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Abstract: A 3D mathematical model for sorption/desorption by a cylindrical
polymeric matrix with dispersed drug is proposed. The model is based on a system
of partial differential equations coupled with boundary conditions over a moving
boundary. We assume that the penetrant diffuses into a swelling matrix and causes
a deformation which induces a stress driven diffusion and consequently a non-Fickian
mass flux. A physically sound non linear dependence between strain and penetrant
concentration is considered and introduced in a Boltzmann integral with a kernel
computed from a Maxwell-Wiechert model. Numerical simulations show how the
mechanistic behavior can have a role in drug delivery design.
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1. Introduction
In this paper we study a 3D model of diffusion of a solvent into a cylindri-

cal polymeric matrix containing drug and followed by the drug release. To
describe drug release from a polymeric matrix, several models have been pro-
posed [10, 11, 12, 14, 17, 23, 24]. However to the best of our knowledge, the
influence of the mechanical properties of a swelling polymer in the sorption
of a solvent and in the desorption of drug has not yet been considered in the
literature. We propose a model where we combine non-Fickian sorption of
the liquid agent, non-Fickian desorption coupled with non-linear dissolution
and polymer swelling.

It is well known that the diffusion of a liquid agent into a polymeric sample
cannot be completely described by Fick’s classical law. The liquid strains the
polymeric matrix that while swelling exerts a stress that acts as a barrier to
the incoming fluid. To explain these phenomena several authors [2, 4, 5, 10,
20, 21, 22] agree that a modified flux must be considered, that is

∂Cl
∂t

= −div(JF (Cl) + JNF (σl)) , (1)
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where Cl stands for the concentration of the penetrant, JF (Cl) = −(D(Cl)∇Cl)
represents the Fickian part of the flux, JNF (σl) = −(Dv(Cl)∇σl) represents
the non-Fickian part of the flux and σl stands for the stress. The functions
D(Cl)and Dv(Cl) represent respectively the Fickian diffusion coefficient and
a viscoelastic diffusion coefficient. Since equation (1) is coupled with a stress
evolution equation, the strain ε is introduced as a third variable. Many differ-
ent constitutive relationships between stress and strain have been considered
in the literature [2, 4, 3, 5, 15, 16]. In this paper we propose the use of a
Boltzmann integral of type

σ(t) = −
∫ t

0

E(t− s)∂ε
∂s

(s)ds , (2)

where E(t) is the relaxation modulus corresponding to a Maxwell-Wiechert
model [1, 18]. We note that the minus sign in (2) means that as the penetrant
solvent strains the polymeric matrix, a stress of opposite sign is developed.
When (2) is introduced in (1), the strain must be eliminated as a variable.
Therefore we consider a non-linear functional relation between strain and
concentration

ε = f(Cl) , (3)

where f is established using physical arguments [6], as we will briefly describe
in Section 2.

We assume that as the solvent penetrates the polymer the drug is present
in two states (dissolved and undissolved) and also that the drug release is
controlled by both non-Fickian diffusion and a non-linear dissolution. As the
amount of dissolved drug does not induce, locally, any kind of re-arrangement
of the polymeric chains, the non-Fickian character of the diffusion equation
that describes the drug release is due to solvent uptake.

We track the moving front resulting from the swelling of the polymer by
considering a volume conservation equation [23]. As we assume the swelling
to be independent in the radial and axial directions we use this volume con-
servation equation to track separately both of the moving fronts [8].

In Section 2 we establish a mathematical model to describe the absorbtion
and drug release. In Section 3 we introduce a volume conservation equation
to describe the swelling of the polymeric matrix. In Section 4 an Implicit-
Explicit (IMEX) numerical scheme is used to numerically solve the model. In
Section 5 some plots are presented to illustrate the behavior of the numerical
solutions. Finally in Section 6 some conclusions are addressed.
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2.Mathematical model
Let us consider a cylindrical polymeric matrix, with initial solid drug load-

ing C0
s . As the solvent penetrates the polymeric matrix, solid drug dissolves

and dissolved drug diffuses out. The following assumptions are made in the
model: (a) swelling is homogeneous and independent in the radial and axial
directions; (b) the transport of liquid within the polymer occurs by non-
Fickian diffusion; (c) the transport of drug out of the polymer occurs by
non-Fickian diffusion associated with solvent uptake and non-linear dissolu-
tion; (d) the positions of the polymer swelling front and dissolution front
coincide; and (e) a perfect sink condition is maintained for the drug and
equilibrium concentrations are maintained for the liquid.

To describe the viscoelastic behavior of the polymer, we consider a gener-
alized Maxwell-Wiechert model [1, 18] with m+ 1 arms in parallel as shown
in figure 1. Consequently the relaxation modulus E(t) is represented by

E(t) =
m∑
k=1

Eke
−t
τk + E0 , (4)

where the E ′ks are the Young modulus of the spring elements, the µ′ks rep-
resent the viscosity, τk = µk

Ek
are the relaxation times associated to each of

the m Maxwell fluid arms and E0 stands for the Young modulus of the free
spring.

Figure 1. Generalized
Maxwell-Wiechert model Figure 2. Cylindrical domain

Let Cl denote the concentration of the liquid solvent. The functional rela-
tion between Cl and the strain ε, is defined by

fl(Cl) =
Cl

ρl − Cl
. (5)

where ρl denotes the density of the liquid [6]. Then from (2), (4) and (5)
we conclude that the stress associated to solvent uptake and exerted by the
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polymer is defined as

σl = −

(
m∑
k=0

Ek

)
∇fl +

∫ t

0

(
m∑
k=1

Ek

τk
e
− t−sτk

)
∇fl(s)ds . (6)

The evolution of solvent penetration, drug diffusion and dissolution are
described by the following equations on the domain Ω ⊂ R3 and for t > 0,

∂Cl
∂t

= ∇ · (−JF (Cl)− JNF (σl)) = ∇ · (Dl(Cl)∇Cl +Dv(Cl)∇σl) , (7)

∂Cd
∂t

= ∇ · (Dd(Cl)∇Cd + υ(Cl)Cd) +Kd

(
Cs − Cd
Cs

)
Cl , (8)

∂Cs
∂t

= −Kd

(
Cs − Cd
Cs

)
Cl , (9)

where Cd, Cs denote the concentration of dissolved and solid drug respec-
tively, Dl, Dd the diffusion coefficients of the liquid solvent and the dissolved
drug respectively, Kd denotes the constant dissolution rate of the drug and
υ is defined as

υ(Cl) = Dv(Cl)
∇σl
Cl

.

Equation (7) states that liquid solvent transport is due to Fickian (JF )
and non-Fickian (JNF ) diffusion. At the same time, equation (8) states
that the local concentration of dissolved drug depends on Fickian diffusion
(Dd(Cl)∇Cd), convection (υ(Cl)) and on solid drug dissolution. While solid
drug dissolution can take place provided that Cl > 0, the velocity field υ
is due to the stress induced by the solvent income. Indeed, we have that
υ = JNF/Cl.

To establish a functional relation for the viscoelastic diffusion coefficient
Dv we follow [6]. We begin by assuming the existence of a stress gradient
∇σl, that implies the existence of a velocity field ν. Then the non-Fickian
flux JNF can be interpreted as a convective field of form

JNF = νCl . (10)

If we compute the velocity field ν using the Hagen-Poiseuille equation, we
have

ν = −R
2

8µ̂
∇p , (11)
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where R stands for the radius of a virtual cross section of the polymeric
sample available for the convective flux, p is the pressure drop and µ̂ repre-
sents the viscosity of a polymer-solvent solution characterized by a liquid (or
solvent) concentration equal to Cl (local solvent concentration). Thus from
(10) and (11) and identifying the pressure p with the viscoelastic stress σl,
we conclude that

Dv(Cl) =
R2Cl
8µ̂

. (12)

Let ml and Vl represent the mass and volume of the solvent respectively.
If ρl represents its density, then ml = ρlVl and Cl = ml

V0+Vl
, where V0 is the

volume of the polymeric matrix in the dry state. We conclude then that

Vl =
Cl

ρl − Cl
V0 ,

and as V0 = ∆x0S, we have

Vl
∆x0

=
Cl

ρl − Cl
S . (13)

The first member in (13) can be interpreted as a virtual cross section Sv
available for convective flow. As Sv = πR2 and S = πR2

0 where R0 is the
radius of the dry sample, we deduce the form of the viscoelastic coefficient
Dv,

Dv(Cl) =
R2

0C
2
l

8µ̂(ρl − Cl)
. (14)

A Fujita-type [9] exponential dependence for Dl(Cl) and Dd(Cl) is assumed
with

Dl(Cl) = Deqlexp(−βl(1−
Cl
Ce
l

)) , (15)

Dd(Cl) = Deqdexp(−βd(1−
Cl
Ce
l

)) , (16)

where Deql, Deqd denote respectively the diffusion coefficients of the liquid
solvent and the dissolved drug in the fully swollen sample and βl, βd dimen-
sionless positive constants.

We consider a cylindrical domain Ω ⊂ R3 with initial radius R0 and height
H0 (Figure 2). Due to the symmetry in θ direction, the three dimensional
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problem is reduced to a two dimensional case. Therefore equations (7)-(9)
can be rewritten in cylindrical coordinates as

∂Cl
∂t

=
1

r

∂

∂r

(
rDl(Cl)

∂Cl
∂r

+ rDv(Cl)
∂σl
∂r

)
+

∂

∂z

(
Dl(Cl)

∂Cl
∂z

+Dv(Cl)
∂σl
∂z

)
,

(17)

∂Cd
∂t

=
1

r

∂

∂r

(
rDd(Cl)

∂Cd
∂r

+ rυ(Cl)Cd

)
+

∂

∂z

(
Dd(Cl)

∂Cd
∂z

+ υ(Cl)Cd

)
+Kd

(
Cs − Cd
Cs

)
Cl , (18)

∂Cs
∂t

= −Kd

(
Cs − Cd
Cs

)
Cl , (19)

where 0 < r < R(t), 0 < z < H(t) and t > 0. Equations (17)-(19) are
completed with initial conditions

Cl = C0
l , Cd = 0, Cs = C0

s : for t = 0, 0 ≤ r ≤ R0, 0 ≤ z ≤ H0 , (20)

where C0
l , C

0
s ∈ R are positive constants. At the cylinder surface the bound-

ary conditions are

Cl = Ce
l , Cd = 0 : for t > 0, r = R(t), 0 ≤ z ≤ H(t)

and z = H(t), 0 ≤ r ≤ R(t) , (21)

where Ce
l ∈ R is a positive constant representing the concentration of the

liquid agent in the exterior of the cylinder. Symmetry conditions are applied
at the center of the matrix, hence we also have that

∂Cl
∂z

=
∂Cd
∂z

= 0 : for t > 0, r = 0, 0 ≤ z ≤ H(t)

∂Cl
∂r

=
∂Cd
∂r

= 0 : for t > 0, z = 0, 0 ≤ r ≤ R(t) . (22)

3. Tracking of the swelling fronts
In order to track the moving fronts due to swelling, we consider the follow-

ing conservation equation, where the total volume of the matrix is the sum
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of water, dissolved and undissolved drug volumes. We have

πR2(t)H(t)

=

∫ H(t)

0

∫ R(t)

0

2πr

[
1

ρl
Cl(r, z, t) +

1

ρd
(Cd(r, z, t) + Cs(r, z, t))

]
dr dz

+
m0

ρp
, (23)

where ρp and ρd denote the density of the polymer and the drug respectively,
m0 represent the initial mass of the dry polymeric matrix.

Since we assume the swelling to be independent in the two directions, by
taking time derivatives in (23), the moving fronts in the radial and axial
direction can be separately tracked.

To track the moving front in the radial direction we begin by fixing H(t) =
H and taking time derivative in (23) to obtain

R(t)H
∂R(t)

∂t

=

∫ H

0

∫ R(t)

0

r

[
1

ρl

∂Cl
∂t

(r, z, t) +
1

ρd

∂

∂t
(Cd(r, z, t) + Cs(r, z, t))

]
dr dz

+

∫ H

0

R(t)
∂R(t)

∂t

(
Ce
l

ρl
+
Cs|R(t)

ρd

)
dz . (24)

As we have that ∫ H

0

∫ R(t)

0

r

ρl

∂Cl
∂t

(r, z, t)dr dz

=

∫ H

0

R(t)

ρl

(
Dl(Cl(R(t), z, t))

∂Cl
∂r

(R(t), z, t)

+Dv(Cl(R(t), z, t))
∂σl
∂r

(R(t), z, t)

)
(25)

and ∫ H

0

∫ R(t)

0

r
1

ρd

∂

∂t
(Cd(r, z, t) + Cs(r, z, t)) dr dz

=

∫ H

0

R(t)

ρd
Dd(Cl(R(t), z, t))

∂Cd
∂r

(R(t), z, t)dz , (26)
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it follows from (24)-(26) that(
1− Ce

l

ρl
−
Cs|R(t)

ρd

)
H
∂R(t)

∂t

=

∫ H

0

[
1

ρl

(
Dl(C

e
l )
∂Cl
∂r

(R(t), z, t) +Dv(C
e
l )
∂σl
∂r

(R(t), z, t)

)
+

1

ρd

+Dd(C
e
l )
∂Cd
∂r

(R(t), z, t)

]
dz . (27)

To track the moving front in the axial direction, we fix R(t) = R and
proceeding as before we deduce(

1− Ce
l

ρl
−
Cs|H(t)

ρd

)
R2∂H(t)

∂t

= 2

∫ R

0

[
1

ρl

(
Dl(C

e
l )
∂Cl
∂z

(r,H(t), t) +Dv(C
e
l )
∂σl
∂z

(r,H(t), t)

)
+

1

ρd
Dd(C

e
l )
∂Cd
∂z

(r,H(t), t)

]
r dr . (28)

We note that if no mechanistic effects are taken into account and the drug
is considered to exist only in the dissolved state then (27) and (28) reduce
to the moving boundary conditions in [8].

4. Numerical scheme
In this section we propose a coupled Implicit-Explicit (IMEX) method to

solve the initial-boundary value problem (17)-(22) and (27), (28).
In [0, T ] we consider a grid P = {tn, n = 0, 1, ...,M} with t0 = 0, tM = T

and tn − tn−1 = ∆t. We denote by D−t the usual backward finite difference
operator with respect to the time variable.

As the spatial boundary is changing in time, we consider in the initial
interval [0, R0] a uniform grid I(t0) = {ri, i = 0, 1, .., N(t0)} with r0 = 0,
rN(t0) = R0 and ri− ri−1 = ∆r. Then in each interval [0, R(tn)] we consider a
non-uniform grid I(tn) = {ri, i = 0, 1, .., N(tn)} with r0 = 0, rN(tn) = R(tn)
and ri − ri−1 = ∆ri. We denote by D−r and Dr the usual backward and
forward finite difference operator with respect to the space variable r.

Analogously in the initial interval [0, H0] we consider a uniform grid J(t0) =
{zj, j = 0, 1, .., N(t0)} with z0 = 0, zK(t0) = H0 and zj − zj−1 = ∆z. Then
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in each one of the intervals [0, H(tn)] for n = 0, 1, ...,M , we consider a non-
uniform grid J(tn) = {zj, j = 0, 1, .., K(tn)} with z0 = 0, zK(tn) = H(tn) and
zj − zj−1 = ∆zj. We denote by D−z and Dz the usual backward and forward
finite difference operator with respect to the space variable z.

Let Mhr and Mhz be defined as

Mhruh(ri, zj) =
1

2
(uh(ri−1, zj) + uh(ri, zj)) ,

Mhzuh(ri, zj) =
1

2
(uh(ri, zj−1) + uh(ri, zj)) ,

then we introduce the following notations

IMl,r(ri, zj, tn) = Dl(MhrC
n−1
lh

(ri, zj))D−rC
n
lh

(ri, zj) ,

IMl,z(ri, zj, tn) = Dl(MhzC
n−1
lh

(ri, zj))D−zC
n
lh

(ri, zj) ,

EXl,r(ri, zj, tn−1) = Dv(MhrC
n−1
lh

(ri, zj))D−rσ
n−1
lh

(ri, zj) ,

EXl,z(ri, zj, tn−1) = Dv(MhzC
n−1
lh

(ri, zj))D−zσ
n−1
lh

(ri, zj) .

and

IMd,r(ri, zj, tn) = Dd(MhrC
n
lh

(ri, zj))D−rC
n
dh

(ri, zj) ,

IMd,z(ri, zj, tn) = Dd(MhzC
n
lh

(ri, zj))D−zC
n
dh

(ri, zj) ,

EXd,r(ri, zj, tn−1) = Dv(MhrC
n
lh

(ri, zj))
MhrC

n
dh

(ri, zj)

MhrC
n
lh

(ri, zj)
D−rσlh(C

n
lh

(ri, zj)) ,

EXd,z(ri, zj, tn−1) = Dv(MhzC
n
lh

(ri, zj))
MhzC

n
dh

(ri, zj)

MhzC
n
lh

(ri, zj)
D−zσlh(C

n
lh

(ri, zj)) ,

where we have used IM and EX to underline the implicit and the explicit
character of the discretization respectively.
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The IMEX method for (17)-(19) is defined by

D−tC
n
lh

(ri, zj) =
1

ri
Dr ((Mhrri)IMl,r(ri, zj, tn) + (Mhrri)EXl,r(ri, zj, tn−1))

+Dz (IMl,z(ri, zj, tn) + EXl,z(ri, zj, tn−1)) , (29)

D−tC
n
dh

(ri, zj) =
1

ri
Dr ((Mhrri)IMd,r(ri, zj, tn) + (Mhrri)EXd,r(ri, zj, tn−1))

+Dz (IMd,z(ri, zj, tn) + EXd,z(ri, zj, tn−1))

+Kd

(
Cn−1
sh

(ri, zj)− Cn−1
dh

(ri, zj)

Cn−1
sh

(ri, zj)

)
Cn
lh

(ri, zj) , (30)

D−tC
n
sh

(ri, zj) = −Kd

(
Cn−1
sh

(ri, zj)− Cn
dh

(ri, zj)

Cn−1
sh

(ri, zj)

)
Cn
lh

(ri, zj) , (31)

with initial conditions

C0
lh

= C0
l , C

0
dh

= 0, Csh = C0
s : for t = 0, 0 ≤ ri ≤ R0, 0 ≤ zj ≤ H0 ,(32)

boundary conditions on the cylinder surface

Clh = Ce
l , Cdh = 0 : for n > 0, ri = R(tn), 0 ≤ zj ≤ H(tn)

and zj = H(tn), 0 ≤ ri ≤ R(tn) , (33)

and boundary conditions at the symmetric axes

D−zClh = D−zCdh = 0 : for n > 0, ri = 0, 0 ≤ zj ≤ H(tn)

D−rClh = D−rCdh = 0 : for n > 0, zj = 0, 0 ≤ ri ≤ R(tn) . (34)

The moving front defined by (27) and (28) is tracked with the following
equations

(
1− Ce

l

ρl
−
Cs|R(tn)

ρd

)
H(tn)D−tR(tn+1)

= ∆z

K(tn)∑
j=1

1

ρl

(
Dl(C

e
l )D−rC

n
lh

(R(tn), zj) +Dv(C
e
l )D−rσ

n
lh

(R(tn), zj)
)

+
1

ρd
Dd(C

e
l )D−rC

n
dh

(R(tn), zj , (35)
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and (
1− Ce

l

ρl
−
Cs|H(tn)

ρd

)
R2(tn)D−tH(tn+1)

= 2∆r

N(tn)∑
i=1

ri
ρl

(
Dl(C

e
l )D−rC

n
lh

(ri, H(tn)) +Dv(C
e
l )D−rσ

n
lh

(ri, H(tn))
)

+
ri
ρd
Dd(C

e
l )D−rC

n
dh

(ri, H(tn)) . (36)

We compute the concentration profiles at time step tn using the known
concentration profiles at tn−1 with boundary conditions (33) and (34). Then
we use (35) and (36) to obtain the new front position for the next time step.

5. Numerical Results
In what follows we exhibit some numerical results for the initial-boundary

value problem (17)-(22) and (27), (28) using the method (29)-(36). In (4)
we consider m = 1, that is a Maxwell fluid arm in parallel with a free spring.
The following values for the parameters have been considered,

R0 = 1× 10−3 m, ∆rmax = 5× 10−5 m, H0 = 1× 10−3 m,

∆zmax = 5× 10−5 m, Deql = 3.74× 10−9 m2/s, Deqd = 2.72× 10−10 m2/s,

βl = 0.8, βd = 0.5, µ̂ = 20× 105 Pas, ρl = 1000 kg/m3,

ρp = 1175 kg/m3, ρd = 1400 kg/m3, E1 = 9× 103 Pa,

E0 = 1× 103 Pa, µ1 = 225× 104 Pas, Ce
l = 755 Kg/m3,

C0
l = 0 Kg/m3, C0

s = 4.5 Kg/m3, Kd = 1× 10−2 s−1 and ∆t = 0.01 s.

In Figure 3 we plotted the behavior of the concentration of the liquid
solvent as it diffuses into the polymeric cylinder at t = 1s, t = 8s, t = 15s
and t = 25s. A quarter of the cylinder cross section was modeled due to
symmetries. The axes z and r correspond to the inner part of the cylinder
where symmetry conditions (22) were considered. The outer parts correspond
to the expansion fronts where the constant source of concentration Ce

l is
assumed. We observe a smooth solution that develops from low levels of
concentration to high levels of concentration as expected, since the liquid
penetration occurs from the outermost regions of the plot toward the axes.

In Figure 4 we present plots of the concentration of dissolved drug at t = 1s,
t = 8s, t = 15s and t = 25s. As before, the axes z and r correspond to the
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Figure 3. Concentration of solvent Cl, for different t

inner part of the cylinder where symmetry conditions (22) were considered.
The outermost part of the plots correspond to the expansion fronts where
a perfect sink condition is assumed. We observe that regions where the
concentration of the liquid solvent is high, correspond to regions where the
concentration of dissolved drug is also high.
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Figure 4. Concentration of dissolved drug Cd, for different t

In Figure 5 we show plots of the concentration of solid drug at t = 1s,
t = 8s, t = 15s and t = 25s. We observe that as the concentration of
dissolved drug increases, the concentration of solid drug decreases smoothly
towards the moving fronts. On the contrary to what is observed in the plots
of dissolved drug, the regions of highest solid drug concentration correspond
to regions of lowest liquid agent concentration.

In Figures 6 and 7 we plotted the movement in time of the dimensionless
swelling fronts in both axial and radial directions. We observe that in both
cases, the initial uptake of the solvent produces an initial rapid growth of the
swelling followed by an equilibrium state of the fronts.

According to Flory theory [7] there is a link between E0 and Ce
l , more

precisely, at equilibrium we have

ln(1− φp) + φp + χφ2
p + ρxV1

(
φ

1
3
p − 0.5φp

)
= 0 , (37)

where φp represent the polymer volume fraction, V1 the solvent molar volume,
ρx is the crosslink density and χ is the Flory interaction parameter. As ρx
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Figure 5. Concentration of undissolved drug Cs, for different t

Figure 6. Swelling in the
radial direction

Figure 7. Swelling in the
axial direction

can be computed with the formula

ρx =
E0

3RgT
, (38)

where Rg is the universal gas constant and T the absolute temperature.
Assuming that χ = 0.6, T = 298.15 K and V1 = 18.064× 10−6 m3/mol, then
once E0 is fixed, φp can be calculated with (37) and the corresponding Ce

l

can be obtained from

Cl = ρl(1− φp) . (39)
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In Figures 8 and 9 we present the dimensionless swelling fronts as functions
of the parameter E0 and its corresponding Ce

l . In both cases we observe that
the fronts are decreasing functions of E0. We note that this behavior is
physically sound, since an increase in E0 corresponds to an increase in the
resistance of the polymer to swelling.

Figure 8. Radial swelling,
R(t)/R0 as a function of E0

Figure 9. Axial swelling,
H(t)/H0 as a function of E0

By Md/Md0(t), where Md is the total mass of drug released at time t and
Md0 is the initial mass loaded in the polymeric matrix, we represent the
dimensionless total mass of drug released at time t defined as

Md/Md0(t) = 1− 2

R2
0H0C0

s

∫ H(t)

0

∫ R(t)

0

r (Cs(r, z, t) + Cd(r, z, t)) dr dz . (40)

and by Ms/M∞(t) the mass of the liquid solvent inside of the matrix at time
t, defined as

Ms/M∞(t) =
2

R2
eqHeqCe

l

∫ H(t)

0

∫ R(t)

0

rCl(r, z, t)dr dz , (41)

where Req and Heq are the values of R(t) and H(t) at equilibrium, respec-
tively.

In order the study the effects of swelling in drug release we plotted Md/Md0

as a function of E0 in Figures 10 and 11. In Figure 10 we assume that the
polymer does not swell and in Figure 11 a moving boundary due to swelling is
considered. When we say that no swelling is present we mean that L(t) = L0

for all t. We observe in Figure 10 that Md/Md0 is a decreasing function of E0.
Conversely in Figure 11 we observe that Md/Md0 is an increasing function of
E0. As shown in Figures 8 and 9, an E0 decrease implies a swelling increase
and, therefore, the dissolved drug has to travel a larger distance to the moving
front. Consequently, less dissolved drug accumulates at the front where the
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perfect sink condition is assumed and the mass of drug released decreases as
the swelling increases.

Figure 10. Mass of drug
released, Md/Md0 as a func-
tion of E0 with L(t) = L0

Figure 11. Mass of drug
released, Md/Md0 as a func-
tion of E0

In Figures 12 and 13 we show plots of Ms/M∞ and Md/Md0 respectively
as a function of µ1. Figure 12 shows that Ms/M∞ is a decreasing function
of µ1 and Figure 13 that Md/Md0 is an increasing function of µ1. In Figure
12 we did a a 5th degree polynomial fitting in order to avoid the jumps that
appear as a consequence of the moving of the boundary.

Figure 12. Mass of sol-
vent, Ms/M∞ as a function of
the viscosity µ1

Figure 13. Mass of drug
released, Md/Md0 as a func-
tion of the viscosity µ1

Finally in Figure 14 we plotted R(t)/H(t) for different initial values of
R0/H0. As proved by Tanaka in [19], we observe that upon swellingR(t)/H(t)
is constant and approximately equal to R0/H0.

6. Conclusions
In this paper a 3D mathematical model to describe the drug release from a

cylindrical polymeric matrix is presented. We assume that a solvent diffuses
into the matrix creating a stress driven diffusion, thus a non-Fickian mass
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Figure 14. R(t)/H(t) as a function of R0/H0

flux. To describe this phenomena, we consider a modified flux equation that
is the sum of a Fickian flux JF and a non-Fickian flux JNF . The viscoelastic
behavior of the polymer is described by considering a mechanistic system of
dampers and springs known as the generalized Maxwell-Wiechert model and
by introducing concentration dependent functional relations for the strain
and the viscoelastic diffusion coefficient. For the drug release, as we assume
that the drug is present in two states dissolved and undissolved, the process
is described by Fickian diffusion associated to solvent uptake coupled with
non-linear dissolution. To describe the swelling of the polymeric cylinder
we consider a volume conservation equation to track the movement of the
fronts in both radial and axial directions. To solve the initial-boundary value
problem associated to the system of equations we use an Implicit-Explicit
(IMEX) method to obtain numerical solutions. We exhibit several plots to
illustrate the behavior of the solutions and the influence that the parameters
associated to the model have over the drug release.

The great advantage of the proposed model consists in the possibility of
easily and directly incorporating experimental rheological information about
polymer-solvent matrix system (knowledge of Ek and µk). Indeed, once the
mechanical spectrum referring to a particular polymer-solvent matrix is ex-
perimentally determined by rheological tests (frequency sweep), the Maxwell-
Wiechert model (also called generalized Maxwell model by rheologists) can
be fitted to experimental data for the determination of Ek and µk [13]. Of
course, our model could be also implemented considering the dependence of
Ek and µk on local solvent concentration. Again, this information can be
experimentally deduced by determining the mechanical spectrum referring
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to matrices characterized by an increasing polymer concentration. Finally it
is worth mentioning that all the parameters of the model can be measured
or estimated according to well-known theories.
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