [X, Y ] + (ρ(X)f) Y,

for allX, Y ∈ Γ(A) and all f ∈ C∞(M). When, moreover, [., .] is a Lie algebra
bracket, the pair ([., .] , ρ) is called a Lie algebroid structure on A → M .
We denote by [., .]

SN
the Schouten-Nijenhuis bracket on the the space of

multivectors of the (pre-)Lie algebroid A and by d
A the (pre-)differential of

A. We recall that

[X, f ]
SN

= ρ(X)f
[P,Q]

SN
= −(−1)pq [Q,P ]

SN

[P,Q ∧R]
SN

= [P,Q]
SN

∧ R+ (−1)qr [P,R]
SN

∧Q,

(74)

for all X ∈ Γ(A), P ∈ Γ(∧p+1A), Q ∈ Γ(∧q+1A),R ∈ Γ(∧r+1A) and f ∈
C∞(M) and that

d
Aω(X0, . . . , Xk) :=

k∑

i=0

(−1)iρ(Xi)ω(X̂i) +
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj], X̂i,j),

for all X0, . . . , Xk ∈ Γ(A), ω ∈ Γ(∧kA∗), where X̂i and X̂i,j stand for

X1, · · · , Xi−1, Xi+1, · · · , Xk and X1, · · · , Xi−1, Xi+1, · · · , Xj−1, Xj+1, · · · , Xk

respectively. Notice that in the above expression, we have implicitly identified

elements of Γ(∧kA∗) with skew-symmetric k-linear maps from Γ(A)×
k
· · ·

×Γ(A) to C∞(M).
Let ([., .] , ρ) be a pre-Lie algebroid structure on a vector bundle A → M .

Set Ei := Γ(∧i+1A) and E = ⊕i≥−1Ei , with E−1 = Γ(∧0A) = C∞(M). The
Schouten-Nijenhuis bracket is a graded skew-symmetric bracket of degree
zero on E = ⊕i≥−1Ei and it is known that a pre-Lie algebroid structure
(ρ, [., .]) is a Lie algebroid structure on the vector bundle A → M, if and
only if [., .]

SN
is a graded Lie algebra bracket on E = Γ(∧A)[1]. It is also

well known that the pre-differential dA is a derivation of Γ(∧A∗) and that dA

squares to zero if and only if (A, [., .] , ρ) is Lie algebroid.
The discussion above leads to the conclusion that there are two ways to see

Lie algebroids as L∞-structures: the first one will make it an L∞-structure
on Γ(∧A), and the second one will make it an L∞-structure on Γ(∧A∗) [13].
More precisely:
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Proposition 6.7. Let A → M be a vector bundle and A∗ → M its dual.
There is a one to one correspondence between:

(i) pre-Lie algebroid structures (ρ, [., .]) on A → M ,
(ii) binary multi-derivations of Γ(∧A)[2] of degree 1,
(iii) unary multi-derivations of Γ(∧A∗)[2] of degree 1.

The one to one correspondence above restricts to a one to one correspondence
between:

(i′) Lie algebroid structures (ρ, [., .]) on A → M ,
(ii′) multiplicative L∞-structures on Γ(∧A)[2] given by a binary bracket,
(iii′) multiplicative L∞-structures on Γ(∧A∗)[2] given by a unary bracket.

Given a (1, 1)-tensor N on a Lie algebroid (A, [., .] , ρ), we define a linear
map N on the graded vector space Γ(∧A)[2], by setting

N(f) := 0,

for all f ∈ C∞(M), and

N(P ) :=

p∑

i=1

P1 ∧ · · · ∧ Pi−1 ∧N(Pi) ∧ Pi+1 ∧ · · · ∧ Pp,

for all monomial multi-sections P = P1 ∧ · · · ∧ Pp ∈ Γ(∧A)[2]. The map
N is called the extension of N by derivation on the graded vector space
Γ(∧A)[2]. It is a multi-derivation on the graded vector space Γ(∧A)[2], hence
a symmetric vector valued 1-form on Γ(∧A)[2], and has degree zero.
For a k-form on a Lie algebroid, we also consider its extension by derivation.

More precisely, if κ ∈ Γ(∧kA∗), the extension of κ by derivation is a k-linear
map, denoted by κ, given by

κ(P1, · · · , Pk) :=

p1,··· ,pk∑

i1,··· ,ik=1

(−1)♠κ(P1,i1, · · · , Pk,ik)P̂1,i1 ∧ · · · ∧ P̂k,ik ,

for all homogeneous multi-sections Pi = Pi,1 ∧ · · · ∧ Pi,pi ∈ Γ(∧piA), with
i = 1, · · · , k, where 1 ≤ ij ≤ pj for all 1 ≤ j ≤ k,

P̂j,ij = Pj,1 ∧ · · · ∧ Pj,ij−1 ∧ Pj,ij+1 ∧ · · · ∧ Pj,pj ∈ Γ(∧pj−1A)

and

♠ = 2p1 + 3p2 + · · ·+ (k + 1)pk + i1 + · · ·+ ik + 1.
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It follows from its definition that κ is a multi-derivation on the graded
vector space Γ(∧A)[2] and that it is a symmetric vector valued k-form of
degree k − 2 on Γ(∧A)[2].

Lemma 6.8. Let (A, [., .] , ρ) be a Lie algebroid, α ∈ Γ(∧kA∗) be a k-form
and β ∈ Γ(∧lA∗) be an l-form. Then,

[
α, β

]
RN

= 0.

Proof : The fact that α (respectively β) is a vector valued k-form (respectively

l-form) of degree k − 2 (respectively l − 2), imply that
[
α, β

]
RN

is a vector

valued (k+ l−1)-form of degree k+ l−4 on the graded vector space Γ(∧A) =
⊕i≥0Γ(∧iA). Therefore, for all l, k ≥ 0 the restriction of

[
α, β

]
RN

to the space

of sections is zero and hence we have
[
α, β

]
RN

= 0, because
[
α, β

]
RN

is a

multi-derivation and it is uniquely determined on the space of sections.

According to Proposition 6.7, for a given Lie algebroid (A, [., .] , ρ), the

bracket l
[.,.]
2 given by

l
[.,.]
2 (P,Q) = (−1)p−1[P,Q]

SN
, P ∈ Γ(∧pA), Q ∈ Γ(∧qA), (75)

defines a multiplicative graded Lie algebra structure on Γ(∧A)[2]. When we
deform the bracket [., .] by N as

[X, Y ]N = [NX, Y ] + [X,NY ]−N [X, Y ] ,

for all X, Y ∈ Γ(A), of course we may consider l
[.,.]N
2 using Equation (75)

and we may take the Schouten-Nijenhuis bracket [., .]N
SN

corresponding to

the deformed bracket [., .]N . Note that the bracket l
[.,.]N
2 is not necessarily a

multiplicative graded Lie algebra structure. On the other hand, since l
[.,.]
2 is

a symmetric vector valued 2-form of degree 1 and N is a (symmetric) vector

valued 1-form of degree zero, we can consider the deformation of l
[.,.]
2 by N .

The following lemma shows the relation between
[
N, l

[.,.]
2

]
RN

and l
[.,.]N
2 .

Lemma 6.9. Let N be a (1, 1)-tensor on a Lie algebroid (A, [., .] , ρ). Then,
we have [

N, l
[.,.]
2

]
RN

= l
[.,.]N
2 .



48 A. J. AZIMI, C. LAURENT-GENGOUX AND J.M. NUNES DA COSTA

Proof : The proof follows directly from the fact that the Schouten-Nijenhuis
bracket on Γ(∧A) associated to the bracket [., .]N is given by

[P,Q]N
SN

= [NP,Q]
SN

+ [P,NQ]
SN

−N [P,Q]
SN

,

for all P,Q ∈ Γ(∧A), see [13].

We will need the following lemma for our next purpose.

Lemma 6.10. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and

associated multiplicative graded Lie algebra structure l
[.,.]
2 on Γ(∧A)[2]. Then,

[
α, l

[.,.]
2

]
RN

= d
Aα,

for all α ∈ Γ(∧nA∗).

Proof : We shall prove the statement for n = 2. A similar proof can be done

for any n ≥ 1. First note that
[
α, l

[.,.]
2

]
RN

is a vector valued 3-form of degree

1 on the graded vector space Γ(∧A)[2]. This implies that the restriction of[
α, l

[.,.]
2

]
RN

to Γ(A) is of the form:

[
α, l

[.,.]
2

]
RN

|Γ(A)×Γ(A)×Γ(A) : Γ(A)× Γ(A)× Γ(A) → C∞(M)

and, by degree reasons, any other restriction of
[
α, l

[.,.]
2

]
RN

is zero. On the

other hand, by Proposition 6.3,
[
α, l

[.,.]
2

]
RN

is a multi-derivation, so that its re-

striction to the sections Γ(A) is a C∞(M)-linear map. Therefore,
[
α, l

[.,.]
2

]
RN

∈

Γ(∧3A∗). Next, we show that
[
α, l

[.,.]
2

]
RN

|Γ(A)×Γ(A)×Γ(A) = d
Aα

and this together with the fact that
[
α, l

[.,.]
2

]
RN

is a multi-derivation will imply

that
[
α, l

[.,.]
2

]
RN

= d
Aα, by the uniqueness of extension by derivation of dAα

to the graded vector space Γ(∧A)[2]. A direct computation shows that
[
α, l

[.,.]
2

]
RN

(X, Y, Z) = [α(X, Y ), Z]
SN

− α([X, Y ]
SN

, Z) + c.p.,
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for all X, Y, Z ∈ Γ(A). Hence, Equation (74) together with the definition of
d
A imply that
[
α, l

[.,.]
2

]
RN

(X, Y, Z) = ρ(Z)α(X, Y )− α([X, Y ] , Z) + c.p. = dαA(X, Y, Z).

This completes the proof.

7. Nijenhuis forms on multiplicative L∞-structures asso-

ciated to Lie algebroids

In this section we consider several structures defined by tensors and pairs
of tensors on a Lie algebroid and, by using their extensions by derivations,
we construct Nijenhuis forms (weak Nijenhuis and co-boundary Nijenhuis,
in some cases) with respect to the graded Lie algebra associated to the Lie
algebroid structure.
Let (A, [., .] , ρ) be a Lie algebroid and N : A → A an endomorphim. Then,

as in the case of Lie algebras, the Nijenhuis torsion of N with respect to the
Lie bracket [., .], denoted by T[.,.]N , is defined by Equation (8) and again a
direct computation shows that

T[.,.]N(X, Y ) =
1

2

(
[X, Y ]N,N − [X, Y ]N2

)
,

for allX, Y ∈ Γ(A). A (1, 1)-tensorN on a Lie algebroid (A, [., .] , ρ) is said to
be Nijenhuis if the Nijenhuis torsion of N , with respect to the Lie algebroid
bracket [., .], vanishes. As a consequence of Lemma 6.9, we have the following
proposition:

Proposition 7.1. For every Nijenhuis tensor N on a Lie algebroid (A, [., .] , ρ),
the extension N of N by derivation is a Nijenhuis vector valued 1-form with

respect to the multiplicative graded Lie algebra structure l
[.,.]
2 on the graded

vector space Γ(∧A)[2], with square (N2).

Proof : Applying Lemma 6.9 twice, for the tensor N and the bracket l
[.,.]
2 , we

get

[
N,

[
N, l

[.,.]
2

]
RN

]

RN

= l
[.,.]N,N

2 . The same lemma gives
[
N2, l

[.,.]
2

]
RN

= l
[.,.]N2

2 .

Since N is a Nijenhuis (1, 1)-tensor on A, we have l
[.,.]N,N

2 = l
[.,.]N2

2 , which

implies that

[
N,

[
N, l

[.,.]
2

]
RN

]

RN

=
[
N2, l

[.,.]
2

]
RN

. Also, (N2) and N commute

with respect to the Richardson-Nijenhuis bracket.
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In the next proposition we obtain a Nijenhuis vector valued form which is
the sum of a vector valued 1-form with a vector valued 2-form.

Proposition 7.2. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and

associated multiplicative graded Lie algebra structure l
[.,.]
2 on Γ(∧A)[2]. Then,

for every section α ∈ Γ(∧2A∗), S + α is a Nijenhuis vector valued form with

respect to l
[.,.]
2 , with square S + 2α. The deformed structure is l

[.,.]
2 + d

Aα.

Proof : As a direct consequence of Lemma 6.10, we have[
S + α, l

[.,.]
2

]
RN

= l
[.,.]
2 + d

Aα.

A simple computation gives[
S + α,

[
S + α, l

[.,.]
2

]
RN

]

RN

= l
[.,.]
2 + 2 dAα =

[
S + 2α, l

[.,.]
2

]
RN

and the fact that [S + α, S + 2α]
RN

= 0 completes the proof.

Our next purpose is to use well-known structures on a Lie algebroid defined
by pairs of compatible tensors, such as ΩN -, Poisson-Nijenhuis and PΩ-
structures [14, 1, 3], to construct Nijenhuis forms on the multiplicative graded
Lie algebra associated to the Lie algebroid. We start by recalling what an
ΩN -structure is.

Definition 7.3. [1, 14] Let (A, [., .] , ρ) be a Lie algebroid, with differential dA,
N be a (1, 1)-tensor on A and α ∈ Γ(∧2A∗) a 2-form. Let α

N
: Γ(A)×Γ(A) →

Γ(A) be a bilinear map, defined as

α
N
(X, Y ) = α(NX, Y ). (76)

Then, the pair (α,N) is an ΩN -structure on the Lie algebroidA if α(NX, Y ) =
α(X,NY ) for all X, Y ∈ Γ(A) (which amounts to α

N
being skew-symmetric

and therefore a 2-form on A), and α and α
N
are d

A-closed.

Lemma 7.4. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and with

the associated multiplicative graded Lie algebra structure l
[.,.]
2 on the graded

vector space Γ(∧A)[2]. Let N be a (1, 1)-tensor on the Lie algebroid and
α ∈ Γ(∧2A∗) be a 2-form such that αN : Γ(A)× Γ(A) → Γ(A) given by (76)
is skew-symmetric and therefore a 2-form on A. Then,

i) [N,α]
RN

= 2α
N
,

ii)
[
N + α, l

[.,.]
2

]
RN

= l
[.,.]N
2 + d

Aα
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iii) If N is Nijenhuis, then
[
N + α,

[
N + α, l

[.,.]
2

]
RN

]

RN

=
[
N2, l

[.,.]
2

]
RN

− 2 dAα
N
+ 2

[
N, dAα

]
RN

.

Proof : i) First notice that for all X, Y ∈ Γ(A) we have

[N,α]
RN

(X, Y ) = α(NX, Y )− α(NY,X) = 2α
N
(X, Y ).

Since N and α are both derivations, by Lemma 6.4 [N,α]
RN

is a derivation
and hence it is the unique extension of 2α

N
by derivation.

ii) It is a direct consequence of Lemma 6.9 together with Lemma 6.10.
iii) Using item (ii) and Lemma 6.9, we have
[
N + α,

[
N + α, l

[.,.]
2

]
RN

]

RN

=
[
N + α, l

[.,.]N
2 + d

Aα
]
RN

= l
[.,.]N,N

2 +
[
N, dAα

]
RN

+
[
α, l

[.,.]N
2

]
RN

+
[
α, dAα

]
RN

.

But, using Lemma 6.9 and the graded Jacobi identity we have
[
α, l

[.,.]N
2

]
RN

=

[
α,

[
N, l

[.,.]
2

]
RN

]

RN

=
[
[α,N ]

RN
, l

[.,.]
2

]
RN

+

[
N,

[
α, l

[.,.]
2

]
RN

]

RN

=
[
−2α

N
, l

[.,.]
2

]
RN

+
[
N, dAα

]
RN

and, by Lemma 6.8,
[
α, dAα

]
RN

= 0. Hence, since N is Nijenhuis, we get

[N + α, [N + α, l
[.,.]
2 ]

RN
]
RN

=
[
N2 − 2α

N
, l

[.,.]
2

]
RN

+ 2
[
N, dAα

]
RN

=
[
N2, l

[.,.]
2

]
RN

− 2 dAα
N
+ 2

[
N, dAα

]
RN

.

The next proposition is now immediate.

Proposition 7.5. Let (A, [., .] , ρ) be a Lie algebroid, with differential dA and

with associated multiplicative graded Lie algebra structure l
[.,.]
2 on the graded

vector space Γ(∧A)[2]. If (α,N) is an ΩN-structure on the Lie algebroid A,

then N+α is a Nijenhuis vector valued form, with respect to l
[.,.]
2 , with square

N2 + α
N
.
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Proof : Let (α,N) be an ΩN -structure on the Lie algebroidA. Then, dAαN =

0 and, by Lemma 6.10, we have
[
α

N
, l

[.,.]
2

]
RN

= 0. It follows from item (iii) in

Lemma 7.4, that
[
N + α,

[
N + α, l

[.,.]
2

]
RN

]

RN

=
[
N2 + α

N
, l

[.,.]
2

]
RN

.

Since[
N + α,N2 + α

N

]
RN

=
[
N,α

N

]
RN

+
[
α,N2

]
RN

= 2(α
N
)
N
− 2α

N2 = 0,

the proof is complete.

We are now going to see how to include Poisson-Nijenhuis structures among
our examples of Nijenhuis structures on L∞-algebras. Let us first fix and
recall some notations and notions.
Let (A, µ = [., .] , ρ) be a Lie algebroid, π ∈ Γ(∧2A) a bivector and N :

A → A a vector bundle morphism. We denote by N∗ the morphism N∗ :
A∗ → A∗ given by 〈N∗α,X〉 = 〈α,NX〉, for all X, Y ∈ Γ(A). We consider
the morphism induced by π, π# : A∗ → A, given by 〈β, π#α〉 = π(α, β), and
we denote by π

N
the bivector defined by

π
N
(α, β) = 〈β,Nπ#α〉 = 〈N∗β, π#α〉, (77)

for all α, β ∈ Γ(A∗). A bracket {·, ·}µ
π
can be defined on Γ(A∗), the space of

1-forms on the Lie algebroid (A, µ = [., .] , ρ), as follows:

{α, β}µ
π
= LA

π#(α)
β − LA

π#(β)
α− d

A(π(α, β)),

for all α, β ∈ Γ(A∗). It is well known that if π is a Poisson bivector on the
Lie algebroid (A, µ = [., .] , ρ), that is [π, π]

SN
= 0, then (Γ(A∗), {., .}µ

π
) is a

Lie algebra and if this is the case, then π# is a Lie algebra morphism form
the Lie algebra (Γ(A∗), {., .}µ

π
) to the Lie algebra (Γ(A), µ).

For every Poisson structure π on a Lie algebroid A, the triple
(Γ(∧A)[1], [., .]

SN
, [π, .]

SN
) is a skew-symmetric differential graded Lie algebra,

so that the pair (l
[.,.],π
1 , l

[.,.]
2 ) given by

l
[.,.],π
1 (P ) = [π, P ]

SN
and l

[.,.]
2 (P,Q) := (−1)(p−1) [P,Q]

SN
,

where P ∈ Γ(∧pA) and Q ∈ Γ(∧qA), is an L∞-structure on the graded vector
space Γ(∧A)[2], which is clearly multiplicative. This L∞-structure is called
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the L∞-structure associated to the Poisson structure π and the Lie algebroid
A.
Now, we recall the notion of Poisson-Nijenhuis structure on a Lie algebroid.

Definition 7.6. [13] Let (A, µ = [., .] , ρ) be a Lie algebroid, π ∈ Γ(∧2A)
a bivector and N a (1, 1)-tensor on A. Then, the pair (π,N) is a Poisson-
Nijenhuis structure on the Lie algebroid (A, µ = [., .] , ρ) if

i) N is a Nijenhuis (1, 1)-tensor with respect to the Lie bracket µ,
ii) π is a Poisson bivector,
iii) N ◦ π# = π# ◦N∗,

iv) ({α, β}µ
π
)
N∗ = {α, β}µ

N

π
,

for all α, β ∈ Γ(A∗), where ({., .}µ
π
)
N∗ is the deformation of the Lie bracket

{·, ·}µ
π
byN∗ and {., .}µ

N

π
is the bracket determined by the pair (π, µN = [., .]N)

according to formula (77).

Notice that π#
N
= Nπ# = π#N∗ and hence,

N(π) = 2π
N
. (78)

Recall from [13] that if (π,N) is a Poisson-Nijenhuis structure on a Lie al-
gebroid (A, µ = [., .] , ρ), then

(
A, µN = [., .]N , ρ ◦N

)
and

(
A∗, {., .}µπ, ρ ◦ π

#
)

are Lie algebroids. Also,
(
({., .}µπ)N∗ , ρ ◦ π# ◦N∗

)
,
(
{., .}µ

N

π , ρ ◦N ◦ π#
)

and
(
{., .}µπ

N
, ρ ◦ π#

N

)

define the same Lie algebroid structure on A∗. Moreover, identifying the
graded vector spaces Γ(∧A∗∗) and Γ(∧A), the differential dA

∗

({.,.}µπ)
coincide

with the linear map [π, .]
SN
. Hence, we have

d
A∗

({.,.}µ
N

π )
= d

A∗

({.,.}µπ
N
),

which is equivalent to

[π, .]N
SN

= [π
N
, .]

SN
, (79)

where [., .]N
SN

is the Schouten-Nijenhuis bracket with respect to the Lie bracket
[., .]N .

Lemma 7.7. Let (π,N) be a Poisson-Nijenhuis structure on a Lie algebroid
(A, [., .] , ρ). Then,

[
N, l

[.,.],π
1

]
RN

(P ) = [π,N(P )]
SN

−N [π, P ]
SN

= [−πN , P ]
SN

,
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for all P ∈ Γ(∧A).

Proof : The first equality follows directly from the definition of l
[.,.],π
1 . For the

second equality, observe that for all P ∈ Γ(∧A) we have

[π, P ]N
SN

= [N(π), P ]
SN

+ [π,N(P )]
SN

−N [π, P ]
SN

,

where [., .]N
SN

stands for the Schouten-Nijenhuis bracket with respect to the
Lie bracket [., .]N . Hence, using (78) and (79), we have

[π,N(P )]
SN

−N [π, P ]
SN

= [π, P ]N
SN

− [N(π), P ]
SN

= [π, P ]N
SN

− 2 [π
N
, P ]

SN

=
(
[π, P ]N

SN
− [π

N
, P ]

SN

)
− [π

N
, P ]

SN

= − [π
N
, P ]

SN
.

Proposition 7.8. Let (π,N) be a Poisson-Nijenhuis structure on a Lie al-
gebroid (A, [., .] , ρ). Then, the derivation N is a weak Nijenhuis tensor for
the L∞-structure associated to the Poisson structure π and the Lie algebroid
(A, [., .] , ρ).

In this case, the deformed structure [N, l
[.,.],π
1 + l

[.,.]
2 ]

RN
is the L∞-structure

associated to the Poisson structure −πN and the Lie algebroid (A, [., .]N , ρ ◦
N).

Proof : Lemmas 7.7 and 6.9 imply that
[
N, l

[.,.],π
1 + l

[.,.]
2

]
RN

= −l
[.,.],π

N

1 + l
[.,.]

N

2 .

Hence,
[
N,

[
N, l

[.,.],π
1 + l

[.,.]
2

]
RN

]

RN

= l
[.,.],π

N,N

1 + l
[.,.]

N,N

2 = l
[.,.],π

N2

1 + l
[.,.]

N2

2

=
[
N2 ,−l

[.,.],π
1 + l

[.,.]
2

]
RN

=
[
N2 , l

[.,.],π
1 + l

[.,.]
2

]
RN

− 2
[
N2 , l

[.,.],π
1

]
RN

.

(80)

Denoting µ = l
[.,.],π
1 + l

[.,.]
2 and using the fact that π

N2 is a Poisson bivec-

tor on the Lie algebroid (A, [., .] , ρ) and hence (Γ(∧A)[2], l
[.,.],π

N2

1 + l
[.,.]
2 ) is a
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symmetric differential graded Lie algebra, we have
[
µ,

[
N, [N, µ]

RN

]
RN

]
RN

=
[
µ,

[
N2 , µ

]
RN

]
RN

− 2

[
µ,

[
N2 , l

[.,.],π
1

]
RN

]

RN

= −2

[
µ,

[
N2 , l

[.,.],π
1

]
RN

]

RN

= 2

[
µ, l

[.,.],π
N2

1

]

RN

= 2

[
l
[.,.],π
1 , l

[.,.],π
N2

1

]

RN

+ 2

[
l
[.,.]
2 , l

[.,.],π
N2

1

]

RN

= 2

[
l
[.,.],π
1 , l

[.,.],π
N2

1

]

RN

(81)
and [

l
[.,.],π
1 , l

[.,.],π
N2

1

]

RN

(P ) = l
[.,.],π

N2

1 (l
[.,.],π
1 (P )) + l

[.,.],π
1 (l

[.,.],π
N2

1 (P ))

=
[
π

N2 , [π, P ]
SN

]
SN

+
[
π,

[
π

N2 , P
]
SN

]
SN

=
[[
π, π

N2

]
SN

, P
]
SN

= 0,

(82)

for all P ∈ Γ(∧A). Therefore
[
µ,

[
N, [N, µ]

RN

]
RN

]
RN

= 0, which means that

N is a weak Nijenhuis vector valued form with respect to the symmetric

differential graded Lie algebra structure µ = l
[.,.],π
1 + l

[.,.]
2 on the graded vector

space Γ(∧A)[2].

There is a second manner to see Poisson-Nijenhuis structures on a Lie
algebroid as a Nijenhuis form.

Proposition 7.9. Let (π,N) be a Poisson-Nijenhuis structure on a Lie al-
gebroid (A, [., .] , ρ). Then N +π is a weak Nijenhuis vector valued form with
curvature, with respect to the multiplicative differential graded Lie algebra

structure l
[.,.],π
1 + l

[.,.]
2 on the graded vector space Γ(∧A)[2].

Proof : It follows from Lemma 6.9 that[
N + π, l

[.,.],π
1

]
RN

= −l
[.,.],π

N

1 + [π, π]
SN

= −l
[.,.],π

N

1 ,

while Lemma 7.7 implies that[
N + π, l

[.,.]
2

]
RN

= l
[.,.]N
2 + l

[.,.]
2 (π, .) = l

[.,.]N
2 − l

[.,.],π
1 .
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Hence, we have
[
N + π,

[
N + π, l

[.,.],π
1 + l

[.,.]
2

]
RN

]

RN

=
[
N + π,−l

[.,.],π
N

1 + l
[.,.]N
2 − l

[.,.],π
1

]
RN

= l
[.,.],π

N,N

1 + l
[.,.],π

N

1 + l
[.,.]N,N

2 − l
[.,.],π

N

1 (π)− l
[.,.],π
1 (π) + l

[.,.]N
2 (π, .).

(83)

But l
[.,.],π
1 (π) = [π, π]

SN
= 0, l

[.,.],π
N

1 (π) = [π
N
, π]

SN
= 0 and l

[.,.],π
N

1 (P ) +

l
[.,.]N
2 (π, P ) = [π

N
, P ]

SN
− [π, P ]N

SN
= 0, for all P ∈ Γ(∧A), where [., .]N

SN
is the

Schouten-Nijenhuis bracket associated to the Lie bracket [., .]N . Hence, (83)
can be written as[

N + π,
[
N + π, l

[.,.],π
1 + l

[.,.]
2

]
RN

]

RN

= l
[.,.],π

N,N

1 + l
[.,.]N,N

2 .

Similar computations as in (80), (81) and (82) show that
[
µ,

[
N, [N, µ]

RN

]
RN

]
RN

= 0, which means that N is weak Nijenhuis vector valued form with respect

to the symmetric differential graded Lie algebra structure µ = l
[.,.],π
1 + l

[.,.]
2 on

the graded vector space Γ(∧A)[2].

The next proposition establishes a relation between Poisson-Nijenhuis struc-
tures and co-boundary Nijenhuis tensors on a Lie algebroid.

Proposition 7.10. Let (A, [., .] , ρ) be a Lie algebroid , π ∈ Γ(∧2A) a bivector
and N a (1, 1)-tensor on A such that

N ◦ π# = π# ◦N∗.

Then, N + π is a co-boundary Nijenhuis vector valued form with curva-

ture, with respect to the multiplicative graded Lie algebra structure l
[.,.]
2 on

the graded vector space Γ(∧A)[2], with square N2, if and only if (π,N) is a
Poisson-Nijenhuis structure on the Lie algebroid (A, [., .] , ρ). The deformed

structure [N, l
[.,.]
2 ]

RN
is the L∞-structure (indeed a differential graded Lie al-

gebra structure) associated to the Poisson structure π on the Lie algebroid
(A, [., .]N , ρ ◦N).

Proof : Assume that (π,N) is a Poisson-Nijenhuis structure on the Lie alge-
broid (A, [., .] , ρ). Then,

[
N + π, l

[.,.]
2

]
RN

= l
[.,.]N
2 − l

[.,.],π
1
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and, by (79), we get
[
N + π

[
N + π, l

[.,.]
2

]
RN

]

RN

= l
[.,.]N,N

2 + l
[.,.],π

N

1 − l
[.,.]N ,π
1

= l
[.,.]N,N

2 =
[
N2, l

[.,.]
2

]
RN

,

which means that N + π is a co-boundary Nijenhuis with respect to the

multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector space

Γ(∧A)[2], with square N2.
Conversely, assume that N + π be a co-boundary Nijenhuis with respect

to the multiplicative graded Lie algebra structure l
[.,.]
2 on the graded vector

space Γ(∧A)[2], with square N2, that is,
[
N + π,

[
N + π, l

[.,.]
2

]
RN

]

RN

=
[
N2, l

[.,.]
2

]
RN

. (84)

Decomposing by homogeneous components, we get
[
N + π,

[
N + π, l

[.,.]
2

]
RN

]

RN

= l
[.,.]N,N

2 +

([
N, l

[.,.]
2 (π, .)

]
RN

+ l
[.,.]N
2 (π, .)

)

+l
[.,.]
2 (π, π). (85)

From (84) and (85), we get
[
N2, l

[.,.]
2

]
RN

= l
[.,.]N,N

2 , (86)

([
N, l

[.,.]
2 (π, .)

]
RN

+ l
[.,.]N
2 (π, .)

)
= 0 (87)

and

l
[.,.]
2 (π, π) = 0. (88)

Equation (86) is equivalent to l
[.,.]N,N

2 = l
[.,.]N2

2 , or to [., .]N,N = [., .]N2, which
means that N is a Nijenhuis tensor on A. Equation (88) means that π is
Poisson, while Equation (87) gives

([
N, l

[.,.]
2 (π, .)

]
RN

+ l
[.,.]N
2 (π, .)

)
(P ) = 0,

or [
N, l

[.,.]
2 (π, .)

]
RN

(P ) = [π, P ]N
SN

, (89)



58 A. J. AZIMI, C. LAURENT-GENGOUX AND J.M. NUNES DA COSTA

for all P ∈ Γ(∧A). The definition of [., .]N
SN

gives

[π, P ]N
SN

= [N(π), P ]
SN

+ [π,N(P )]
SN

−N [π, P ]
SN

(90)

= 2 [πN , P ]
SN

+
[
N, l

[.,.],π
1

]
RN

(P )

= 2 [πN , P ]
SN

−
[
N, l

[.,.]
2 (π, .)

]
RN

(P ),

where in the second equality we used N(π) = 2πN and the definition of the
Richardson-Nijenhuis bracket. From (89) and (90), we get

[π, P ]N
SN

= [πN , P ]
SN

.

and this completes the proof that (π,N) is a Poisson-Nijenhuis structure on
the Lie algebroid (A, [., .] , ρ).

Last, we shall say a few words about the so-called PΩ-structures [1, 14].
Recall that a PΩ-structure on a Lie algebroid (A, ρ, [., .]) is a pair (π, ω) where
π ∈ Γ(∧2A) is a Poisson element and ω ∈ Γ(∧2A∗) is a 2-form, with d

Aα = 0.
The 2-form ω ∈ Γ(∧2A∗) determines a morphism ω♭ : A → A∗, given by
〈Y, ω♭(X)〉 = ω(X, Y ). Defining a (1, 1) tensor N := π# ◦ω♭, it is known that
(π,N) is a Poisson-Nijenhuis structure while (ω,N) is an ΩN -structure.

Proposition 7.11. Let (π, ω) be a PΩ-structure on a Lie algebroid (A, [., .] , ρ).
Then, N = ω + π is a co-boundary Nijenhuis form, with curvature, with

respect to the multiplicative graded Lie algebra structure l
[.,.]
2 on the graded

vector space Γ(∧A)[2], with square N , where N = π# ◦ ω♭. The deformed

structure is −l
[.,.],π
1 .

Proof : Observe that

l
[.,.],π
1 (P ) = [π, P ]

SN
= −l

[.,.]
2 (π, P ) = −

[
π, l

[.,.]
2

]
RN

(P )

for all P ∈ Γ(∧2A). This means that

l
[.,.],π
1 = −

[
π, l

[.,.]
2

]
RN

. (91)

Hence, [
N , l

[.,.]
2

]
RN

= −l
[.,.],π
1 + d

Aω = −l
[.,.],π
1 , (92)
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which proves the last claim (and proves that N is weak Nijenhuis vector

valued form with respect to l
[.,.]
2 , since l

[.,.],π
1 is an L∞-structure on Γ(∧A)[2]).

Equations (92) and (91) imply that
[
N ,

[
N , l

[.,.]
2

]
RN

]

RN

= −
[
N , l

[.,.],π
1

]
RN

= −
[
ω, l

[.,.],π
1

]
RN

− [π, π]
SN

=

[
ω,

[
π, l

[.,.]
2

]
RN

]

RN

=
[
[ω, π]

RN
, l

[.,.]
2

]
RN

.

This shows that N is a co-boundary Nijenhuis vector valued form with re-

spect to the graded Lie algebra structure l
[.,.]
2 , on the graded vector space

Γ(∧A)[2], with square [ω, π]
RN

. A direct computation shows that [π, ω]
RN

=
N and completes the proof.
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