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1. Introduction
It is well known that utility functions, u(x), measure or represent the risk

preferences of a decision maker. The assumption commonly made in eco-
nomics is that the utility function is an increasing function. Therefore, a
cumulative distribution function may be convenient for describing one’s util-
ities (see [7] and references therein). To investigate the behavior of a person
from the utility function, Meyer [18] proposed to use the marginal utility,
u′(x), for a measure of risk preferences. Note that, using marginal utilities is
analogous to using density functions. Other functions used in the literature
as measures of risk aversion are the absolute risk aversion (ARA) and the
relative risk aversion (RRA) measures defined by Arrow [2] and Pratt [23].
The ARA measure, is defined by

A(x) = −
u′′(x)

u′(x)
.
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Note that, if the utility function is increasing then it is possible to recover
the utility function from an ARA measure using the following formula:

u(x) =

∫
e−

∫
A(x)dx.

The RRA measure is defined by

R(x) = −x
u′′(x)

u′(x)
= xA(x).

It is worth noting that there exist some links among risk measures and
functions used to characterize random variables. Let X be a random variable
with distribution function F (x), survival function F̄ (x) and density function
f(x). Its failure rate, reversed failure rate, odds and Glaser’s functions (see
[10]) are defined respectively by:

r(x) =
f(x)

F̄ (x)
, r̃(x) =

f(x)

F (x)
, O(x) =

F (x)

F̄ (x)
and η(x) = −

f ′(x)

f(x)
.

Lariviere and Porteus [14] defined the generalized failure rate (called length-
biased failure rate in [24]) of X as

G(x) = xr(x).

Analogously, we define the generalized reversed failure rate of X as

G̃(x) = xr̃(x).

Following Foschi and Spizzichino [9], we consider the following affine trans-
formation of the distribution function:

u(x) = cF (x), c > 0. (1)

The function u(x) can be seen as an utility function associated with the
distribution function of a random variable X and analogously, the function
u′(x) can be seen as a marginal utility associated with the density function
of X. Note that, in this case, the absolute risk aversion and the relative risk
aversion measures can be written as:

A(x) = −
f ′(x)

f(x)
= η(x) and R(x) = −x

f ′(x)

f(x)
= xη(x),

respectively. The relative risk aversion measure, R(x), has well known diffi-
culties with negative values, and therefore, throughout the paper, only non-
negative random variables are considered.
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Some of the above concepts include one important notion in economic
theory. In fact, elasticity of a positive differentiable transformation g defined
on all or part of the positive real axis is defined as d log g(x)/d logx. Thus,
it is the ratio of the relative change in the function g with respect to the
relative change in x (see [20]). For example, if x is a price of a commodity
and D(x) denotes the demand on that commodity, then the elasticity of the
demand is defined by

eD(x) = −x
D′(x)

D(x)
, x ≥ 0.

This concept was recently applied by Lariviere [13] to the supply management
and showed the close relationship that exists between this elasticity and the
generalized failure rate when D(x) = F̄ (x). As another example, the elastic-
ity of the distribution of a random variable defined in [27] is the generalized

reversed failure rate G̃(x). Moreover, the RRA measure is the elasticity of
the marginal utility, and is also the elasticity of the density function when
(1) holds.
The study of monotonicity of the different risk measures is an important

topic in different fields, such as economic analysis, demography, actuarial
science, among others. Foschi and Spizzichino [9] pointed out some interac-
tions between notions of risk and notions of ageing. Next, we recall some
well known ageing and risk notions and also we define a new ageing notion
related with the generalized reversed failure rate function.

Definition 1. Let X be a random variable with distribution function F (x),
survival function F̄ (x) and density function f(x).

a) X has an increasing (decreasing) failure rate, IFR (DFR), and F (x)
is an IFR (DFR) distribution if r(x) is increasing (decreasing) for all
x.

b) X has an increasing (decreasing) generalized failure rate, IGFR (DGFR),
and F (x) is an IGFR (DGFR) distribution if G(x) is increasing (de-
creasing) for all x.

c) X has an increasing (decreasing) reversed failure rate, IRFR (DRFR),
and F (x) is an IRFR (DRFR) distribution if r̃(x) is increasing (de-
creasing) for all x.

d) X has an increasing (decreasing) generalized reversed failure rate,
IGRFR (DGRFR), and F (x) is an IGRFR (DGRFR) distribution

if G̃(x) is increasing (decreasing) for all x.
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Note that nonnegative random variables cannot have distributions with
increasing reverse failure rate (IRFR) (see p. 179 in [16]). However, there
are some nonnegative random variables with increasing generalized reverse
failure rate (IGRFR) (see example 25).
In the newsvendor with pricing literature, the IFR and IGFR assumptions

are commonly used. It is easy to check that all IFR distributions are IGFR,
but the reverse is not true. Recent interest has focused on IGFR distribu-
tions, see Lariviere and Porteus [14], Paul [22], Lariviere [13] or Colombo and
Labrecciosa [6].

Definition 2. Let u(x) be a utility function.

a) The utility function evinces decreasing (increasing) absolute risk aver-
sion, DARA (IARA) if and only if its absolute risk aversion function
A(x) is decreasing (increasing).

b) The utility function evinces decreasing (increasing) relative risk aver-
sion, DRRA (IRRA) if and only if its relative risk aversion function
R(x) is decreasing (increasing).

Throughout the paper the terms increasing and decreasing stand for non-
decreasing and non-increasing, respectively.
Since Arrow [3], who hypothesises that most investors display decreasing

absolute risk aversion (DARA) and increasing relative risk aversion (IRRA)
with respect to wealth, these assumptions have been used increasingly in the
literature. DARA (IARA) assumptions have been used in auction theory (see
[17]), in stochastic dominance in complete markets (see [5]), to characterize
aversion to an increase in downside risk (see [15]), in newsvendor model
under expected utility theory (see [28]). DRRA (IRRA) utilities have been
used in Ogaki and Zhang [21], Meyer and Meyer [19], Guiso and Paiella [11],
Sévi [25].
The IFR (DFR), DRFR (IRFR) and IARA (DARA) properties are equiva-

lent to log-concavity (log-convexity) of the survival, distribution and density
functions, respectively. Bagnoli and Bergstrom [4] listed several commonly-
used continuous, univariate probability distributions that have log-concave
density functions. Note that, when the utility function is described by a
distribution function, IARA (DARA) properties are equivalent to increasing
(decreasing) likelihood ratio, ILR (DLR), a very well known ageing notion
in reliability theory (see [26]).
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Here, we consider that risk preferences are represented by a distribution
function as utility function. Under this assumption, the purpose of this work
is twofold. Firstly, we provide alternative characterizations for IRRA utili-
ties, since, this property often is difficult to verify. Secondly, we investigate
properties of the class of DGRFR distributions and compare this class with
the class of DRFR distributions.
The remainder of this paper is organized as follows. Section 2 contains

alternative characterizations of IRRA (DRRA) utility functions in terms of
IARA (DARA) utility functions. In addition, some closure properties (clo-
sure with respect scaling, shifting and raising to a power) of IRRA (DRRA)
and IARA (DARA) utilities are given. In Section 3 we investigate whether
the DGRFR (IGRFR) property is preserved under common transformations
of random variables, in particular, we prove that DGRFR property is pre-
served under convolution. Section 4 is devoted to present some counterex-
amples about the lack of closure (closure with respect shifting and mixing)
of IRRA and DGRFR distributions. Finally, in Section 5, we summarize the
results presented here, as well as, results known in the literature.

2. On absolute and relative risk aversion
In this section, we establish alternative characterizations of IRRA (DRRA)

distributions and investigate closure properties of IRRA (DRRA) and IARA
(DARA) utilities under fundamental operations on random variables such as
scaling, raising to a power and shifting.
Let X and Y be univariate random variables with Glaser’s functions ηX

and ηY , respectively. We say that X is smaller than Y in the likelihood ratio
order if ηX(x) ≥ ηY (x) for all x, denoted by X ≤lr Y . Note that, when risk
preferences are represented by a distribution function as utility function, the
likelihood ratio ordering is equivalent to DARA stochastic dominance due
to the relation between the Glaser’s function and the absolute risk aversion
measure. In addition, it is well known that, when the means of the two
random variables are the same, DARA stochastic dominance and third degree
stochastic dominance (TSD) are equivalent concepts (see [8]).

Theorem 3. The following statements are equivalent:

a) X is IRRA.
b) logX is IARA.
c) X ≤lr λX for λ ≥ 1.
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d) logX ≤lr a+ logX for a ≥ 0.
e) λX is IRRA for λ > 0.

Proof : The proof of the equivalence of parts a) and b) comes from simple
reasoning using the fact that the distribution function of logX is FL(x) =
F (ex), thus the absolute risk aversion is AL(x) = R(ex)−1. Hence, it is clear
that if R(x) is increasing, then AL(x) is also increasing and vice versa. Note
that logX is IARA means that its density function is log-concave. From
Theorem 3.3 in [12], we know that parts b) and d) are equivalent. The
equivalence of parts c) and d) was established also in [12]. To link parts a)
and e), follows directly from the fact that the relative risk aversion of λX is
Rλ(x) = R(x/λ).

Remark 4. Because AL(x) = R(ex)− 1, it is easy to see that X is DRRA
if and only if logX is DARA.

Note that part c) in Theorem 3 means that an investor with utility function
u(x) = F (x) is more risk averse than an agent with utility function uλ(x) =
Fλ(x), since the absolute risk aversion of u(x) dominates the absolute risk
aversion of uλ(x) pointwise, i.e., A(x) ≥ Aλ(x), where Fλ(x) and Aλ(x) are
defined analogously to the relative risk aversion Rλ(x).
The equivalence of parts a) and e) means that IRRA distributions are

closed under positive scale transformations. Analogously, one can see DRRA
distributions are also closed under positive scale transformations.
Let us mention that Theorem 3 also simplifies verifying the IRRA property

as we show in the following example.

Example 5. For instance, if X has a lognormal distribution, it is easy to
check that its absolute risk aversion is nonmonotone and therefore one can-
not immediately conclude that X is IRRA. However, logX is normally dis-
tributed and hence IARA (its density function is log-concave). Thus, from
Theorem 3, X is IRRA.

Proposition 6. For λ ≥ 1, if X is IRRA then R(x) ≥ Rλ(x). If X is DRRA
then R(x) ≤ Rλ(x).

Proof : By definition, X is IRRA if and only if R(x) is increasing in x. Then,
R(x) ≥ R(x/λ) since x ≥ x/λ. Note that the relative risk aversion of λX is
Rλ(x) = R(x/λ). Hence, R(x) ≥ Rλ(x). For the second part, the proof is
similar reverting the inequalities.
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Corollary 7. For λ ≥ 1, if X is IRRA then X ≤lr λX. If X is DRRA then
X ≥lr λX.

Proof : We know from Proposition 6 a) that if X is IRRA then R(x) ≥
Rλ(x). By definition, R(x) = xA(x), then A(x) ≥ Aλ(x) and this condition
is equivalent to X ≤lr λX. Again, the proof of the second part is similar
reverting the inequalities.

The following result shows that the class of IRRA (DRRA) distributions
is closed under the operation of taking arbitrary positive powers of the un-
derlying random variable.

Proposition 8. X is IRRA (DRRA) if and only if Xb is IRRA (DRRA)
for all b > 0.

Proof : This proof follows from simple reasoning using the fact that the dis-
tribution function of Xb is Fb(x) = F (x1/b), thus the relative risk aversion is
Rb(x) = (b − 1)/b + R(x1/b)/b. Hence, it is clear that if R(x) is increasing,
then Rb(x) is also increasing and vice versa. For DRRA distributions, the
proof is similar changing increasing by decreasing.

As we prove in the following result, DARA distributions are closed under
the operation of taking powers greater than one. However, in general, IARA
distributions are not closed under this transformation. In the following result,
we show that for IARA distributions it is necessary an additional condition.

Proposition 9.

a) If X is IARA and its distribution function is concave, then Xb is also
IARA for 0 < b ≤ 1.

b) If X is DARA, then Xb is also DARA for b ≥ 1.

Proof :

a) By definition, we know that the IARA property is equivalent to the
density function being log-concave. The density function of Xb is
fb(x) = x−1+1/bf(x1/b)/b. It is easy to see that x−1+1/b is log-concave
and x1/b is convex if 0 < b ≤ 1. By the assumptions, we know that
the density function of X is decreasing, since its distribution function
is concave. Now, from Proposition A5 (p. 689) in [16] we have that
f(x1/b) is log-concave. Then fb(x) is also log-concave since the product
of log-concave functions is log-concave.
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b) Xb is DARA if and only if fb(x) is log-convex. By the assumptions,
X is DARA, then its distribution function is concave and its density
function decreasing. Since x1/b is concave, then f(x1/b) is log-convex.
Now, x−1+1/b is log-convex if b ≥ 1, then fb(x) is also log-convex since
the product of log-convex functions is log-convex.

Proposition 10. IARA and DARA distributions are closed under positive
scale transformations and shifting.

The proofs follow directly from the definition of IARA and DARA distri-
butions.

Proposition 11. DRRA distributions are closed under right-shifting.

Proof : The distribution and density functions of the right-shifted random
variable X + a, a > 0, are F+a(x) = F (x − a) and f+a(x) = f(x − a),
respectively. Therefore, the absolute risk aversion is A+a(x) = A(x− a) and
the relative risk aversion is

R+a(x) = xA(x− a) = R(x− a) + aA(x− a).

Since DRRA property implies DARA property, then if X is DRRA, it is clear
that X + a is also DRRA.

Note that, in general, IRRA distributions are not closed under right-
shifting (see the Counterexample 26). For left-shifting random variables
X − a, a > 0, it can be shown that if X is DARA and also IRRA, then
X − a is IRRA, since

R−a(x) = xA(x+ a) = R(x+ a)− aA(x+ a).

It is well know that IARA (DARA) distributions are closed under con-
volution (see [16]). From this fact and Theorem 3 we have the following
preservation property.

Corollary 12. If both X and Y are IRRA (DRRA), then XY is also IRRA
(DRRA).

Another interesting criterion to establish characterizations of IRRA (DRRA)
utility functions is derived from a simple manipulation of the risk functions
as we show in the following result.
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Theorem 13. Assume the non negative random variable X has a twice dif-
ferentiable density function. X is IRRA if

Q(x) = x

((
f ′(x)

f(x)

)2

−
f ′′(x)

f(x)

)
−
f ′(x)

f(x)
≥ 0. (2)

The random variable is DRRA is Q(x) ≤ 0, x ≥ 0.

Proof : Differentiating the absolute and the relative risk aversion measures
we obtain

A′(x) = A2(x)−
f ′′(x)

f(x)
,

and

R′(x) = A(x) + xA′(x) = xA2(x) + A(x)− x
f ′′(x)

f(x)
.

Clearly, if R′(x) has constant sign then R(x) is monotone. Note that the
above expression for R′(x) is quadratic in A(x), therefore to find a criterion
for the sign of R′(x) to be constant, it is enough to study the zeros of the
quadratic function that characterizes R′(x). Solving R′(x) = 0 leads to

A(x) =
−1±

√
1 + 4x2 f

′′(x)
f(x)

2x
⇔ R(x) = −

1

2
±

√
1

4
+ x2

f ′′(x)

f(x)
.

Thus, a criterion of monotonicity of R(x) is to check that one of the two
inequalities holds, for all x ∈ R,
∣∣∣∣R(x) +

1

2

∣∣∣∣ <
√

1

4
+ x2

f ′′(x)

f(x)
or

∣∣∣∣R(x) +
1

2

∣∣∣∣ >
√

1

4
+ x2

f ′′(x)

f(x)
. (3)

The above criterion can be rewritten as
(
R(x) +

1

2

)2

−

(
1

4
+ x2

f ′′(x)

f(x)

)
= xQ(x) (4)

has constant sign. Thus, since x ≥ 0, if (4) is positive (negative) then the
utility function is IRRA (DRRA).

Next, we present a particular case to illustrate the criterion for IRRA
(DRRA) established above.
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Example 14. Assume that

f(x) ∼ p(x)e−q(x), with p(x) = xβand q(x) = dxα, (5)

with d ≥ 0. In this case, (2) is equal to dα2xα−1 which is nonnegative since
x ≥ 0. Note that Weibull and gamma distributions are included in the pro-
posed model. By using this new criterion, we obtain that both distributions
(Weibull and gamma) are IRRA. In addition, this criterion is useful to study
whether a right-shifted random variable X+a, a > 0 is IRRA (DRRA). Note
that, in this case, (2) is

x

((
f ′(x− a)

f(x− a)

)2

−
f ′′(x− a)

f(x− a)

)
−
f ′(x− a)

f(x− a)
, (6)

since the density function of X + a is f+a(x) = f(x− a). After some com-
putations, (6) is equal to

T (x)

(x− a)2
:=

aβ + dα(x− a)α(αx− a)

(x− a)2
,

for the particular case (5) . Clearly, the function T (x) determines the sign
of the above expression. Assume β < 0. In this case, T (a) = aβ < 0, thus
the distribution can not be IRRA. Note that if d = 1 and β = α− 1, then the
random variable X has a Weibull distribution. Therefore, if 0 ≤ α < 1 the
right-shifted random variable from Weibull distributions can not be IRRA (see
counterexample 26). Let β ≥ 0. If α ≥ a then T (x) ≥ 0 for all x ≥ a since
αx−a ≥ 0. Hence the right-shifted random variable is IRRA. The conclusion
also holds if α < 0, because in this case dα(αx− a) = dα2x− adα ≥ 0.

3. On generalized (reversed) failure rate
Recently, Veres-Ferrer and Pav́ıa [27] studied the relationship between the

reversed hazard rate and the elasticity of the distribution of a random variable
(here, we call this elasticity as generalized reversed failure rate). Since the
elasticity is a concept broadly used in economics, we investigate closure prop-
erties of DGRFR (IGRFR) utilities. In particular, we prove that DGRFR
distributions are closed under convolutions. In addition, we relate this new
ageing notion with IFR (DFR), IGFR (DGFR) and the risk measures of
Section 2.
Let X and Y be univariate random variables with reversed failure rate

functions r̃X and r̃Y , respectively. We say that X is smaller than Y in the
reversed hazard rate order if r̃X(x) ≤ r̃Y (x) for all x, denoted by X ≤rh Y .
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Theorem 15. The following statements are equivalent:

a) X is DGRFR.
b) logX is DRFR.
c) X ≤rh λX for λ ≥ 1.
d) logX ≤rh a+ logX for a ≥ 0.
e) λX is DGRFR for λ > 0.

Proof : The proof of the equivalence of parts a) and b) follows from simple
reasoning using the fact that the distribution function of logX is FL(x) =

F (ex), thus the reversed failure rate is r̃L(x) = G̃(ex). Hence, it is clear that

if G̃(x) is increasing, then r̃L(x) is also increasing and vice versa. Note that
logX is DRFR means that its distribution function is log-concave. From
Theorem 3.3 in [12], we know that parts b) and d) are equivalent. The
equivalence of parts c) and d) was established also in [12]. To link parts a)
and e), follows directly from the fact that the generalized reversed failure

rate of λX is G̃λ(x) = G̃(x/λ).

Remark 16. Because r̃L(x) = G̃(ex), it is easy to see that X is IGRFR if
and only if logX is IRFR.

The equivalence of parts a) and e) means that DGRFR distributions are
closed under positive scale transformations. Analogously, one can see IGRFR
distributions are also closed under positive scale transformations.
In the following result, we investigate the relationship between DGFR

(IGFR) and DGRFR (IGRFR) properties, obtaining similar relations to
those between DFR (IFR) and DRFR (IRFR) properties, which are well
known in the literature.

Proposition 17.

a) If X is DGFR then it is also DGRFR.
b) If X is IRGFR then it is also IGFR.

Proof : It is easy to see that the generalized reversed failure rate can be
written as G̃(x) = xr(x)(O(x))−1, so if the failure rate, r(x), is decreasing

then G̃(x) is also decreasing, since (O(x))−1 is decreasing. Analogously, it can
be seen that the generalized failure rate can be written as G(x) = xr̃(x)O(x),
so if the reversed failure rate, r̃(x), is increasing then G(x) is also increasing,
since O(x) is increasing.
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Proposition 18. X is DGRFR (IGRFR) if and only if Xb is DGRFR
(IGRFR) for all b > 0.

Proof : This proof relies on the fact that the distribution function of Xb

is Fb(x) = F (x1/b), thus the generalized reversed failure rate is G̃b(x) =

G̃(x1/b)/b. Hence, it is clear that if G̃ is increasing (decreasing), then G̃b(x)
is also increasing (decreasing) and vice versa.

Paul [22] proved that IGFR distributions are closed under operations of
raising to a power. Analogously, it can be seen that X is DGFR if and only
if Xb is DGFR for all positive real numbers b, since the generalized failure
rate of Xb is Gb(x) = G(x1/b)/b.

Proposition 19. If X is DFR (DRFR) then Xb is DFR (DRFR) for b ≥ 1.

Proof : The survival function of Xb is F̄b(x) = F̄ (x1/b) and Xb is DFR if
and only if F̄b(x) is log-convex. Clearly, x1/b is concave if b ≥ 1, log F̄ (x) is
decreasing in x and it is convex by the assumption, then from Proposition
A5 (p. 689) in [16] we have that F̄ (x1/b) is log-convex. Analogously, Xb is
DRFR if and only if Fb(x) is log-concave. Because x1/b is concave if b ≥ 1,
logF (x) is increasing in x and it is concave, then F (x1/b) is log-concave again
from Proposition A5 in [16].

Paul [22] showed with the help of a counterexample that, in general, IFR
distributions are not closed under the operation of taking arbitrary positive
powers of the underlying random variable. In particular, he considered b = 2.
However, using an argument similar to those in Proposition 19, it can be seen
that Xb is IFR if 0 < b ≤ 1, since, in this case, x1/b is convex.

Proposition 20. DGRFR and DGFR distributions are closed under right-
shifting.

Proof : Now consider the right-shifted random variable X + a, a > 0. Re-
member that the distribution and density functions of X + a are F+a(x) =
F (x − a) and f+a(x) = f(x − a), respectively. The reversed failure rate is
r̃+a(x) = r̃(x− a) and the generalized reversed failure rate is

G̃+a(x) = xr̃(x− a) = G̃(x− a) + ar̃(x− a).

Since DGRFR property implies DRFR property, then if X is DGRFR, it
is clear that X + a is also DGRFR. Analogously, it can be prove that the
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generalized failure rate of X + a is

G+a(x) = xr(x− a) = G(x− a) + ar(x− a).

Then ifX is DGFR, it is clear thatX+a is also DGFR, since DGFR property
implies DFR property.

Note that, in general, IGFR distributions are not closed under right-shifting
(see counterexample 2 in [22]). For left-shifting random variables X − a,
a > 0, it can be shown that if X is IGRFR and also DRFR, then X − a is
IGRFR, since

G̃−a(x) = xr̃(x+ a) = G̃(x+ a)− ar̃(x+ a). (7)

In general, DGRFR distributions are not closed under left-shifting (see coun-
terexample 27). Analogously, it can be prove that the generalized failure rate
of X − a is

G−a(x) = xr(x+ a) = G(x+ a)− ar(x+ a).

Therefore, if X is IGFR and also DFR, then X − a is IGFR. In the coun-
terexample 2 in [22], the author showed that if X is a Pareto random variable
with density function f(x) = θx−(θ+1), then X − a is IGFR. Note that, in
this case, the failure rate function for X is θ/x and clearly it is decreasing.
In general, DGFR distributions are not closed under left-shifting.

Proposition 21. DFR and DRFR distributions are closed under shifting.

The proofs follow directly from the definition of DFR (DRFR) distributions
and from the fact that the failure rate of X + a (X − a) is r+a(x) = r(x− a)
(r−a(x) = r(x+a)) and the reversed failure rate is r̃+a(x) = r̃(x−a) (r̃−a(x) =
r̃(x+ a)).
It is well know that DRFR (IRFR) distributions are closed under con-

volution (see [16]). From this fact and Theorem 15 we have the following
preservation property.

Corollary 22. If both X and Y are DGRFR (IGRFR), then XY is also
DGRFR (IGRFR).

Theorem 23. DGRFR distributions are closed under convolutions.

Proof : Let X and Y independent random variables with decreasing general-
ized reversed failure rate functions. Keilson and Sumita [12] proved that
X is DGRFR if and only if X ≤rh λX for λ ≥ 1. Analogously, Y is
DGRFR if and only if Y ≤rh λY for λ ≥ 1. Now, from Lemma 1.B.44
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in [26], we know that if X and Y have decreasing reversed failure rate, then
X+Y ≤rh λX+λY . Note that, X and Y are DRFR, since they are DGRFR.
Again, by Keilson and Sumita [12] we have that X + Y is DGRFR if and
only X + Y ≤rh λ (X + Y ).

The next proposition is straightforward from Theorems 3 and 15, Theorem
1 in [13] and Theorem E.2 (p. 134) in [16]. Analogously to the proof of
Theorem 1 in [13], it is easy to see that X is DGFR if and only if logX is
DFR, since the failure rate of logX is rL(x) = G(ex).

Proposition 24.

a) If X is IRRA then is also IGFR and DGRFR.
b) If X is DRRA then is also DGFR.

Proof :

X is IRRA ⇔ logX is IARA ⇒ logX is IFR ⇔ X is IGFR,

X is IRRA ⇔ logX is IARA ⇒ logX is DRFR ⇔ X is DGRFR,

X is DRRA ⇔ logX is DARA ⇒ logX is DFR ⇔ X is DGFR.

4. Examples and Counterexamples
As we pointed out in the Introduction, there are some nonnegative random

variables with IGRFR as we show in the following example.

Example 25. Let X be a beta random variable with density function

xα−1 (1− x)β−1

B(α, β)
,

where B(α, β) is the beta function. Note that the generalized reversed failure
rate is

G̃(x) =
xα (1− x)β−1

B(x, α, β)
,

where B(x, α, β) is the incomplete beta function. Set α = 2 and β = 0.5. It
can be seen in Figure 1 that the generalized reversed failure rate is increasing,
i.e., X is IGRFR.

As we pointed out in Section 2, the relative risk aversion for X + a is

R+a(x) = R(x− a) + aA(x− a).
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Figure 1. Plot of the generalized reversed failure rate for a beta
random variable with α = 2 and β = 0.5

In the following counterexample we show that, in general, IRRA distributions
are not closed under right-shifting.

Counterexample 26. Let X be a Weibull random variable with density
function

f(x) = αλ (λx)α−1 exp {− (λx)α} , x ≥ 0.

Note that the relative risk aversion of X is R(x) = 1 + α ((λx)α − 1) and it
is increasing in x for any positive α, so X is IRRA. Note that the absolute
risk aversion of X is A(x) = R(x)/x, hence, the relative risk aversion for
X + a is

R+a(x) =
x

x− a

(
1 + α (λα (x− a)α − 1)

)
.

Set λ = 1, α = 0.5 and a = 2, in this case, the relative risk aversion of X+a
is not increasing (nor decreasing), i.e., X + a is not IRRA as it can be seen
in Figure 2.
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Figure 2. Plot of the relative risk aversion for X+a with a = 2
when X is a Weibull random variable with α = 0.5 and λ = 1
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As we pointed out in Section 3, in general, DGRFR distributions are not
closed under left-shifting.

Counterexample 27. Let X a random variable defined as in the counterex-
ample 26. Then, its generalized reversed failure rate is:

G̃(x) =
α(λx)α

e(λx)α − 1
.

It is easy to verify that G̃(x) is decreasing in x ≥ 0 for any α, i.e. X is
DGRFR. We compute the generalized reversed failure rate of X − a using
(7), which is given by:

G̃−a(x) =
αλx (λ(x+ a))α−1

e(λ(x+a))α − 1
.

Set λ = 1, α = 0.5 and a = 1. It can be seen from Figure 3 that the
left-shifting of X is not DGRFR.

10 20 30 40 50

-0.10

-0.05

0.05

0.10

0.15

Figure 3. Plot of the generalized reversed failure rate for X−a
with a = 1 when X is a Weibull random variable with α = 0.5
and λ = 1

Another interesting closure property is the mixing property. This closure
property for IGFR distributions was considered by Al-Zahrani and Stoy-
anov [1]. In particular, the class of IGFR distributions do not preserve the
mixing property. In the following counterexamples, we focus our attention
on mixtures of IRRA and DGRFR distributions. It is well known that,
given two random variables Xi with distribution function Fi, survival func-
tion F̄i(x) and density function fi(x), for i = 1, 2, the distribution and the
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density functions of the mixture distribution are

F (x) = pF1(x) + (1− p)F2(x) and f(x) = pf1(x) + (1− p)f2(x),

respectively, for any 0 ≤ p ≤ 1. Let Ai(x) and Ri(x) the absolute and the
relative risk aversion of Xi for i = 1, 2. Then, the absolute and the relative
risk aversion of the mixture distribution are

A(x) = ψp(x)A1(x) + (1− ψp(x))A2(x), (8)

and
R(x) = ψp(x)R1(x) + (1− ψp(x))R2(x), (9)

where

ψp(x) =
pf1(x)

pf1(x) + (1− p)f2(x)
.

Analogously, let G̃i(x) the generalized reversed failure rate of of Xi for i =
1, 2. Then, the generalized reversed failure rate of the mixture distribution
is

G̃(x) = φp(x)G̃1(x) + (1− φp(x))G̃2(x), (10)

where

φp(x) =
pF1(x)

pF1(x) + (1− p)F2(x)
.

The following counterexamples show that IRRA and DGRFR distributions,
in general, are not closed under mixing operation.

Counterexample 28. Let X1 be an exponential distribution with hazard rate
λ = 4 and X2 a gamma distribution with shape parameter α = 2 and scale
parameter λ = 1. Then, the relative risk aversion are:

R1(x) = 4x and R2(x) = x− 1,

for x > 0, and it is easy to see that R1(x) and R2(x) are both increasing in
x, i.e., X1 and X2 are IRRA distributions. By using (8), (9) and after some
computations, we get the relative risk aversion of the mixture distribution,
namely

R(x) = x− 1 +
4p(1 + 3x)

4p+ (1− p)xe3x
.

Choosing p = 0.95, from Figure 4, it is clear that R(x) is not increasing, so
the mixture of X1 and X2 is not IRRA.
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Figure 4. Plot of the relative risk aversion of a mixture of one
exponential distribution and one gamma distribution

Counterexample 29. Let X1 and X2 two random variables defined as in
the counterexample 28. We compute the generalized reversed failure rate of
the mixture distribution from (10) and plot G̃(x), G̃1(x) and G̃2(x) when
p = 0.45. It can be seen from Figure 5 that X1 and X2 are both DGRFR,
however, the mixture of X1 and X2 is not DGRFR.
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Figure 5. Plot of the generalized reversed failure rate of a mix-
ture of one exponential distribution and one gamma distribution
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5. Summaries of abbreviations, relationships, and clo-
sures
In this last section, we provide a summary of abbreviations of the ageing

and risk notions used in this work, as well as, relationships among them, and
closures properties.

Table 1. Summary of abbreviations

Abbreviation Full name

IFR Increasing failure rate
DFR Decreasing failure rate
IRFR Increasing reversed failure rate
DRFR Decreasing reversed failure rate
IGFR Increasing generalized failure rate
DGFR Decreasing generalized failure rate
IGRFR Increasing generalized reversed failure rate
DGRFR Decreasing generalized reversed failure rate
IARA Increasing absolute risk aversion
DARA Decreasing absolute risk aversion
IRRA Increasing relative risk aversion
DRRA Decreasing relative risk aversion

Table 2. Summary of relationships

IARA ⇒ IFR
⇓ ⇓

IRRA ⇒ IGFR
⇓ ⇑

DRRA ⇒ DGFR ⇒ DGRFR IGRFR ⇐= IRFR
⇓ ⇓ ⇓

DARA ⇒ DFR ⇒ DRFR
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Table 3. Summary of closure properties

Class of Scale Power Right Left
distribution Transformation Transformation shifting shifting Convolution Mixtures

IARA closed not closed∗ closed closed closed not closed
IRRA closed closed not closed not closed∗ not closed
IFR closed closed (b ≤ 1) closed closed closed not closed
IGFR closed closed not closed not closed∗ not closed not closed
IGRFR closed closed not closed not closed∗

DARA closed closed (b ≥ 1) closed closed not closed closed
DRRA closed closed closed not closed
DFR closed closed (b ≥ 1) closed closed not closed closed
DGFR closed closed closed not closed
DGRFR closed closed closed not closed closed not closed
DRFR closed closed (b ≥ 1) closed closed closed not closed

∗ Property is closed under additional assumptions, but not in general.
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