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1. Introduction
Application of drug eluting stent (DES) for prevention of restenosis, that is

the re-narrowing of the blood vessel after stent implantation, is a promising
technology which combines a stent, that is a mechanical support of restricted
lumen with local drug delivery. Mathematical modelling and numerical sim-
ulation are useful tools in the design of DES that lead to optimized clinical
results and give further insight on the pharmacokinetics of the cardiovascular
drug release.
A DES (Figure 1), consists of a metallic stent strut coated with a poly-
meric layer that encapsulates a therapeutic drug to reduce smooth muscle
cell growth and to prevent inflammatory response which are the predominant
causes of neointimal proliferation and in-stent restenosis.
Drug release depends on many factors, such as the strut geometry and lo-
cation, the coating properties and drug characteristics such as porosity and
diffusivity. Due to the involvement of so many factors, prediction of drug
release appears as an important issue and mathematical models are a useful
predictive tool to design an appropriate drug delivery system [3, 12].
During the last years, a number of studies have proposed mathematical mod-
els for coupled drug delivery in the cardiovascular tissues. We refer without
being exhaustive [3 − 11, 14] and also [12] as a review paper. Most of these
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Figure 1. Drug Eluting Stent (DES) implanted in the blood artery

studies address the release of drug and its numerical behavior in one dimen-
sion, while the behaviour of the biodegradable materials is disregarded.
Pontrelli and de Monte [8 − 10], developed a mathematical model for drug
release through a drug eluting stent in contact with the vessel wall as a cou-
pled cardiovascular drug delivery system. They analyzed numerically and
analytically the drug release from the coating into both an homogeneous
mono-layer wall [8] and an heterogenous multi-layered wall [10] in one di-
mension. Despite their interesting results, the biodegradation process of the
carrier polymer, the penetration of the biological fluid into the coating and
the egression of polymer’s materials from the coating have not been taken
into account.
Prabhu and Hossainy [11] developed a mathematical model to predict the

transport of drug with simultaneous degradation of the biodegradable poly-
mer in the aqueous media. These authors use a simplified wall-free condition,
in which the influence of the arterial wall is modeled through the coupling
with Robin boundary condition. An important feature of this model, which
differentiates it from other models, are the conditions used to represent the
polymer degradation. It is assumed that a set of oligomers can be identified
as one compartment, characterized by a certain molecular weight range, for
which their diffusion characteristics and degradation kinetics can be consid-
ered to be identical. Furthermore, the model in [11] takes into account the
underlying chemical reactions responsible for degradation in a more detailed
form than the models presented by other researchers. It also accounts for
the increase of diffusivity of different species involved as time evolves. In this
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paper, while following the approach in [11], we have completed the model
with the dynamics of the drug in the arterial vessel. Preliminary results were
obtained in [5].
The geometrical and mechanical effects of the stent strut in degradation and
drug release as well as the penetration of the oligomer and lactic acid into the
vessel wall are considered negligible. As the transport properties through the
glycocalyx (the coverage of endothelium) are unknown, we have considered
values in the endothelium layer. A perfect sink condition, a fixed zero con-
centration at the interface between the vascular wall and the vascular lumen
are considered.
The paper is organized as follows. Section 2 is devoted to the description of
the model and its initial, boundary and interface conditions. In section 3 we
briefly explain the mass behaviour of the materials in the phenomenological
approach. In section 4 we present a variational formulation and establish a
stability result for the continuous model and in Section 5 using an Implicit
Explicit Finite Element method, we establish a discrete variational form.
Numerical simulations are discussed in section 6.

2. Description of the model
We consider a stent coated with PLA containing the drug and in contact

with the arterial wall. When the coated stent is immersed in the artery and
enters in contact with the vessel wall, a mass transport process and a series
of chemical reactions start.
We assume that two main reactions are responsible for the degradation of

Figure 2. xy-cross section of the physical model
PLA into lactic acid and oligomers. The first reaction is the hydrolyzing of
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the PLA producing molecules with smaller molecular weights, 20K ≤ MW ≤
120K for oligomers and MW ≤ 20K for lactic acid; second reaction is the
hydrolyzing of the oligomers giving lactic acid. The reactions are represented
by {

Reaction 1: C1,S + C2,S
κ1−−→ C3,S + C4,S,

Reaction 2: C1,S + C3,S
κ2−−→ C4,S,

(1)

where C1,S, C2,S, C3,S and C4,S represent the concentrations of the fluid, PLA,
oligomers and lactic acid in the coating respectively. The constants κ1 and
κ2 stand for the reaction rates of the first and second reactions respectively.
In the coating, the problem is described by the following nonlinear reaction
diffusion equations

∂Cm,S

∂t = ∇.
(
Dm,S∇Cm,S

)
+ Fm(C1,S, . . . , C4,S), m = 1, . . . , 5 (2)

where C5,S denotes the concentration of the drug in the coating and the
reaction terms are defined by

Fm(C1,S, . . . , C4,S) =



−
∑
i=1,2

Fi(C1,S, . . . , C4,S) m=1

−F1(C1,S, . . . , C4,S) m=2∑
i=1,2

(−1)i−1Fi(C1,S, . . . , C4,S) m=3∑
i=1,2

Fi(C1,S, . . . , C4,S) m=4

0 m=5.

(3)

In (3), F1 and F2 are defined by{
F1(C1,S, . . . , C4,S) = κ1C1,SC2,S

(
1 + αC4,S

)
,

F2(C1,S, . . . , C4,S) = κ2C1,SC3,S

(
1 + βC4,S

)
.

(4)

We will simulate the model in two dimensions. Accordingly the concentra-
tion Cm,S, m = 1, . . . , 5 are real functions defined in [0,∞)× [−LxS

, LxS
] ×

[−LyS , 0].
The diffusivities of the fluid, oligomers, lactic acid and drug will evolve with
time. This variation occurs due to the progressive degradation of the polymer
as well as to the swelling of the polymer. The diffusivities Dm,S of the species
will attain a lower bound in the PLA and an upper bound in the fluid. It is
therefore assumed that the diffusion coefficients increase exponentially with
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the extent of the hydrolysis of PLA.
The diffusivity coefficients in the coated stent are represented by

Dm,S = D0
m,Se

αm,S

C0
2,S−C2,S

C0
2,S , m = 1, . . . , 5, (5)

where D0
m,S (cm2/s) is the diffusivity of the respective species in the unhy-

drolyzed PLA and C0
2,S is the unhydrolyzed polymer concentration at the

initial time.
For the vessel wall, the following simplified model of diffusion equation with
constant diffusion coefficient Dd is assumed

∂Cd

∂t
= ∇.

(
Dd∇Cd

)
, (6)

where Cd stands for the drug concentration in the vessel wall and is defined
in [0,∞)× [−LxV

, LxV
]× [0, LyV ].

Since the degradation starts at t = 0, we assume there is no initial concentra-
tion of oligomers and lactic acid in the coating and that the drug and PLA
are uniformly distributed. In the coated stent and the vessel wall, the initial
conditions are defined by{

C1,S(0) = C3,S(0) = C4,S(0) = Cd(0) = 0,
C2,S(0) = C5,S(0) = 1.

(7)

We also assume that the boundary Γ1 is impermeable to the materials which
means no mass flux crosses it, that is

Dm,S∇Cm,SηS = 0, m = 1, . . . , 5 on Γ1, (8)

where ηS is the unit exterior normal to Γ1.
We assume that the blood flow in the arterial lumen does not significantly
influence the drug release and the transport in the arterial wall tissue. In Γ2

and Γ3, the boundary conditions are defined by{
D1,S∇C1,SηS = γ1,S(1− C1,S) on Γ2,Γ3,
Dm,S∇Cm,SηS = −γm,SCm,S m = 2, . . . , 5 on Γ2,Γ3,

(9)

where γm,S, m = 1, . . . , 5 represent partition coefficients.
To couple the transport in the coated stent and the vessel wall, the continuity
of the mass flux and concentration are assumed, that is{

D5,S∇C5,SηS = −Dd∇CdηV on Γ4,
C5,S = Cd, on Γ4.

(10)
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Concentration jumps may occur at the interface Γ4 in presence of a second
thin layer in the stent named topcoat that is used to slow down the release
rate. In this case, the boundary conditions on Γ4 are represented by{

D5,S∇C5,SηS = −Dd∇CdηV on Γ4,

D5,S∇C5,SηS = Pc

(C5,S

ε1
− Cd

ε2

)
on Γ4,

(11)

where Pc is the permeability of the topcoat, ε1 and ε2 are the porosity of the
coating and the vessel wall respectively. We have also assumed that Γ4 is
impermeable to all other components.
In what concerns Γ7, the interface layer between intima and media named
IEL a Robin condition of type

Dd∇CdηV = −γdCd on Γ7, (12)

is considered.
In the symmetric boundary layers of the vessel wall, Γ8 and Γ9, which are
considered sufficiently far away from the domain of interest, a no-flux con-
dition, Dd∇CdηV = 0 is assumed. We assume that the drug flux from the
arteria wall to the blood is given by

Dd∇CdηV = −γbCd on Γ5 ∪ Γ6, (13)

where γb is such that the endothelium offers a small resistance to the drug
transport.
Since the drug goes directly from the arterial wall to the blood and is

transported very fast away from the region of interest, we may assume a
perfect washout of the drug, Cd = 0, for the lumen-arterial wall boundaries
Γ5 and Γ6. The boundary conditions on lumen-arterial wall assume that the
endothelium does not offer any resistance to the drug transport from the wall
to the artery.
Summarizing, the various boundary and interface conditions are defined by

Dm,S∇Cm,SηS = 0, m = 1, . . . , 5 on Γ1,
D1,S∇C1,SηS = γ1,S(1− C1,S) on Γ2 ∪ Γ3,
Dm,S∇Cm,SηS = −γm,SCm,S, m = 2, . . . , 5 on Γ2 ∪ Γ3,
Dm,S∇Cm,SηS = 0, m = 1, . . . , 4 on Γ4,
C5,S = Cd, D5,S∇C5,SηS = −Dd∇CdηV on Γ4,
Dd∇CdηV = −γbCd on Γ5 ∪ Γ6,
Dd∇CdηV = −γdCd on Γ7,
Dd∇CdηV = 0 on Γ8 ∪ Γ9.

(14)
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3. Qualitative behaviour of the total mass of the system
In what follows we analyse the time behaviour of the total mass

M(t) =

5∑
m=1

∫
S

Cm,S(t)dxdy +

∫
V

Cd(t)dxdy,

where S and V stand for the stent and the vessel wall domains.
As we have

M′(t) =
5∑

m=1

∫
S

∂Cm,S

∂t (t)dxdy +

∫
V

∂Cd

∂t (t)dxdy,

considering (2) and (6), and taking into account the boundary conditions we
obtain

M′(t) = γ1,S

∫
Γ2∪Γ3

(1− C1,S(t))ds−
4∑

m=2

γm,S

∫
Γ2∪Γ3

Cm,S(t)ds− γb

∫
Γ5∪Γ6

Cd(t)ds

+

∫
Γ4

D5,s∇C5,S(t)ηSds+

∫
Γ4

Dd∇Cd(t)ηV ds− γ5,S

∫
Γ2∪Γ3

C5,S(t)ds− γd

∫
Γ7

Cd(t)ds

−
∫
S

κ2,SC1,S(t)C3,S(t)(1 + βC4,S(t)) dxdy.

The coupling conditions (10) lead to

M′(t) = −MΓ(t)−MH(t) + γ1,S

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣,
where

MΓ(t) =
5∑

m=1

γm,S

∫
Γ2∪Γ3

Cm,Sds+ γd

∫
Γ7

Cd(t)ds+ γb

∫
Γ5∪Γ6

Cd(t)ds,

and the mass of hydrolyzed oligomers is given by

MH(t) =

∫
S

κ2,SC1,S(t)C3,S(t)(1 + βC4,S(t)) dxdy,

and

∣∣∣∣Γ2∪Γ3

∣∣∣∣ represents the length of the boundary segment Γ2∪Γ3. Finally,

integrating in time we deduce

M(t) = M(0) + γ1,S

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣t−
∫ t

0

MH(µ) dµ−
∫ t

0

MΓ(µ) dµ,
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This equality means that the total mass in the system at time t is given
by the difference between the initial mass added with the mass of fluid that
enters in the system until time t and the mass of hydrolyzed oligomers until
time t, the mass of the components that are on the boundary until time t:
fluid, C1,S, PLA, C2,S, oligomers and lactic acid, C3,S, C4,S, respectively, and
drug, C5,S, and Cd.

4.Weak formulation of the coupled problems
In this section, we introduce a variational problem induced by the initial

boundary value problem (2) − (6) and (14). We start by introducing some
notations.
Let Ω be a bounded domain in R2 with boundary ∂Ω. By L2(Ω), H1(Ω)

and L2(∂Ω) we denote the usual Sobolev spaces endowed with the usual
inner products (., .), (., .)1, and (., .)∂Ω, respectively, and norms ∥.∥L2(Ω) and
∥.∥H1(Ω), ∥.∥L2(∂Ω), respectively. By L

∞(Ω) we represent the space os functions
v : Ω → R such that ∥∥v∥∥

L∞(Ω)
= ess sup

Ω
|v| < ∞.

The space of functions v : (0, T ) −→ H1(Ω) such that∫ T

0

∥∥v(t)∥∥2
H1(Ω)

dt < ∞

will be denoted by L2(0, T ;H1(Ω)) and L∞(0, T ;L∞(Ω)) represents the space
of functions v : (0, T ) −→ L∞(Ω) such that

ess sup
(0,T )

∥∥v(t)∥∥
L∞(Ω)

< ∞.

Let C, γ, D and C∗ be defined by

C =

{
C5,S in S,
Cd in V,

(15)

γ =

 γ5,S on Γ2 ∪ Γ3,
γb on Γ5 ∪ Γ6

γd on Γ7,
(16)

D =

 D0
5,Se

α5,S

C0
2,S−C2,S

C0
2,S in S,

Dd in V.
(17)
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and C∗ = (C1,S, C2,S, C3,S, C4,S).
In what follows we consider the weak solution of the Initial Boundary Value
Problem (IBVP) (2)− (6) and (14) defined by the variational problem:

Find (C∗, C) ∈
(
L2(0, T ;H1(S))

)4

× L2(0, T ;H1(S ∪ V )) such that ∂C∗

∂t ∈(
L2(0, T ;L2(S))

)4

and ∂C
∂t ∈ L2(0, T ;L2(S ∪ V )) and



4∑
m=1

(
∂Cm,S

∂t
(t), vm

)
S

+

(
∂C
∂t
(t), w

)
S∪V

= −
4∑

m=1

(
Dm,S∇Cm,S(t),∇vm

)
S

−
(
D∇C(t),∇w

)
S∪V

+
4∑

m=1

(
Fm(C

∗(t)), vm

)
S

+γ1,S

(
1− C1,S(t), v1

)
Γ2∪Γ3

−
4∑

m=2

γm,S

(
Cm,S(t), vm

)
Γ2∪Γ3

−
(
γC(t), w

)
Γ

a.e. in (0, T ), for all (v1, . . . , v4) ∈
4∏

m=1

H1(S), w ∈ H1(S ∪ V ),

Ci,S(0) = 0, i = 1, 3, 4,
Ci,S(0) = 1, i = 2, 5,
Cd(0) = 0.

(18)

where Γ = Γ2 ∪ Γ3 ∪ Γ5 ∪ Γ6 ∪ Γ7.
In what follows we study the behaviour of the solution of the initial value
problem (18). We start to study the energy functional

E∇(t) =

4∑
m=1

(∥∥∥∥Cm,S(t)

∥∥∥∥2

L2(S)

+ 2

∫ t

0

∥∥∥∥√Dm,S∇Cm,S(s)

∥∥∥∥2

L2(S)

ds

)
+

∥∥∥∥C(t)

∥∥∥∥2

L2(S∪V )

+2

∫ t

0

∥∥∥∥√D∇C(s)

∥∥∥∥2

L2(S∪V )

ds, t ∈ [0, T ]

(19)

Theorem 1. If (C∗, C) ∈
(
L2(0, T ;H1(S))

)4

× L2(0, T ;H1(S ∪ V )) in

which ∂C∗

∂t ∈
(
L2(0, T ;L2(S))

)4

and ∂C
∂t ∈ L2(0, T ;L2(S ∪ V )), is a so-

lution of the variational problem (18) such that Cm,S(t) ∈ H2(S), m =
1, . . . , 4, then there exists a positive constant K(∥C∗∥L∞(L∞)) depending on



10 J.A. FERREIRA, J.NAGHIPOOR AND P. DE OLIVEIRA

∥C∗∥L∞(L∞) = max
m=1,...,4

∥Cm,S∥L∞(L∞) such that the following holds

E∇(t) ≤ e2K(∥C∗∥L∞(L∞))tE∇(0) + γ1,S
4K(∥C∗∥L∞(L∞))

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣(e2K(∥C∗∥L∞(L∞))t − 1
)
, t ∈ [0, T ], (20)

where |Γ2 ∪ Γ3| is the length of the boundary Γ2 ∪ Γ3.

Proof : Taking in (18), vm = Cm,S(t) and w = C(t) we obtain

1
2
d
dtE∇(t) ≤

4∑
m=1

(
Fm(C

∗(t)), Cm,S(t)

)
S

+ γ1,S

(
1− C1,S(t), C1,S(t)

)
Γ2∪Γ3

−
4∑

m=2

γm,S

∥∥∥∥Cm,S(t)

∥∥∥∥
L2(Γ2∪Γ3)

− γ

∥∥∥∥C(t)

∥∥∥∥
L2(Γ)

(21)

that leads to

1
2
d
dtE∇(t) ≤

4∑
m=1

(
Fm(C

∗(t)), Cm,S(t)

)
S

+
γ1,S
4

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣. (22)

As H2(S) is embedded in the space of continuous bounded functions in S,
C0

B(S) [1], it can be shown that there exists a positive constantK(∥C∗∥L∞(L∞))
that depends on ∥C∗∥L∞(L∞) = max

m=1,...,4
∥Cm,S∥L∞(L∞) such that

4∑
m=1

(
Fm(C

∗(t)), Cm,S(t)

)
S

≤ K(∥C∗∥L∞(L∞))
4∑

m=1

∥∥∥∥Cm,S(t)

∥∥∥∥2
L2(S)

(23)

Inequality (22) leads to the differential inequality

d
dtE∇(t) ≤ 2K(∥C∗∥L∞(L∞)E∇(t) +

γ1,S
2

∣∣∣∣Γ2 ∪ Γ3

∣∣∣∣.
and consequently we deduce (20)

In (20), E∇(0) is the initial mass of the materials which is twice of the stent
area.
In order to simplify the presentation, we assume in what follows that diffusion
coefficients Dm, m = 1, . . . , 5 are constant. To study the stability of the
initial value problem (18) we need to consider two solutions C = (C∗, C) and
C̃ = (C̃∗, C̃) with different initial conditions C(0) and C̃(0), respectively, and



A COUPLED CARDIOVASCULAR DRUG DELIVERY MODEL 11

we need to establish∥∥∥∥C∗(t)− C̃∗(t)

∥∥∥∥2

L2(S)

+

∥∥∥∥C(t)− C̃(t)

∥∥∥∥2

L2(S∪V )

≤ B(t)
(∥∥∥∥C∗(0)− C̃∗(0)

∥∥∥∥2

L2(S)

+

∥∥∥∥C(0)− C̃(0)

∥∥∥∥2

L2(S∪V )

)
, t ∈ [0, T ],

(24)

where B(t) must be bounded in time. To establish the last inequality for a
system of quasi-linear diffusion-reaction equations it is sufficient to assume
that the reaction term has bounded partial derivatives. In our case is not
possible to use these arguments because we aren’t able to establish such
bound. To gain some insight on the stability behaviour of the of the initial
value problem (18) we study in what follows the stability of the linearization
of (18) in the solution of this problem. Taking C = (C∗, C), system of
equations (2)− (6) can be rewritten in the following form{

dC
dt

(t) = F(C(t)), t > 0,

C(0) is given,
(25)

where F(C(t)) = (Fm(C(t)))m=1,...,5,{
Fm(C(t)) = ∇.

(
Dm∇Cm(t)

)
+ Fm(C

∗(t)), m = 1, . . . , 4,
F5(C(t)) = ∇.

(
D∇C(t)

)
,

and Fm(C
∗(t)),m = 1, . . . , 4, are defined by (3)− (4). In (25) we consider

F with domain

{
v ∈

(
H2(S)

)4 ×H2(S ∪ V ) : v satisfies (14)

}
.

The linearization of the initial value problem (25) in C can be written in
the following form  dC̃

dt
(t) = LC̃(t) , t > 0,

C̃(0) is given,
(26)

where LC̃(t) = (LmC̃(t))m=1,...,5 with domain

{
v ∈

(
H2(S)

)4 × H2(S ∪ V ) :

v satisfies (14)

}
. is defined by

LmC̃(t) = ∇.
(
Dm∇C̃m(t)

)
+ FJ,m(C(t))C̃(t)
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and

FJ,m(C(t))C̃(t) =



−
∑
i=1,2

FJ,i(C(t))C̃(t) m=1

−FJ,1(C(t))C̃(t) m=2∑
i=1,2

(−1)i−1FJ,i(C(t))C̃(t) m=3∑
i=1,2

FJ,i(C(t))C̃(t) m=4

0 m=5.

(27)

In (27), FJ,1(C(t))C̃(t) and FJ,2(C(t))C̃(t) are defined by
FJ,1(C(t))C̃(t) = κ1C2,S(t)(1 + αC4,S(t))C̃1,S(t) + κ1C1,S(t)(1 + αC4,S(t))C̃2,S(t)

+κ1αC1,S(t)C2,S(t)C̃4,S(t),

FJ,2(C(t))C̃(t) = κ2C3,S(t)(1 + βC4,S(t))C̃1,S(t) + κ2C1,S(t)(1 + βC4,S(t))C̃3,S(t)

+κ2βC1,S(t)C3,S(t)C̃4,S(t).

(28)

Let C̃ and ˜̃C in
(
L2(0, T ;H1(S))

)4 × L2(0, T ;H1(S ∪ V )) in which ∂C∗

∂t ∈(
L2(0, T ;L2(S))

)4
and ∂C

∂t ∈ L2(0, T ;L2(S ∪ V )), be solutions of the varia-
tional problem associated with the initial value problem (26) corresponding

to (18), with initial conditions C̃(0) and ˜̃C(0).
We establish in what follows an upper bound for EW (t) defined by

EW (t) =

4∑
m=1

∥∥∥∥Wm,S(t)

∥∥∥∥2
L2(S)

+

∥∥∥∥W (t)

∥∥∥∥2
L2(S∪V )

, t ∈ [0, T ],

where W = C̃ − ˜̃C.
It can be shown that

1
2
d
dtEW (t) ≤ −

4∑
m=1

∥∥∥∥√Dm∇Wm,S(t)

∥∥∥∥2
L2(S)

−
∥∥∥∥√D∇W (t)

∥∥∥∥2
L2(S∪V )

+
4∑

m=1

(
FJ,m(C(t))Wm(t),Wm(t)

)
S
.

Consequently, there exists a positive constant K(∥C∗∥L∞(L∞)) depending on
∥C∗∥L∞(L∞) such that

d

dt
EW (t) ≤ K(∥C∗∥L∞(L∞))EW (t), t > 0.
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This inequality leads to

EW (t) ≤ eK(∥C∗∥L∞(L∞))tEW (0), (29)

which allow us to conclude the stability of the linearization of (18).

5. Finite dimensional approximation
To define a finite dimensional approximation for the solution of (18) we fixe

h > 0 and we introduce in S ∪ V an admissible triangulation Th, depending
on h > 0, such that the correspondent admissible triangulations induced in
S and V , respectively ThS

and ThV
, are compatible on Γ4.

To compute the semi-discrete Ritz-Galerkin aproximation Ch = (C∗
h, Ch)

for the weak solution C = (C∗, C) defined by (18), we introduce the finite
dimensional spaces

Pm
Q =

{
u ∈ C0(Q̄) ∩H1(Q̄) : u

∣∣
∆
= Pm, ∆ ∈ ThQ

, u satisfies boundary conditions

}
,

where Q = S, S∪V and Pm denotes a polynomial in the space variables with
degree at most m.
Let C∗

h = (Ch1,S
, Ch2,S

, Ch3,S
, Ch4,S

) and

Ch =

{
Ch5,S

in S,
Chd

in V,
(30)

The Ritz-Galerkin approximation Ch = (C∗
h, Ch) for the weak solution C =

(C∗, C) defined by (18), is computed solving the following variational prob-
lem:

Find (C∗
h, Ch) ∈

(
L2(0, T ;H1(S))

)4

× L2(0, T ;H1(S ∪ V )) such that
∂C∗

h

∂t ∈
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L2(0, T ;L2(S))

)4

and ∂Ch

∂t ∈ L2(0, T ;L2(S ∪ V )) and



4∑
m=1

(
∂Chm,S

∂t
(t), vhm

)
S

+

(
∂Ch

∂t
(t), wh

)
S∪V

= −
4∑

m=1

(
Dhm,S

∇Chm,S
(t),∇vhm

)
S

−
(
D∇Ch(t),∇wh

)
S∪V

+
4∑

m=1

(
Fm(C

∗
h(t)), vhm

)
S

+γ1,s

(
1− Ch1,S

(t), vh1

)
Γ2∪Γ3

−
4∑

m=2

γm,S

(
Chm,S

(t), vhm

)
Γ2∪Γ3

−
(
γCh(t), wh

)
Γ

in (0, T ], for all (vh1 , . . . , vh4) ∈
4∏

m=1

Pm
S , and wh ∈ Pm

S∪V

Chi,S
(0) = 0, i = 1, 3, 4,

Chi,S
(0) = 1, i = 2, 5,

Chd
(0) = 0.

(31)

In (31), we consider Dhm,s
= D0

m,se
αm,S

C0
2,S−Ch2,S

(t)

C0
2,S for m = 1, . . . , 4, and

Dh =

 D0
5,Se

α5,S

C0
2,S−Ch2,S

(t)

C0
2,S in S,

Dd in V.
Following the proof of Theorem 1 it can be shown that E∇(t) defined

with the Ritz-Galerkin approximation Ch = (C∗
h, Ch) satisfies an inequal-

ity analogous to (20). Moreover, for the linearization of (31) in its solution
of Ch = (C∗

h, Ch) it can be shown an inequality analogous to (29).

6. Numerical Experiments
In this section, we analyse the material behavior and influence of parame-

ters of the model in the release rate.
All experiments have been done with open source partial differential equation
solver freeFEM++ with a maximum number of mesh elements n=150 and
using IMEX backward integrator with ∆t = 10−3. Several choices of finite
element spaces can be made, but we consider here the piecewise linear finite
element space P1. In Figure 3, we plot the drug distribution in the stent and
vessel wall after 6 hours, 1 day, 7 and 14 days using parameters of Table 1.
When the drug reaches Γ7 it crosses to another layer as described by Robin
boundary conditions (12). We compute the fraction of the masses retained
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Parameter Value Parameter Value
LxS

7× 10−4 LxV
9× 10−4

LyS 1× 10−4 LyV 2× 10−4

γm,S,γd 105 γb 1010

κ1 1× 10−6 α 1
κ2 1× 10−8 β 10
D0

1,S 5× 10−7 D0
2,S 1× 10−15

D0
3,S 5× 10−12 D0

4,S 3× 10−12

D0
5,S 2× 10−8 Dd 5× 10−8

Table 1. Parameters of the model in the drug eluting stent and
vessel wall

Figure 3. Drug distribution in the coating and the vessel wall after 6 hours
(up-left), 1 day (up-right),7 (down-left) and 14 days (down-right)

in the coating and also drug in the vessel wall by

ρm,S(t) =
1
|S|

∫ LyS

−LyS

∫ LxS

0

Cm,S(t)dxdy, m = 1, . . . , 5,

ρd(t) =
1
|V |

∫ LyV

−LyV

∫ LxV

0

Cd(t)dxdy,

(32)

where |S| and |V | represent the measure of S and V respectively. In Figure
4, we exhibit the mass of drug both in the coating and in the vessel wall as
well as the mass of the fluid, PLA and lactic acid in the coating during the
first 12 hours using different diffusion coefficients. It is observed in Figure
4 (a) that small diffusion coefficient will increase accumulation of the drug in
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Figure 4. (a), left: Mass of Drug in the Vessel wall, Fluid and lactic
acid in the stent, (b), right: Mass of Drug and PLA in the stent, D1,S =
5×10−8, D5,S = 2×10−9, Dd = 5×10−9 (Case A) and D1,S = 5×10−7, D5,S =
2× 10−8, Dd = 5× 10−8 (Case B)

α and β Fluid PLA Oligomer Polylactic Acid
α = 0, β = 0 2.1177 99.9631 0.0309 0.0313
α = 1, β = 1 2.1176 99.9629 0.0311 0.0315
α = 10, β = 1 2.1171 99.9612 0.0328 0.0332
α = 1, β = 10 2.1176 99.9629 0.0311 0.0315
α = 10, β = 10 2.1170 99.9612 0.0328 0.0332
α = 100, β = 10 2.1060 99.9322 0.0608 0.0616

Table 2. Mass of the fliud, PLA, oligomers and lactic acid in
the coating using data of Table 1 by manipulating α and β at
the first day

the vessel wall resulting in higher drug resistance time and also will increase
the value of fluid and lactic acid in the stent. In Figure 4 (b), an increment
in the PLA degradation and also drug release are observed by decaying the
diffusion coefficients of drug and fluid. In Figure 5 (left), we exhibit the fluid
penetration into the coated stent. we observe that the fluid is penetrating
into the PLA increasingly during the time till it reaches a steady state level.
In Figure 5 (right), the degradation of PLA into smaller particles, released
into the blood artery is shown. It is assumed that the penetration of the
PLA and also its products, oligomer and lactic acid, into the vessel wall are
negligible. There is a good agreement between fluid’s penetration into the
polymer and surface errosion of PLA in the stent.
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Figure 5. Fluid penetration (left) and PLA degradation (right)
after 1 day, 7 and 14 days

Table 2 shows the effect of the autocatalysis coefficients on the degradation
of the polymer. As it can be observed, the polymer degrades a bit faster at
higher values of the autocatalysis coefficients α and the amount of oligomer
and lactic acid are also influenced by α. The mass does not seems very
sensitive to changes in β.
Figure 6 shows the influence of reaction rates on the release process. In
Figure 6 (a) we observe that when the reaction rate κ1 is decreased, more
accumulated fluid in the stent will be obtained. A little increment will also
happen when we decrease κ2. As it is seen in Figure 6 (b), when we decrease
the value of reaction rates κ1 and κ2, we will have some reduction in lactic
acid production.
Figures 6 (c)− (e) indicate that the changes in κ2 does not have any effect on



18 J.A. FERREIRA, J.NAGHIPOOR AND P. DE OLIVEIRA

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Time ( day )

M
as

s 
( 

%
 )

 

 

Fluid, κ
1
=10−6, κ

2
=10−8

Fluid, κ
1
=10−6, κ

2
=10−9

Fluid, κ
1
=10−7, κ

2
=10−8

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time ( Day )

M
as

s 
( 

%
 )

 

 

Lactic acid, κ
1
=10−6, κ

2
=10−8

Lactic acid, κ
1
=10−6, κ

2
=10−9

Lactic acid, κ
1
=10−7, κ

2
=10−8

0 1 2 3 4 5 6 7
88

90

92

94

96

98

100

Time ( Day )

M
as

s 
( 

%
 )

 

 

Drug, κ
1
=10−6, κ

2
=10−8

Drug, κ
1
=10−7, κ

2
=10−8

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Time ( Day )

M
as

s 
( 

%
 )

 

 

Drug, κ
1
=10−6, κ

2
=10−8

Drug, κ
1
=10−7, κ

2
=10−8

0 1 2 3 4 5 6 7
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

Time ( Day )

M
as

s 
( 

%
 )

 

 

PLA, κ
1
=10−6, κ

2
=10−8

PLA, κ
1
=10−7, κ

2
=10−8

Figure 6. Mass of particles during 7 days with different reaction rates,
(a), up-left: Mass of fluid in the stent, (b), up-right: Mass of lactic acid in
the stent, (c), down-left: Mass of Drug in the stent, (d), down-right: Mass of
Drug in the vessel wall, (e), down: Mass of PLA in the stent

the value of drug in the stent and vessel wall and also on the degradation of
PLA, whereas decrement of κ1 will decelerate the speed of drug release and
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PLA degradation in the stent and will accelerate a bit the speed of drug in
the vessel wall.

7. Conclusion
In recent years, mathematical modeling has become an effective tool to sim-

ulate drug delivery processes in DES leading to a deeper understanding of
the drug release mechanism both in biodegradable polymer and in the artery.
Even though the cardiovascular drug delivery process is not completely un-
derstood and is under influence of different biochemical and physical factors
and also the complete study needs a coupling with the blood flow and the
mechanics of the stent, but a simplified release model can help to figure out
the phenomena in a macroscopic viewpoint.
In this paper, a two dimensional mathematical model of in vivo drug delivery
from an eluting stent has been developed. Numerical simulations as well as
a sensitivity analysis of the parameters have been done using freeFEM++.
The degradation of the PLA into smaller particles such as oligomer and lactic
acid has been taken into account. The process of penetration of the liquid
into biodegradable polymer as well as the process of drug diffusion into the
blood and the vessel wall has been analyzed from a numerical viewpoint. The
sensitivity of the model to the perturbation of the effective parameters such
as diffusion coefficients, reaction rates and autocatalytic parameters are also
analyzed. The interplay between these parameters can be used as an efficient
tool in the design of the coating polymer in such a way that a predefined drug
delivery profile from eluting stents can be obtained.
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