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Abstract: 2-star-permutable categories were introduced in a joint work with Z.
Janelidze and A. Ursini as a common generalisation of regular Mal’tsev categories
and of normal subtractive categories. In the present article we first characterise these
categories in terms of what we call star-regular pushouts. We then show that the
3× 3 Lemma characterising normal subtractive categories and the Cuboid Lemma
characterising regular Mal’tsev categories are special instances of a more general
homological lemma for star-exact sequences. We prove that 2-star-permutability is
equivalent to the validity of this lemma for a star-regular category.
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Introduction

The theory of Mal’tsev categories in the sense of A. Carboni, J. Lambek
and M.C. Pedicchio [6] provides a beautiful example of the way how cate-
gorical algebra leads to a structural understanding of algebraic varieties (in
the sense of universal algebra). Among regular categories, Mal’tsev cate-
gories are characterised by the property of 2-permutability of equivalence
relations: given two equivalence relations R and S on the same object A, the
two relational composites RS and SR are equal:

RS = SR.

In the case of a variety of universal algebras this property is actually equi-
valent to the existence of a ternary term p(x, y, z) satisfying the identities
p(x, y, y) = x and p(x, x, y) = y [20]. In the pointed context, that is when the
category has a zero object, there is also a suitable notion of 2-permutability,
called “2-permutability at 0” [21]. In a variety this property can be expressed
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by requiring that, whenever for a given element x in an algebra A there is an
element y with xRyS0 (here 0 is the unique constant in A), then there is also
an element z in A with xSzR0. The validity of this property is equivalent
to the existence of a binary term s(x, y) such that the identities s(x, 0) = x

and s(x, x) = 0 hold true [21]. Among regular categories, the ones where
the property of 2-permutability at 0 holds true are precisely the subtractive
categories introduced in [16].
The aim of this paper is to look at regular Mal’tsev and at subtractive

categories as special instances of the general notion of 2-star-permutable
categories introduced in collaboration with Z. Janelidze and A. Ursini in
[9]. This generalisation is achieved by working in the context of a regular
multi-pointed category, i.e. a regular category equipped with an ideal N of
distinguished morphisms [7]. When N is the class of all morphisms, a situ-
ation which we refer to as the total context, regular multi-pointed categories
are just regular categories, and 2-star-permutable categories are precisely the
regular Mal’tsev categories. When N is the class of all zero morphisms in
a pointed category, we call this the pointed context, regular multi-pointed
categories are regular pointed categories, and 2-star-permutable categories
are the regular subtractive categories.
This paper follows the same line of research as in [9] which was mainly

focused on the property of 3-star-permutability, a generalised notion which
captures Goursat categories in the total context and, again, subtractive ca-
tegories in the pointed context.
In this work we study two remarkable aspects of the property of 2-star-

permutability. First we provide a characterisation of 2-star-permutable ca-
tegories in terms of a special kind of pushouts (Proposition 2.4), that we call
star-regular pushouts (Definition 2.2). Then we examine a homological dia-
gram lemma of star-exact sequences, which can be seen as a generalisation
of the 3× 3 Lemma, whose validity is equivalent to 2-star-permutability. We
call this lemma the Star-Upper Cuboid Lemma (Theorem 3.4). The validity
of this lemma turns out to give at once a characterisation of regular Mal’tsev
categories (extending a result in [11]) and, in the pointed context, a char-
acterisation of those normal categories which are subtractive (this was first
discovered in [17]).

Acknowledgement. The authors are grateful to Zurab Janelidze for some
useful conversations on the subject of the paper.
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1. Star-regular categories

1.1. Regular categories and relations. A finitely complete category C

is said to be a regular category [1] when any kernel pair has a coequaliser
and, moreover, regular epimorphisms are stable under pullbacks. In a regular
category any morphism f : X → Y has a factorisation f = m · p, where p

is a regular epimorphism and m is a monomorphism. The corresponding
(regular epimorphism, monomorphism) factorisation system is then stable
under pullbacks.
A relation ̺ fromX to Y is a subobject 〈̺1, ̺2〉 : R  X×Y . The opposite

relation, denoted ̺◦, is given by the subobject 〈̺2, ̺1〉 : R  Y × X. We
identify a morphism f : X → Y with the relation 〈1X , f〉 : X  X × Y

and write f ◦ for the opposite relation. Given another relation σ from Y to
Z, the composite relation of ̺ and σ is a relation σ̺ from X to Z. With
this notation, we can write the above relation as ̺ = ̺2̺

◦
1. The following

properties are well known (see [5], for instance); we collect them in a lemma
for future references.

Lemma 1.2. Let f : X → Y be any morphism in a regular category C.
Then:

(1) ff ◦f = f and f ◦ff ◦ = f ◦;
(2) ff ◦ = 1Y if and only if f is a regular epimorphism.

A kernel pair of a morphism f : X → Y , denoted by

(π1, π2) : Eq(f) ⇉ X,

is called an effective equivalence relation; we write it either as Eq(f) = f ◦f ,
or as Eq(f) = π2π

◦
1, as mentioned above. When f is a regular epimorphism,

then f is the coequaliser of π1 and π2 and the diagram

Eq(f)
π1 //

π2

// X
f

// // Y

is called an exact fork. In a regular category any effective equivalence relation
is the kernel pair of a regular epimorphism.

1.3. Star relations. We now recall some notions introduced in [10], which
are useful to develop a unified treatment of pointed and non-pointed categori-
cal algebra. Let C denote a category with finite limits, andN a distinguished
class of morphisms that forms an ideal, i.e. for any composable pair of mor-
phisms g, f , if either g or f belongs to N , then the composite g · f belongs
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to N . An N -kernel of a morphism f : X → Y is defined as a morphism
nf : Nf → X such that f · nf ∈ N and nf is universal with this property
(note that such nf is automatically a monomorphism). A pair of parallel
morphisms, denoted by σ = (σ1, σ2) : S ⇉ X with σ1 ∈ N , is called a star ;
it is called a monic star, or a star relation, when the pair (σ1, σ2) is jointly
monomorphic.
Given a relation ̺ = (̺1, ̺2) : R ⇉ X on an object X, we denote by

̺∗ : R∗ ⇉ X the biggest subrelation of ̺ which is a (monic) star. When C

has N -kernels, it can be constructed by setting ̺∗ = ( ̺1 ·nρ1, ̺2 ·nρ1 ), where
nρ1 is the N -kernel of ̺1. In particular, if we denote the discrete equivalence
relation on an object X by ∆X = (1X, 1X) : X ⇉ X, then ∆∗

X = ( n1X , n1X ),
where n1X is the N -kernel of 1X .
The star-kernel of a morphism f : X → Y is a universal star σ = (σ1, σ2) :

S ⇉ X with the property f ·σ1 = f · σ2; it is easy to see that the star-kernel
of f coincides with Eq(f)∗ ⇉ X whenever N -kernels exist.
A category C equipped with an ideal N of morphisms is called a multi-

pointed category [10]. If, moreover, every morphism admits an N -kernel,
then C will be called a multi-pointed category with kernels.

Definition 1.4. [10] A regular multi-pointed categoryC with kernels is called
a star-regular category when every regular epimorphism in C is a coequaliser
of a star.

In the total context stars are pairs of parallel morphisms, N -kernels are
isomorphisms, star-kernels are kernel pairs and a star-regular category is
precisely a regular category. In the pointed context, the first morphism σ1

in a star σ = (σ1, σ2) : S ⇉ X is the unique null morphism S → X and
hence a star σ can be identified with a morphism (its second component
σ2). Then, N -kernels and star-kernels become the usual kernels, and a star-
regular category is the same as a normal category [18], i.e. a pointed regular
category in which any regular epimorphism is a normal epimorphism.

1.5. Calculus of star relations. The calculus of star relations [9] can be
seen as an extension of the usual calculus of relations (in a regular category)
to the regular multi-pointed context. First of all note that for any relation
̺ : R ⇉ X we have

̺∗ = ̺∆∗
X .
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Inspired by this formula, for any relation ̺ from X to an object Y , we
define

̺∗ = ̺∆∗
X and ∗̺ = ∆∗

Y ̺.

Note that associativity of composition yields
∗(̺∗) = (∗̺)∗

and so we can write ∗̺∗ for the above.
For any relation σ (from some object Y to Z), the associativity of compo-

sition also gives
(σ∗)̺ = σ(∗̺).

It is easy to verify that for any morphism f : X → Y we have

f ∗ = ∗f ∗ and ∗f ◦ = ∗f ◦∗.

2. 2 -star-permutability and star-regular pushouts

Recall that a finitely complete category C is called a Mal’tsev category when
any reflexive relation in C is an equivalence relation [6, 5]. We recall the
following well known characterisation of the regular categories which are
Mal’tsev categories:

Proposition 2.1. A regular category C is a Mal’tsev category if and only if
the composition of effective equivalence relations in C is commutative:

Eq(f)Eq(g) = Eq(g)Eq(f)

for any pair of regular epimorphisms f and g in C with the same domain.

There are many known characterisations of Mal’tsev categories (see [2], for
instance, and references therein). The one that will play a central role in the
present work is expressed in terms of commutative diagrams of the form

C
c // //

g
��

A

f
��

D
d

// //

t

OO

B,

s

OO

(1)

where f and g are split epimorphisms (f ·s = 1B, g ·t = 1D), f ·c = d·g, s·d =
c · t, and c and d are regular epimorphisms. A diagram of type (1) is always
a pushout; it is called a regular pushout [4] (alternatively, a double extension
[15, 13]) when, moreover, the canonical morphism 〈g, c〉 : C ։ D×BA to the
pullback D×B A of d and f is a regular epimorphism. As observed in [12], a
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commutative diagram of type (1) is a regular pushout if and only if cg◦ = f ◦d

or, equivalently, gc◦ = d◦f . This suggests to introduce the following notion:

Definition 2.2. A commutative diagram (1) is a star-regular pushout if it
satisfies the identity cg◦∗ = f ◦d∗ (or, equivalently, gc◦∗ = d◦f ∗).

Diagrammatically, the property of being a star-regular pushout can be
expressed as follows. Consider the commutative diagram

Ng
## ##GGG��

ng

��

Na
��
na

��

// Nx
��
nx

��

C
p

$$ $$JJJ
J

g

��

c // // A

f

��

M

a

����
��
��
��
��
��
�

b
22dddddddddddddddddddddddd

''
m ''PPP

D ×B A
y

x

yyssssssssssssss

y
88 88pppppppppppppp

D

OO

d
// // B,

OO

(2)

where (D×BA, x, y) is the pullback of (f, d),m·p is the (regular epimorphism,
monomorphism) factorisation of the induced morphism 〈g, c〉 : C → D×B A.
Then the identity cg◦ = ba◦ allows one to identify cg◦∗ with the relation
(a · na, b · na), while f ◦d = yx◦ says that f ◦d∗ can be identified with the
relation (x · nx, y · nx). Accordingly, diagram (1) is a star-regular pushout
precisely when the dotted arrow from Na to Nx is an isomorphism. Notice
that in the total context the N -kernels are isomorphisms, so that m is an
isomorphism if and only if (1) is a regular pushout, as expected.
The “star-version” of the notion of Mal’tsev category can be defined as

follows:

Definition 2.3. [9] A regular multi-pointed category with kernels C is said
to be a 2-star-permutable category if

Eq(f)Eq(g)∗ = Eq(g)Eq(f)∗

for any pair of regular epimorphisms f and g in C with the same domain.

One can check that the equality Eq(f)Eq(g)∗ = Eq(g)Eq(f)∗ in the defini-
tion above can be actually replaced by Eq(f)Eq(g)∗ ≤ Eq(g)Eq(f)∗.
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In the total context the property of 2-star-permutability characterises the
regular categories which are Mal’tsev. In the pointed context this same
property characterises the regular categories which are subtractive [16] (this
follows from the characterisation of subtractivity given in Theorem 6.9 in
[17]).
The next result gives a useful characterisation of 2-star-permutable cate-

gories. Given a commutative diagram of type (1), we write g〈Eq(c)〉 and
g〈Eq(c)∗〉 for the direct images of the relations Eq(c) and Eq(c)∗ along the
split epimorphism g. The vertical split epimorphisms are such that both the
equalities g〈Eq(c)〉 = Eq(d) and g〈Eq(c)∗〉 = Eq(d)∗ hold true in C.

Proposition 2.4. For a regular multi-pointed category with kernels C the
following statements are equivalent:

(a) C is a 2-star-permutable category;
(b) any commutative diagram of the form (1) is a star-regular pushout.

Proof : (a) ⇒ (b) Given a pushout (1) we have

f ◦d∗ = cc◦f ◦d∗ (Lemma 1.2(2))
= cg◦d◦d∗ (f · c = d · g)
= cg◦gc◦c∗g◦ (Eq(d)∗ = g〈Eq(c)∗〉)
= cc◦cg◦g∗g◦ (Eq(g)Eq(c)∗ = Eq(c)Eq(g)∗ by Definition 2.3)
≤ cc◦cg◦gg◦ (g∗ ≤ g)
= cg◦. (Lemma 1.2(1))

Since cg◦∗ is the largest star contained in cg◦, it follows that f ◦d∗ ≤ cg◦∗.
The inclusion cg◦∗ ≤ f ◦d∗ always holds, so that cg◦∗ = f ◦d∗.
(b) ⇒ (a) Let us consider regular epimorphisms f : X ։ Y and g : X ։ Z.
We want to prove that Eq(f)Eq(g)∗ = Eq(g)Eq(f)∗. For this we build the
following diagram

Eq(f)

π1

��
π2

��

c // // g〈Eq(f)〉

ρ1
��

ρ2
��

X

f ����

g
// // Z

Y
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that represents the regular image of Eq(f) along g. The relation g〈Eq(f)〉 =
(ρ1, ρ2) is reflexive and, consequently, ρ1 is a split epimorphism. By assump-
tion, we then know that the equality

(A) ρ◦1g
∗ = cπ◦

1
∗

holds true. This implies that

Eq(f)Eq(g)∗ = π2π
◦
1g

◦g∗

= π2c
◦ρ◦1g

∗ (g · π1 = ρ1 · c)
= π2c

◦cπ◦
1
∗ (A)

≤ π2c
◦cπ◦

2π2π
◦
1
∗ (∆Eq(f) ≤ π◦

2π2)
= Eq(g)π2π

◦
1
∗ (π2〈Eq(c)〉 = Eq(g))

= Eq(g)Eq(f)∗,

where the equality π2〈Eq(c)〉 = Eq(g) follows from the fact that the split
epimorphisms π2 and ρ2 induce a split epimorphism from Eq(c) to Eq(g).

In the total context, Proposition 2.4 gives the characterisation of regu-
lar Mal’tsev categories through regular pushouts (see [4] and Proposition
2.4 of [12]), as expected. In the pointed context, condition (b) of Propo-
sition 2.4 translates into the pointed version of the right saturation prop-
erty [9] for any commutative diagram of type (1): the induced morphism
c̄ : Ker(g) → Ker(f), from the kernel of g to the kernel of f is also a reg-
ular epimorphism. This can be seen by looking at diagram (2), where the
N -kernels now represent actual kernels, so that Ker(a) = Ker(x) = Ker(f).

2.5. The star of a pullback relation. Consider the pullback relation
π = (π1, π2) of a pair (g, δ) of morphisms as in the diagram

W ×D C

π1

��

π2 //

y

C

g
��

W
δ

// D.

The star of the pullback relation π is defined as π∗ = π∆∗
W . It can be

described as the universal relation ν = (ν1, ν2) fromW to C such that ν1 ∈ N
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and δ · ν1 = g · ν2 as in the diagram

(W ×D C)∗

ν1

++

ν2

��
nπ1

))RRRRR

W ×D C

π1

��

π2 //

y

C

g
��

W
δ

// D,

where nπ1
is the N -kernel of π1, ν1 = π1 · nπ1

and ν2 = π2 · nπ1
.

By using the composition of relations one has the equalities π = π2π
◦
1 = g◦δ,

so that
π∗ = π2π

◦
1
∗ = g◦δ∗.

In the total context, the star of a pullback relation is precisely that pullback
relation. In the pointed context, the star of the pullback (relation) of (g, δ)
is given by π∗ = (0, ker(g)).
A morphism f : X → Y in a multi-pointed category with kernels is said to

be saturating [9] when the induced dotted morphism from the N -kernel of
1X to the N -kernel of 1Y making the diagram

N1X
��

n1X
��

// // N1Y
��
n1Y

��

X
f

// Y

commute is a regular epimorphism. All morphisms are saturating in the
pointed context. This is also the case for any quasi-pointed category [3],
namely a finitely complete category with an initial object 0 and a terminal
object 1 such that the arrow 0 → 1 is a monomorphism. As in the pointed
case, it suffices to choose for N the class of morphisms which factor through
the initial object 0. In this case we shall speak of the quasi-pointed context.
In the total context, any regular epimorphism is saturating. The proof of the
following result is straightforward:

Lemma 2.6. [9] Let C be a regular multi-pointed category with kernels. For
a regular epimorphism f : X ։ Y the following conditions are equivalent:

(a) f is saturating;
(b) ∆∗

Y = f ∗f ◦.

The next result gives a characterisation of 2-star-permutable categories
which will be useful in the following section.
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Proposition 2.7. For a regular multi-pointed category C with kernels and
saturating regular epimorphisms the following statements are equivalent:

(a) C is a 2-star-permutable category;
(b) for any commutative diagram

(W ×D C)∗

ν1

��

ν2

&&MMMMMMM

λ // (Y ×B A)∗

χ1

���
�
�
�
� χ2

&&MMMMMMM

C

g
��

c // // A

f

��

W

δ &&MMMMMMMMM
w // //__________ Y

β &&MMMMM

D

t

OO

d
// // B,

s

OO

(3)

where the front square is of the form (1), β · w = d · δ, w is a regular
epimorphism, ((W ×D C)∗, ν1, ν2) and ((Y ×B A)∗, χ1, χ2) are stars of
the corresponding pullback relations, then the comparison morphism
λ : (W ×D C)∗ → (Y ×B A)∗ is also a regular epimorphism.

Proof : (a) ⇒ (b) To prove that the arrow λ in the cube above is a regular
epimorphism, we must show that 〈χ1, χ2〉λ in the commutative diagram

(W ×D C)∗
λ //

��
〈ν1,ν2〉

��

(Y ×B A)∗

��
〈χ1,χ2〉

��

W × C
w×c

// // Y × A

is the (regular epimorphism, monomorphism) factorisation of the morphism
〈w ·ν1, c·ν2〉 : (W×DC)∗ → Y ×A. That is, we must have cν2ν

◦
1w

◦ = χ2χ
◦
1 or,

equivalently, cg◦δ∗w◦ = f ◦β∗, since ν2ν
◦
1 = ν∗ = g◦δ∗ and χ2χ

◦
1 = χ∗ = f ◦β∗

(see Section 2.5).
The front square of diagram (3) is a star-regular pushout by Proposition

2.4, which means that the equality

(B) cg◦∗ = f ◦d∗

holds true. Now, we always have

cg◦δ∗w◦ 6 f ◦dδ∗w◦ (commutativity of the front face of (3))
= f ◦βw∗w◦ (d · δ = β · w)
= f ◦β∆∗

Y (Lemma 2.6)
= f ◦β∗.
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The other inequality follows from

cg◦δ∗w◦ > cg◦∗δ∗w◦ (g◦ > g◦∗)
= f ◦d∗δ∗w◦ (B)
= f ◦dδ∗w◦ (∗δ∗ = δ∗; Section 1.5)
= f ◦β∗. (as in the inequality above)

(b) ⇒ (a) A commutative diagram of type (1) induces a commutative cube

Ng

g·ng

��

ng

&&MMMMMMMMM
λ // // (D ×B A)∗

χ1

���
�
�
�
� χ2

&&MMMMMMM

C

g
��

c // // A

f

��

D

MMMMMMMMMM

MMMMMMMMMM D

d &&MMMMMMMMM

D

t

OO

d
// // B,

s

OO

where ν = (g · ng, ng) is the star of the pullback (relation) of (g, 1D). By
assumption, λ is a regular epimorphism which translates into the equality
cg◦1∗D1D = f ◦d∗, as observed in the first part of the proof. We get the equality
cg◦∗ = f ◦d∗, and this proves that diagram (1) is a star-regular pushout and,
consequently, that C is a 2-star-permutable category by Proposition 2.4.

In the total context, Proposition 2.7 is the “star version” of Proposition 2.6
in [12]. In the pointed context condition (b) of Proposition 2.7 also reduces
to the pointed version of the right saturation property, as we can see in the
following commutative diagram:

Ker(g)

0

��

ker(g)

&&MMMMMMM

c̄ // Ker(f)

0

���
�
�
�
� ker(f)

&&MMMMMMM

C

g
��

c // // A

f

��

W

δ &&MMMMMMMMM
w // //__________ Y

β &&MMMMM

D

t

OO

d
// // B.

s

OO

(4)

We conclude this section with the pointed version of Propositions 2.4
and 2.7:
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Corollary 2.8. (see Theorem 2.12 in [9]) For a pointed regular category C

the following statements are equivalent:

(a) C is a subtractive category;
(b) any commutative diagram of the form (1) is right saturated, i.e. the

comparison morphism c̄ : Ker(g) → Ker(f) is a regular epimorphism.

3. The Star-Cuboid Lemma

In [12] it was shown that regular Mal’tsev categories can be characterised
through the validity of a homological lemma called the Upper Cuboid Lemma,
a strong form of the denormalised 3× 3 Lemma [4, 19, 11]. We are now go-
ing to extend this result to the star-regular context. We shall then observe
that, in the pointed context, it gives back the classical Upper 3× 3 Lemma
characterising subtractive normal categories.

3.1.N -trivial objects. An object X in a multi-pointed category is said to
be N -trivial when 1X ∈ N . If a composite f · g belongs to N and g is a
strong epimorphism, then also f belongs to N . This implies that N -trivial
objects are closed under strong quotients. One says that a multi-pointed
category C has enough trivial objects [8] whenN is a closed ideal [14], i.e. any
morphism in N factors through an N -trivial object and, moreover, the class
of N -trivial objects is closed under subobjects and squares, where the latter
property means that, for any N -trivial object X, the object X2 = X × X

is N -trivial. An equivalent way of expressing the existence of enough trivial
objects is recalled in the following:

Proposition 3.2. [8] Let C be a regular multi-pointed category with kernels.
The following conditions are equivalent:

(a) if (σ1, σ2) : S ⇉ X is a relation on X such that σ1 · n ∈ N and
σ2 · n ∈ N , then n ∈ N ;

(b) C has enough trivial objects.

In the following we shall also assume that N -trivial objects are closed
under binary products. Under the presence of enough trivial objects this
assumption is equivalent to the following condition:

(a’) if (σ1, σ2) : S  X×Y is a relation from X to Y such that σ1 ·n ∈ N
and σ2 · n ∈ N , then n ∈ N .

Whenever the category has enough trivial objects, condition (a’) implies that
star-kernels “commute” with stars of pullback relations:
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Lemma 3.3. Let C be a multi-pointed category with kernels, enough trivial
objects, and assume that N -trivial objects are closed under binary products.
Given a commutative cube

(W ×D C)∗

ν1

��

ν2

&&MMMMMMM

λ // (Y ×B A)∗

χ1

���
�
�
�
� χ2

&&MMMMMMM

C

g
��

c // // A

f

��

W

δ &&MMMMMMMMM
w // //__________ Y

β &&M
M

M
M

M

D
d

// // B

in C, consider the star-kernels of c, d and w, and the induced morphisms
δ : Eq(w)∗ → Eq(d)∗ and g : Eq(c)∗ → Eq(d)∗. Then the following construc-
tions are equivalent (up to isomorphism):

• taking the horizontal star-kernel of λ and then the induced morphisms
Eq(λ)∗ → Eq(w)∗ and Eq(λ)∗ → Eq(c)∗;

• taking the star of the pullback (relation) of g and δ and then the in-
duced morphisms (Eq(w)∗ ×Eq(d)∗ Eq(c)

∗)∗ ⇉ (W ×D C)∗.

Proof : This follows easily by the usual commutation of kernel pairs with
pullbacks and condition (a’).

In the total and in the (quasi-)pointed contexts there are enough trivial
objects, and N -trivial objects are closed under binary products.
In a star-regular category, a (short) star-exact sequence is a diagram

Eq(f)∗
f1 //

f2

// X
f

// // Y

where Eq(f)∗ is a star-kernel of f and f is a coequaliser of f1 and f2 (which,
by star-regularity, is the same as to say that f is a regular epimorphism).
In the total context, a star-exact sequence is just an exact fork, while in the
(quasi-)pointed context it is a short exact sequence in the usual sense.
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The Star-Upper Cuboid Lemma

Let C be a star-regular category. Consider a commutative diagram of mor-
phisms and stars in C

P
τ1 ������

��
�

π ////

τ2
��+

++
++

++
++

++
++

(W ×D C)∗

ν1
�����
�

�

λ //

ν2
��+

++
++

++
++

++
++

(Y ×B A)∗

χ1

�����
�

�

χ2

��+
++

++
++

++
++

++

Eq(w)∗ //____________ //____________

δ̄

��+
++

++
++

++
++

++
W

w // //_____________

δ

��+
+

+
+

+
+

+ Y

β

��+
+

+
+

+
+

+

Eq(c)∗

ḡ
������
��

�

//// C
g

������
��

��
c

// // A
f

������
��
��

S //
σ

// D
d

// B,

(5)

where the three diamonds are stars of pullback (relations) of regular epimor-
phisms along arbitrary morphisms (so that P = (Eq(w)∗×SEq(c)

∗)∗) and the
two middle rows are star-exact sequences. Then the upper row is a star-exact
sequence whenever the lower row is.
Note that, in the diagram (5) above, d is necessarily a regular epimorphism,

d · σ1 = d · σ2 since ḡ is an epimorphism, and λ · π1 = λ · π2, because the pair
of morphisms (χ1, χ2) is jointly monomorphic.

Theorem 3.4. Let C be a star-regular category with saturating regular epi-
morphisms, enough trivial objects, and assume that N -trivial objects are
closed under binary products. The following conditions are equivalent:

(a) C is a 2-star-permutable category;
(b) the Star-Upper Cuboid Lemma holds true in C.

Proof : (a) ⇒ (b) Suppose that the lower row is a star-exact sequence. The
fact that π = Eq(λ)∗ follows from Lemma 3.3. As explained in Proposi-
tion 2.7, λ is a regular epimorphism if and only if cg◦δ∗w◦ > f ◦β∗. In fact
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we have

cg◦δ∗w◦ = cc◦cg◦gg◦δ∗w◦ (Lemma 1.2(1))
> cc◦cg◦g∗g◦δ∗w◦ (Eq(g) > Eq(g)∗)
= cg◦gc◦c∗g◦δ∗w◦ (Eq(c)Eq(g)∗ = Eq(g)Eq(c)∗; Definition 2.3)
= cg◦d◦d∗δ∗w◦ (g〈Eq(c)∗〉 = Eq(d)∗ by assumption)
= cg◦d◦dδ∗w◦ (∗δ∗ = δ∗; Subsection 1.5)
= cc◦f ◦βw∗w◦ (d · g = f · c, d · δ = β · w)
= f ◦βw∗w◦ (Lemma 1.2(2))
= f ◦β∆∗

Y (Lemma 2.6)
= f ◦β∗. (Subsection 1.5)

(b) ⇒ (a) Consider a commutative cube of the form (3). We construct a
commutative diagram of type (5) by taking the star-kernels of c, w, d and
λ, so that ḡ, δ̄, τ1 and τ2 are the induced arrows between the star-kernels.
By Lemma 3.3 we know that (τ1, τ2) is the star above the pullback (relation)
of (ḡ, δ̄). By applying the Star-Upper Cuboid Lemma to this diagram we
conclude that the upper row is a star-exact sequence and, consequently, λ is a
regular epimorphism. By Proposition 2.7, C is a 2-star-permutable category.

In the total context, Theorem 3.4 is precisely Theorem 3.3 in [12], which
gives a characterisation of regular Mal’tsev categories through the Upper
Cuboid Lemma, as expected. In the pointed context, the Star-Upper Cuboid
Lemma gives the classical Upper 3 × 3 Lemma: in the pointed version of
diagram (5), the back part is irrelevant (like in diagram (4)). Then the front
part is a 3×3 diagram where all columns and the middle row are short exact
sequences. The Star-Upper Cuboid Lemma claims that the upper row is a
short exact sequence whenever the lower row is, i.e. the same as the Upper
3 × 3 Lemma. The pointed version of Theorem 3.4 is Theorem 5.4 of [18]
which characterises normal subtractive categories. Note that in the pointed
context, the Upper 3×3 Lemma is also equivalent to the Lower 3×3 Lemma
as shown in [18].
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