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Abstract: In this paper we compute the sharp lower bounds for the crossing num-
ber of n-string k-loop tangles. For tangles with only string components, we charac-
terise the ones with the minimum crossing number for a given number of components,
both when the tangle has knotted strings or only unknotted strings.
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1. Introduction

A n-string k-loop tangle (B, σ), also denoted by T, is a 3-ball B together
with a compact 1-submanifold σ, with boundary, that is a disjoint collection of
n ≥ 1 arcs (called strings) and k ≥ 0 simple closed curves (called loops). When
k = 0 we say simply that T is a n-string tangle. In this paper we say that two
tangles T1, T2 are equivalent if there is an homeomorphism of (B, ∂B) sending
T1 to T2. The classification of the tangles with the minimum crossing number
up to isotopy follows from the classification up to homeomorphism described
in this paper. A tangle T is said to be essential if σ is a single knotted arc∗ in
B, or if σ has more than one component and there is no properly embedded
disk in B separating the components of σ. Otherwise, we say that the tangle
is inessential. The crossing number of a tangle T, denoted by c(T), is the min-
imum crossing number of the diagrams of T.

Tangles were first introduced by Conway in [6] where he defines and clas-
sifies 2-string (rational) tangles as an instrument to list knots. Since then,
the concept of thangle has been important in knot theory and its applications,
and 3-manifold topology. For instance, in [11] Kirby and Lickorish prove that
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∗An arc of σ is unknotted in B if it cobounds a disk embedded in B together with an arc in ∂B,
otherwise it is said to be knotted.
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any knot is concordant to a prime knot by introducing the concept of essential
tangle. Other example is the work of Lickorish in [12] and its extension by
Gómez-Larrañaga in [10] where conditions for knot or link primeness are given
based on tangle decompositions of a knot or link. In 3-manifold topology we
can also find a pertinent use of tangles in the study of Dehn fillings and related
problems as the cabling conjecture [14]. We also have the presence of tangles
in applied mathematics as in the study of the DNA topology. This application
was pioneered by Ernst and Sumners in [7], and in the survey paper [4] by Buck
we can find a concise explanation on how tangles are used to study the DNA
topology.

In this paper we compute the sharp lower bound for the crossing number of all
n-string k-loop essential tangles, for each n ≥ 1 and k ≥ 0. In the case when
the tangles have no loops, only strings, we also characterize which n-string
essential tangles have the minimum crossing number possible. This question
was initially motivated by an observation of Buck in [4] that 2-string essential
tangles have crossing number at least five and citing the work of Bleiler in [2]
for this statement. The aim of this paper is to present a sharp lower on the
crossing number of n-string k-loop essential tangles. The results obtained are
presented in the following theorems.

Theorem 1. Let T be a n-string essential tangle. Then

c(T) ≥ 2n+ 1.

We have c(T) = 2n+ 1 if and only if T is equivalent to the tangle in Figure

1.

· · ·

· · ·

· · ·

Figure 1. The n-string essential tangle with the minimum cross-
ing number.
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Theorem 2. Let T be a n-string essential tangle, with all strings unknotted.

Then

c(T) ≥ 2n+ 2.

We have c(T) = 2n+2 if and only if T is equivalent to one of the tangles in

Figure 2.

· · ·

· · ·

· · ·

(a)

· · ·

· · ·

· · ·

(b)

· · ·

· · ·

· · ·

(c)

Figure 2. The all strings unknotted n-string essential tangles
with the minimum crossing number.

Theorem 3. Let T be a n-string k-loop essential tangle, with k ≥ 1. Then

c(T) ≥ 2(n+ k)− 2.

If k = 1, then c(T) = 2n if and only if T is equivalent to the tangle in Figure

3.

· · ·

· · ·

· · ·

Figure 3. The n-string 1-loop essential tangle with the minimum
crossing number.

There have been several other studies on tangles and their diagrams. For in-
stance, in the work of Conway in [6], besides introducing the concept of tangle,
the rational tangles with two strings are also classified. Also, in [9] Kanenobu,
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Saito and Satoh classify up to isotopy 2-string k-loop prime tangles with up
to seven crossings. In a more general approach, the paper [3] presents a study
on the enumeration of k-string tangle projections, and in [8] it is presented
a computerized enumeration of alternating tangles. Also, in [5] Cochran and
Ruberman present invariants of 2-string tangles and use them to distinguish
some knots from their mutants.

For a brief introduction to the concept of tangle, as in Conway’s work, we
refer to the book [1] by Colin Adams, and throughout this paper we work in
the piecewise linear category. In Section 2 we introduce notation and prove
some lemmas that define a base for the proofs of the main results in this paper.
In sections 3, 4 and 5, we prove Theorems 1, 2 and 3, respectively, using
combinatorics in the diagram projection of tangles.

2. Preliminaries

A projection of a tangle T is the image p(T) of the tangle by an orthogonal
projection p to a plane such that p(B) is a disk, the preimage of each point
of p(σ) has at most two points, and there is a finite number of double points,
which are called the crossings of the projection. A projection always exists in
the piecewise linear category. The connected components of the complement
of the crossings are called the segments of the projection. If the crossings are
decorated with broken lines to show the overcrosses and undercrosses, then we
get a diagram of T. The crossing number of a projection or a diagram of T is its
number of crossings. A minimal diagram of T is a diagram with the minimum
crossing number c(T).

There are four segments adjacent to each crossing. Two of these segments
are opposite if their preimages by the projection are adjacent, and consecutive

otherwise. A crossing is called outermost if it is the first crossing of a string
for some orientation, and inner otherwise.

Lemma 1. In a diagram of an essential tangle T, each string has at least two

crossings with the other strings.

Proof : Suppose that a string s has at most one crossing with the other strings.
Then there is a disk D with boundary ∂D = s ∪ α, where α is a curve in ∂B.
A small neighborhood of D is then a ball that contains only the string s, which
shows that T is not essential.
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The next lemma is a base for the theorems in this paper and provides a
common weaker version of all of them.

Lemma 2. If T is a n-string k-loop tangle, then c(T) ≥ 2n.

Proof : Consider a minimal diagram of T. Since each string has at least two
crossings with the other strings, we can associate to each end of a string an
outermost crossing. If two ends were associated with the same crossing, as in
Figure 4(a), then we could isotope the two ends through the region between
them, as in Figure 4(b), reducing the number of crossings by one. This contra-
dicts the diagram being minimal, and therefore this shows that the association
is injective. Hence c(T) ≥ 2n.

←→

(a) (b)

Figure 4. In a minimal diagram, two strings do not share an
outermost crossing.

In a minimal diagram of a tangle, each outermost crossing c defines a single
segment s containing an end of a string. Then s is referred to as the external

segment of c. The opposite segment with respect to c is called the internal

segment and the other two are the lateral segments of c.

Lemma 3. In a minimal diagram of a tangle, there is no segment which is

both internal and lateral.

Proof : Suppose there is a minimal diagram of a tangle with a segment s which
is both internal and lateral. Hence, as illustrated in Figure 5, we can proceed
with an isotopy of s and reduce the number of crossings in D, which contradicts
its minimality.

Remark 1. Since all strings are arcs, in a diagram of a tangle there is no

string containing only lateral segments. Furthermore, in a n-string tangle,
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→
s

(a)

s

(b)

Figure 5. In a minimal diagram, segments are not both internal
and lateral.

there is at least one inner crossing, and at least two non opposite segments

adjacent to the inner crossings are lateral.

3. Crossing number of essential tangles

In this section we study the minimum crossing number of n-string essential
tangles and we prove Theorem 1.

Proof of Theorem 1. Let T be a n-string essential tangle and D a minimal
diagram of T. By the proof of Lemma 2, D has 2n outermost crossings and by
Remark 1, there is at least one inner crossing. Therefore c(T) ≥ 2n+ 1.

Now suppose that c(T) = 2n + 1. Then there is exactly one inner crossing
c. Of the four segments adjacent to c, two are lateral and the other two are
internal. Again by Remark 1, the lateral segments cannot be opposite in c.
Therefore the projection of T is as depicted in Figure 6(a). In each dotted region

there is a collection (possibly empty) of unknotted arcs that go around the curve
that contains the inner crossing (with one overcrossing and one undercrossing),
as in Figure 6(b). Each of these regions can slide along the curve and merge
with the other regions, so that we could depict Figure 6(a) with a single such
region.

If the string that contains the inner crossing is not alternating, then the
tangle can be isotoped to a tangle with two less crossings. Therefore this string
is knotted (by identifying its ends along ∂B we obtain a trefoil) and all other
strings are unknotted, and T is equivalent to the tangle represented in Figure
1.

The tangle T is essential, since we can add a trivial tangle to T to obtain a link
L with n components, one of which is a trefoil and the other n− 1 components
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(a)

c ··
·

(b)

Figure 6. (a) A projection of a n-string essential tangle with
c(T) = 2n+ 1; (b) A projection of a dotted region.

are trivial and parallel†. With a suitable orientation, the linking number of L
is n − 1. If T is not essential, then there is a disk in B separating the trefoil
string from the trivial strings. Then these strings could be isotoped outside of
B and L would be splittable. Therefore the linking number of L would be 0,
which is a contradiction to the linking number of L being n− 1.

4. Crossing number of essential tangles with all strings un-

knotted

This section is devoted to the proof of Theorem 2. We study the minimum
crossing number of n-string essential tangles with all strings unknotted, and
identify the respective tangles with this crossing number.

Lemma 4. If T is a n-string essential tangle with all strings unknotted then

c(T) ≥ 2n+ 2.

Proof : Let T be a n-string essential tangle with all strings unknotted. By
Theorem 1, c(T) ≥ 2n + 1 and, if c(T) = 2n + 1 then at least one string is
knotted. Therefore c(T) ≥ 2n+ 2.

For the following lemmas we let T be a n-string essential tangle with all
strings unknotted and c(T) = 2n + 2, and D be a minimal diagram of T.
Then, from the proof of Lemma 2, there are 2n outermost crossings and 2
inner crossings in D, that we denote by ca and cb.

Lemma 5. There are exactly two strings on the inner crossings of D.

†Two strings of T are parallel if they cobound a disk together with two disjoint arcs in ∂B.
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Proof : As D only has two inner crossings then there are at most eight segments
adjacent to the inner crossings. From Remark 1, at least two segments adjacent
to the inner crossings are lateral. Then, in D at most six segments adjacent to
inner crossings can be internal. Hence, there are at most three strings on the
inner crossings of D.

Suppose there are three strings on the inner crossings. Then, from Lemma 3,
there are six internal segments adjacent to the inner crossings. From Remark
1, two segments adjacent to inner crossings are lateral. Therefore, as there
are only two segments adjacent to inner crossings that are not internal, one
component s of σ is on all outermost crossings containing all lateral segments
but the two adjacent to the inner crossings. (See Figure 7.)

s

Figure 7. If three strings are on the inner crossings, there is a
string containing all lateral segments.

s

(a)

s

(b)

Figure 8. If three strings are on the inner crossings, there is al-
ways an isotopy reducing the number of crossings.

Either s is on both inner crossings, as in Figure 8(a), and each inner crossing
is adjacent to three internal segments, or s is on a single inner crossing and
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the other inner crossing has all ends adjacent to internal segments, as in Figure
8(b). In the case of Figure 8(a) we can reduce the number of crossings in the
diagram by an isotopy of one of the strings on the inner crossings. And in
the case of Figure 8(b), as s is unknotted, two of its three self-crossings in the
diagram are not alternating, which allows us to isotope σ reducing the crossing
number of the diagram. In both cases we have a contradiction with D being
a minimal crossing number diagram of T. Consequently, the number of strings
on the inner crossings of D is at most two.

Assume now that there is only one string on the inner crossings. Then ex-
actly two segments adjacent to the inner crossings are internal. Suppose these
segments are adjacent to the same inner crossing, say ca. It follows they have to
be consecutive, otherwise more than one string would be on the inner crossings
or we would have a contradiction to Lemma 3. Then cb cannot be adjacent to
three or four lateral segments, because in this case we would be in contradiction
to Lemma 3. Hence, two consecutive segments adjacent to cb are lateral and
the other two segments are adjacent to the two inner crossings. In Figure 9 we
have an illustration of the projection of this case.

ca cb

Figure 9. Only one string on the inner crossings with the two
internal segments on the same inner crossing.

Suppose now each inner crossing is adjacent to exactly one internal segment.
The ends of the inner crossings opposite to the internal segments cannot be
adjacent to the other inner crossings or to a lateral segment in the direction of
the outermost crossing adjacent to the internal segment it opposes, otherwise
we would have a contradiction to only one string being on the inner crossings or
to Lemma 3. Therefore, the ends of the inner crossings opposite to the internal
segments are connected to lateral segments in the direction of the outermost
crossing adjacent to the other internal segment. The other segments adjacent
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to the inner crossings and outermost crossings are uniquely determined at this
point. For this case we obtain the diagram shadow as in Figure 10.

Figure 10. Only one string on the inner crossings with the two
internal segments on distinct inner crossings.

In this section all strings of the tangles are unknotted. Consequently, in this
two cases, illustrated in Figures 9 and 10, the string on the inner crossings is
also unknotted. This necessarily means that two consecutive self-crossings are
not alternating. Considering all consecutive self-crossings possibilities for the
two cases we can obtain a diagram with a smaller crossing number than the
one of D, which contradicts D being a minimal crossing number diagram.

Lemma 6. If on an inner crossing there is only one string s, then s is on the

other inner crossing.

Proof : Suppose that on an inner crossing there is only one string s and that
s is not on the other inner crossing. Then, the two internal segments of s are
adjacent to the same inner crossing, and the respective opposite segments are
lateral. Hence, not to be in contradiction with Lemma 3, we have a diagram
projection of D as in Figure 11, which is a contradiction to T being essential.

Proof of Theorem 2. As before in this section, let T be a n-string essential tan-
gle with all strings unknotted, and D a minimal diagram of T. In Lemma 4 we
proved that c(T) ≥ 2n + 2. To prove the second part of the theorem suppose
that c(T) = 2n + 2. As observed before, D has 2n outermost crossings and 2
inner crossings.
From Lemma 5 exactly two strings are on the inner crossings of D. We denote
the two strings on the inner crossings by s1 and s2. From Lemma 6, without
loss of generality we can assume that s1 is on both inner crossings.
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Figure 11. Only one string on an inner crossing and other strings
on the other crossing.

(i) Suppose s2 is only on the inner crossing cb. Then in the projection corre-
sponding to D, s2 contains two internal segments adjacent to cb. One internal
segment of s1 is adjacent to cb, and the opposite segment to this is adjacent to
both ca and cb, since D is minimal. One segment consecutive to the latter in
ca is internal, and the remaining two segments adjacent to ca are lateral. (See
Figure 12.)

ca cb

s1 s2

Figure 12. Diagram when s2 is only on the inner crossing cb.

As D is a minimal diagram of T, following the string s2 the crossings in the
diagram are alternating. As s1 is unknotted, following the string, two of its
self-crossings are of the same type, and are in the opposite sides of the inner
crossing of s1 with s2, otherwise we can reduce the crossing number of D. Then,
from these two statements we can assume that D is alternating. There are two
possible alternating diagrams but they correspond to homeomorphic tangles,
which are depicted in Figure 2(a).

The tangle defined by s1 and s2 in B is essential. In fact, we can add a 2-string
trivial tangle to the tangle with the strings s1 and s2 to obtain the alternating
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knot 62 from Rolfsen’s list in [13] that we denote by K. Suppose there is a disk
separating s1 and s2. As s2 is unknotted we could isotope it to the complement
of B in S3, and realize that the knot K is the connected sum of two unknots.
This is a contradiction as K is knotted. All other strings are parallel. Then if T
is not essential there is a disk separating s1 and s2 from the other strings, and
it suffices to study the case when the number of strings in T is three. Denote
the third string by s and suppose there is a disk in B separating s from s1∪s2.
Then, from the diagram D, the string s cobounds a disk D1 with an arc in
∂B intersecting s1 once, and disjoint from s2, and cobounds a disk D2, with
another arc in ∂B, disjoint from s1∪s2. Therefore, the union of these two disks
intersects s1 ∪ s2 in a point of s1. As s1 is not knotted, D1 ∪ D2 separates a
ball from B and an unknotted arc of s1 from s1 ∪ s2 in it. Hence, this arc can
be isotoped to an arc in D1. With a proper choice of D1, we can isotope s1 in
a way that reduces the crossing number of the tangle defined by s1 and s2 in
B, which contradicts the crossing number minimality of the diagram with s1
and s2. Therefore, the tangle T is essential.

(ii) Suppose s1 and s2 are on both inner crossings. In this way, each inner
crossing is adjacent to an internal segment for each string s1 and s2 and these
segments are necessarily consecutive. For each inner crossing we can assume
that the internal segments separate their opposite segments from the other
inner crossings. In fact, if that is not the case, as in Figure 13(a), then at least
a segment opposite to an internal segment l is lateral and in the direction of
a outermost crossing adjacent to the same inner crossing c. In this case, we
can isotope a string by taking the internal segment l over (or under, depending
on the outermost crossing type) the segment opposite to the other internal
segment adjacent to c, without increasing the crossing number.
After this isotopy, c is as claimed before: the internal segments of c separate
the corresponding opposite segments and the other inner crossing. (See Figure
13(b).) Under this setting we are left with only one possible diagram projection
of s1 and s2, as in Figure 14. There are two possible cases for the crossings
of D in this case. Either the diagram is alternating, as in Figure 2(b), or the
diagram is obtained from the alternating one by changing the crossings of a
twist box, as in Figure 2(c).

To prove that these tangles are essential first note that we can add a 2-string
trivial tangle to the tangle with the strings s1 and s2 to get the square knot, in
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l

c

ր

(a)

l

c

(b)

Figure 13. When s1 and s2 are on both inner crossings, we can
assume that the inner crossings are as in (b).

Figure 14. Diagram projection when s1 and s2 are on both inner crossings.

the case of Figure 2(b), or the granny knot, in the case of Figure 2(c). Then, if
there is a properly embedded disk in B separating the strings s1, s2 we would
have a 2-bridge decomposition of a composite knot, which is a contradiction
because 2-bridge knots are prime. To prove that the n-string tangle T is essen-
tial in these cases we now follow a similar argument as the one used in case (i).

The three tangles depicted in Figure 2 are not equivalent. In fact, suppose
there is a homeomorphism between two of these tangles, and consider the 2-
string trivial tangle added to the tangles in the argument and the respective
knots obtained from adding this trivial tangle. Consider B in S3 and the disk
of the diagram in R2. Note that the diagram of this trivial tangle is a collection
of two disjoint arcs in the complement in R2 of the disk from the diagram of
each essential tangle, with one arc at the top of this disk of the diagram and
the other at the bottom. The homeomorphism between the essential tangles
restricted to the boundary of the ball B can be isotoped to either the identity
or reflexion of ∂B, and from here extended to the ball in the complement of B
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as the identity or reflection on the plane. Therefore, if two of these essential
tangles are homeomorphic the knots obtained are also equivalent, which is a
contradiction. Then, these three essential tangles are not equivalent.

5. Crossing number of essential tangles with closed strings

Let T be a n-string k-loop tangle with k > 0, and D be a minimal diagram
of T. A block β (with respect to D) is a subtangle of T defined by a set of
connected components of σ such that:

(1) if l ∈ β is a loop, then every string or loop that crosses l is in β;
(2) if s ∈ β is a string, then every loop that crosses s is in β.

The union of two blocks is a block and a block β1 ( β2 is called a subblock of
β2. We call a crossing of a block β1 with another block β2 outermost (in β1)
if it separates the projection of β1 into two components such that one of them
has no crossings with other blocks. Notice that a string s that doesn’t cross
any loop is a block, and a crossing of the string s is outermost if and only if it
is outermost as a crossing of the block s.

Lemma 7. If T has no subblocks, then c(T) ≥ 2(n+ k − 1).

Proof : Let l1 be any loop of T and consider the subtangle T1 of T formed by l1
and all the n1 strings that cross l1. Since every string of T1 crosses l1 at least
twice, then c(T1) ≥ 2n1. If T1 6= T, then, since T1 is not a subblock of T, there
is a loop l2 in T−T1 that crosses some component of T1, at least twice. Consider
the subtangle T2 of T formed by l1, l2 and all the n2 strings that cross l1 or l2.
Again, since every string of T2 crosses l2 at least twice, then c(T2) ≥ 2(n2+1).
By repeating this argument, adding at stage i, one loop li and the new strings
of T that cross li, we obtain a subtangle Ti of T such that c(Ti) ≥ 2(ni+ i−1).
At stage k all the loops of T have been added, and, since Tk is not a subblock
of T, then Tk = T, which shows that c(T) ≥ 2(n+ k − 1).

We notice that this inequality is sharp, as the tangle T of the Figure 3, with
one loop and n strings, verifies the equality c(T) = 2n. A similar argument to
that on the end of the proof of Theorem 1 shows that T is essential. To see that
this is the only n-string 1-loop essential tangle with c(T) = 2n, observe that
every string must cross the loop twice so that there are no crossings between
any two strings.

Now we prove Theorem 3.
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Proof of Theorem 3. Consider a partition of T into blocks. First note that if two
blocks T1 and T2 of this partition cross at least twice, with c(Ti) ≥ 2(ni+ki−1),
where ni and ki are respectively the number of strings and loops of Ti, i = 1, 2,
then T1 ∪ T2 is a subblock of T such that

c(T1∪T2) ≥ 2(n1+k1−1)+2(n2+k2−1)+2 = 2 ((n1 + n2) + (k1 + k2)− 1) .

We can therefore replace T1 and T2 by T1 ∪ T2 obtaining a smaller partition of
T into blocks which have the property stated in Lemma 7.
Consider the collection of all minimal subblocks of T with respect to a minimal
diagram of T. Clearly this collection is a partition of T by blocks that verify
the inequality in Lemma 7. By repeating the above process on this collection,
we eventually obtain a partition of T such that two blocks intersect each other
at most once, and that also verifies the inequality in Lemma 7. Next we prove
that this partition has only one block. Being this the case, we have

c(T) ≥ 2(n+ k − 1),

as in the statement of the theorem.
In fact, suppose that the partition has more than one block, and that each
block intersects each other at most once. Then all these blocks have at least
two outermost crossings.
Consider a block β1 and an outermost crossing c1 of β1 (with β2). Let R1 be
the outer region of the projection disk bounded by the component of β1 − c1
that has no crossings with other blocks and that is the smallest that contains
one of the two components of β2 − c1. (See Figure 15.)

R1

c1 β1

β2

Figure 15. The outer region defined by an outermost crossing.

If β2 has no outermost crossing in R1, then we can reduce the number of
crossings by an isotopy of β1. Otherwise, consider an outermost crossing c2
of β2 (with β3). Note that β3 6= β1 as we are assuming that two blocks do
not share more than one crossing. We can similarly consider the outer region
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R2 of the projection disk bounded by the component of β2 − c2 that has no
crossings with other blocks and that is the smallest that contains one of the two
components of β3− c2. Notice that R2 has fewer crossings than R1. Repeating
this process we get a contradiction to the diagram being minimal or to the
number of crossings being finite.
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