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SEMIDIRECT PRODUCTS OF (TOPOLOGICAL)

SEMI-ABELIAN ALGEBRAS

MARIA MANUEL CLEMENTINO, ANDREA MONTOLI AND LURDES SOUSA

Abstract: We give an explicit description of the semidirect products in any semi-
abelian variety. Moreover, we use this description to characterize the topology of
the semidirect products in the topological models of any semi-abelian theory.

1. Introduction
The semidirect product is a classical construction in group theory, which is

used to obtain an equivalence between group actions and split extensions. D.
Bourn and G. Janelidze gave in [5] a categorical definition of semidirect prod-
ucts, and proved that it still gives an equivalence between split extensions
and internal actions in the context of semi-abelian categories, i.e. pointed
Barr-exact protomodular categories with finite colimits.

In the category of groups, the categorical semidirect product coincides with
the classical one. Moreover, it is known that the semidirect product of two
groups, with respect to a given action, is, as a set, the cartesian product of
the two groups. This is not true in all semi-abelian varieties. E.B. Inyangala
proved in [8] that it is true in varieties of right Ω-loops, showing that, given
two right Ω-loops X and B and an action ξ of B on X there exist bijections
ϕ and ψ making the diagram

X
〈1,0〉

// X × B

ϕ
��

πB
// B

〈0,1〉
oo

X
k

// X ⋊ξ B

ψ

OO

f
// B

soo
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commutative, where the bottom row is the split extension corresponding to
ξ. J.R.A. Gray and N. Martins-Ferreira showed in [7] that right Ω-loops are
the unique varieties where this property is valid.

On the other hand, F. Borceux and M.M. Clementino proved in [2] that the
equivalence between internal actions and split extensions, obtained via the
categorical semidirect product, holds in the categories of topological models
of any semi-abelian algebraic theory.

In the present paper, we give an explicit description of the semidirect prod-
ucts in any semi-abelian variety, showing that the semidirect product corre-
sponding to an internal action of an object B on an objectX can be described
as a subset of the cartesian product of B and a suitable number of copies
of X, extending the results of [8]. Moreover, we use this fact to prove that,
in the case of topological models of a semi-abelian theory, the semidirect
product is always a retract of the topological product of B and some copies
of X.

The paper is organized as follows: in Section 2 we recall the categorical def-
inition of semidirect product. In Section 3 we describe semidirect products in
the context of semi-abelian varieties, showing that a semidirect product can
be always seen as a subset of a cartesian product. In Section 4 we characterize
the semi-abelian varieties in which the inclusion of the semidirect product
into the corresponding cartesian product is a bijection, showing that any
semi-abelian variety such that all semidirect products of objects B and X
are in bijections with cartesian products of the form Xn × B is a variety of
right Ω-loops; in this way we generalize Inyangala’s results. Moreover, we
study an example of a variety that can be described as semi-abelian using two
different sets of operations, with different cardinality, showing that they give
rise to different inclusions of the semidirect products into the corresponding
cartesian products. In Section 5 we study explicitly other concrete examples.
In Section 6 we consider the case of topological models of semi-abelian the-
ories.

Acknowledgement. We are very grateful to Francis Borceux for suggest-
ing us the study of semidirect products in topological semi-abelian algebras.
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2. The categorical notion of semidirect product
In this section we recall from [5] the categorical notion of semidirect prod-

uct.

Let C be a finitely complete category. For any morphism p : E → B in C,
we can define the pullback functor

p∗ : Pt(B) → Pt(E),

where the category Pt(B), called the category of points over B, is the cate-
gory of points of the comma category C over B, i.e. the cocomma category
1B over C/B. This amounts to the category whose objects are the split epi-
morphisms with codomain B. In fact a morphism from the terminal object
1B : B → B to an object f : A → B is precisely an arrow s : B → A such
that fs = 1B.

Definition 2.1. A finitely complete category C is said to be a category with

semidirect products if, for any arrow p : E → B in C, the pullback functor
p∗ (has a left adjoint and) is monadic.

In this case, denoting by T p the monad defined by this adjunction, given a
T p-algebra (D, ξ) the semidirect product (D, ξ)⋊(B, p) is an object in Pt(B)
corresponding to (D, ξ) via the canonical equivalence K:

[Pt(E)]T
p

��

⊢

Pt(B)

K

;;
w

w

w

w

w

w

w

p∗
//⊥ Pt(E)

p!oo

OO

Let us recall from [5] that, being C finitely complete, the pullback functors
p∗ have left adjoints p! (for any p in C) if and only if C has pushouts of split
monomorphisms. For Barr-exact categories [1], if, moreover, the functors p∗

are conservative, that is if C is protomodular [4], the existence of semidirect
products is guaranteed. In fact:

Theorem 2.2 ([5], Theorem 3.4). A finitely complete Barr-exact category is

a category with semidirect products if and only if it is protomodular and has

pushouts of split monomorphisms.
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If C is finitely complete, so that we can define p∗ for every morphism p, has
pushouts of split monomorphisms, so that the functors p∗ have left adjoints
p!, and an initial object 0, then it is enough to consider the functors iB

∗ for
the unique morphisms iB : 0 → B:

Proposition 2.3 ([11], Corollary 3). Let C be a category with finite lim-

its, pushouts of split monomorphisms and initial object. Then the following

statements are equivalent:

(i) all pullback functors i∗B defined by the initial arrows are monadic;

(ii) for any morphism p in C, the pullback functor p∗ is monadic, i.e. C

admits semidirect products.

When the category C is pointed, the algebras for the monad (T iB , η, µ)
are called internal actions in [3] and the endofunctor T iB is usually denoted
by B♭(−). We recall that ηX and µX are the unique morphisms such that
k0ηX = ιX and k0µX = [k0, ιB]k

′
0, as displayed in the diagrams

B♭X
k0 // X +B

X

ηX

OO

ιX

99
s

s
s

s
s

s
s

s
s

s

, B♭(B♭X)

µX

��

k′0 // (B♭X) +B

[k0,ιB ]
��

B♭X
k0

// X +B,

where k′0 and k0 denote the kernels of [0, 1] : (B♭X) +B → B and of
[0, 1] : X + B → B, respectively.

The algebras for this monad are pairs (X, ξ : B♭X → X) satisfying the
usual conditions:

ξηX = 1X , and ξµX = ξ(1♭ξ).

Consequently, for C as above, saying that C has semidirect products means
that, for each internal action ξ : B♭X → X, there exists (up to isomorphism)

a unique split epimorphism A
f

// B
soo such that X = Kerf and making the

following diagram commute:

B♭X

ξ
��

k0 // X + B

[k,s]
��

[0,1]
// B

ιBoo

X
k

// A
f

// B,
soo

(∗)
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Then A
f

// B
soo is the semidirect product of X and B with respect to ξ.

Sometimes we will identify this semidirect product with the object A or with
the split extension

X
k // A

f
// B.

soo (∗∗)

When C is the category of groups, B♭X is the subgroup of the free product
X + B generated by the elements of the form bxb−1, with b ∈ B and x ∈
X. Hence an internal action ξ is nothing but the realization in X of the
conjugation in the classical semidirect product X ⋊B.

3. Semidirect products in semi-abelian varieties
An immediate consequence of Theorem 2.2 is that every semi-abelian cate-

gory [9] has semidirect products in the categorical sense recalled above. This
is the case, in particular, of semi-abelian varieties, which were characterized
by D. Bourn and G. Janelidze in [6].

Theorem 3.1. A variety of universal algebra is semi-abelian if and only

if it has, among its operations, a unique constant 0, n binary operations αi,
i = 1, . . . , n, and an (n+1)-ary operation θ satisfying the following equations:

αi(x, x) = 0 for any x (I)

θ(α(x, y), y) = x for any x, y, (II)

where α(x, y) denotes (α1(x, y), . . . , αn(x, y)).

The aim of this section is to give an explicit description of the semidirect
product in semi-abelian varieties.

We start by recalling a result of E.B. Inyangala [8]. Let C be a variety of
right Ω-loops, i.e. a (semi-abelian) variety which has, among its operations,
a unique constant 0, a binary + and a binary − satisfying the following
equations:

(a) x+ 0 = x;
(b) 0 + x = x;
(c) (x− y) + y = x;
(d) (x+ y)− y = x.
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Then, given a split extension (∗∗) in C, it is possible to define two set-
theoretical maps

ϕ : X ×B −→ A ψ : A −→ X × B

(x, b) 7−→ x+ s(b) a 7−→ (a− sf(a), f(a)),

treating k as an inclusion.

Proposition 3.2 ([8]). The two maps ϕ and ψ are inverse to each other.

In other terms, given any split extension (∗∗), A is in bijection with the
cartesian product of B and Kerf .

Moreover, E.B. Inyangala proved in [8] that, if a semi-abelian variety C

has a binary + and a binary −, and the maps ϕ and ψ are defined using +
and − as above, then ϕ and ψ are bijections, whose restrictions to X and
B are identities, if and only if the equations (a)-(d) are satisfied, i.e. if and
only if C is a variety of right Ω-loops. Later, in [7] J.R.A. Gray and N.
Martins-Ferreira extended this result, showing that the existence of such ϕ
and ψ induces binary operations + and − making the algebras right Ω-loops.
In order to achieve this result, they made a thorough study of the maps ϕ
and ψ described above, and of their generalizations in semi-abelian varieties,
seen as natural transformations between suitable functors.

We are now going to express the natural transformations studied in [7] in
terms of the operations of the semi-abelian variety, in order to get an explicit
description of semidirect products. This way we will obtain some results
already contained in [7], but we will give different proofs, that will be useful
later in the study of semidirect products of topological algebras.

Let C be a semi-abelian variety. For each split extension (∗∗) in C, using
the operations α1, . . . , αn and θ introduced at the beginning of the section,
we can define two set-theoretical maps

ϕ : Xn ×B −→ A ψ : A −→ Xn × B

(x, b) 7−→ θ(x, s(b)) a 7−→ (α(a, sf(a)), f(a)),

where x denotes (x1, . . . , xn), and treating again k as an inclusion. To simplify
our calculations, for any map h : Z → W and z = (z1, . . . , zn) ∈ Zn, hn(z)
denotes (h(z1), . . . , h(zn)).
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Proposition 3.3. For any split epimorphism A
f

// B
soo in C, we have that:

1. ϕψ = idA, and therefore A is a retract of Xn ×B.

2. A is in bijection with the subset

Y = {(x, b) ∈ Xn × B |α(θ(x, s(b)), s(b)) = x}.

Proof : 1. For any a ∈ A we have:

ϕψ(a) = ϕ(α(a, sf(a)), f(a)) = θ(α(a, sf(a)), sf(a)) = a,

where the last equality follows from equation (II).

2. Let us first prove that ψ(A) ⊆ Y : for any a ∈ A, we have ψ(a) =
(α(a, sf(a)), f(a)), hence:

α(θ(α(a, sf(a)), sf(a)), sf(a)) = α(a, sf(a)).

It remains to prove that ψϕ|Y = idY . Let us observe that, for any algebra Z
and any z ∈ Z, we have θ(0, z) = θ(α(z, z), z) = z. Then, for any (x, b) ∈ Y :

ψϕ(x, b) = ψθ(x, s(b))

= (α(θ(x, s(b)), sfθ(x, s(b))), fθ(x, s(b)))

= (α(θ(x, s(b)), θ(snfn(x), sfs(b))), θ(fn(x), fs(b)))

= (α(θ(x, s(b)), θ(0, s(b))), θ(0, b))

= (α(θ(x, s(b)), s(b)), b) = (x, b),

where the last equality holds because (x, b) ∈ Y .

Proposition 3.3 allows us to give an explicit description of semidirect prod-
ucts in any semi-abelian variety.

Theorem 3.4. Given a semi-abelian variety C, objects B,X ∈ C and an

internal action ξ : B♭X → X of B on X, the semidirect product X ⋊ξ B of

X and B w.r.t. the action ξ is the set Y described in the previous proposition:

Y = {(x, b) ∈ Xn × B |α(θ(x, s(b)), s(b)) = x},

where A
f

// B
soo is the split epimorphism in C corresponding to the action

ξ, equipped with the following structure: if ω is an m-ary operation of the
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variety, then in Y we have:

ωY ((x1, b1), . . . , (xm, bm)) =

= (ξnαB♭X(ωB♭X(θB♭X(x1, b1), . . . , θB♭X(xm, bm)), ωB♭X(b)), ωB(b)).

Proof : Being A
f

// B
soo the split epimorphism in C corresponding to the

semidirect product X ⋊ξ B, diagram (∗) says that ξ is the restriction of the
morphism [k, s]. We know that A is in bijection with Y via the maps ϕ and
ψ studied in Proposition 3.3. Given (xi, bi) ∈ Y , for i = 1, . . . , m, let

u = ωA(θA(x1, s(b1)), . . . , θA(xm, s(bm))).

Then

ωY ((x1, b1), . . . , (xm, bm)) = ψωA(ϕ(x1, b1), . . . , ϕ(xm, bm)) = ψ(u)

= (αA(u, sf(u)), f(u)).

Since f and s are morphisms (and so they preserve the operations):

f(u) = ωB(θB(f
n(x1), fs(b1)), . . . , θB(f

n(xm), fs(bm))),

and, since fs = idB and X = Kerf ,

f(u) = ωB(θB(0, b1), . . . , θB(0, bm)) = ωB(b).

Thus, sf(u) = ωA(s
m(b)), and we obtain:

ωY ((x1, b1), . . . , (xm, bm)) = (αA(u, ωA(s
m(b))), ωB(b))

= (αA(ωA(θA(x1, s(b1)), . . . , θA(xm, s(bm))), ωA(s
m(b))), ωB(b))

= ([k, s]nαB♭X(ωB♭X(θB♭X(x1, b1), . . . , θB♭X(xm, bm)), ωB♭X(b)), ωB(b)),

and, since ξ is the restriction of [k, s], we finally obtain the claimed equality.

4. A detailed description of ϕ and ψ
The aim of this section is to make explicit the relationships between the

properties of the maps ϕ and ψ defined in Section 3 and the equations of the
variety.

Let C be a variety which has, among its operations, a unique constant 0,
n binary operations αi, i = 1, . . . , n, satisfying the equations (I), and an
(n+1)-ary operation θ. Given a split epimorphism with kernel X as in (∗∗),
let ϕ : Xn × B → A and ψ : A → Xn × B be the maps defined in Section 3.
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Observe that the map ψ is well-defined (i.e. it takes value in Xn×B) thanks
to the equations (I). We have therefore the following diagram:

Xn

ϕX

��

〈1,0〉
// Xn × B

ϕ
��

πB
// B

ϕB

��

〈0,1〉
oo

X

ψX

OO

k
// A

ψ

OO

f
// B

ψB

OO

soo

(∗ ∗ ∗)

where ϕX , ψX are obtained via the universal property of kernels, and

ϕB(b) = f(ϕ(0, b)) = fθ(0, s(b)) = θ(0, b), ψB(b) = πB(ψ(s(b))) = idB,

so that fϕ = ϕBπB and ψs = 〈0, 1〉ψB.

The following proposition is a reformulation of some results in [7].

Proposition 4.1. We have that:

1. ϕB = idB for any split epimorphism (∗∗) if and only if the following equa-

tion is satisfied in the variety:

θ(0, x) = x for all x; (III)

2. ϕψ = idA for any split epimorphism (∗∗) if and only if equation (II) is

satisfied in the variety;

3. if equation (III) holds in the variety, then ψϕ = idXn×B for any split

epimorphism (∗∗) if and only if the equation

α(θ(x, y), y) = x for all x, y (IV)

is satisfied in the variety.

Proof : 1. Suppose that equation (III) holds. Then ϕB(b) = θ(0, b) = b, for
all b ∈ B. Conversely, suppose that ϕB = idB for any split epimorphism

(∗∗). Applying this fact to the split epimorphism A
1A

// A
1Aoo for any algebra

A, we easily get equation (III).

2. The fact that equation (II) implies that ϕψ = idA was already proved
(see Proposition 3.3). Conversely, suppose that ϕψ = idA for any split epi-

morphism of the form A× A
π2

// A
〈1,1〉
oo . Then, for any x, y ∈ A, we have

(x, y) = θ(α((x, y), (y, y)), (y, y)) = (θ(α(x, y), y), θ(α(y, y), y)),
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and hence θ(α(x, y), y) = x for all x, y.

3. We have that

ψϕ(x, b) = ψ(θ(x, s(b)) = (α(θ(x, s(b)), sfθ(x, s(b))), fθ(x, s(b)))

= (α(θ(x, s(b)), θ(snfn(x), sfs(b))), θ(fn(x), fs(b)))

= (α(θ(x, s(b)), θ(0, s(b))), θ(0, b))

= (α(θ(x, s(b)), s(b)), b).

Hence, if equation (IV) holds, we get ψϕ = idXn×B. Conversely, suppose

that ψϕ = id for any split epimorphism of the form A×A
π2

// A
〈1,1〉
oo . Then,

for any x, y, we have
(x, y) = (α(θ(x, y), y), y),

and the first component of this equality gives equation (IV).

Theorem 4.2. 1. For each semi-abelian variety C, and each n binary oper-

ations αi and (n+1)-ary operation θ satisfying equations (I)-(II), for any

split epimorphism A
f

// B
soo the maps ϕ and ψ are bijections between A

and the cartesian product Xn × B if and only if equation (IV) is satisfied

in C.

2. If a semi-abelian variety C satisfies equation (IV), then it is possible to

define in C binary operations + and − satisfying the conditions for right

Ω-loops.

Proof : 1. Thanks to the previous proposition, it suffices to observe that
equations (I) and (II) imply equation (III); indeed:

θ(0, x) = θ(α(x, x), x) = x.

2. The operations + and − can be defined in the following way:

x+ y = θ(α(x, 0), y), x− y = θ(α(x, y), 0).

They satisfy the equations of a right Ω-loop:

(a) x+ 0 = θ(α(x, 0), 0) = x, by equation (II);

(b) 0 + x = θ(α(0, 0), x) = θ(0, x) = x;
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(c)

(x− y) + y = θ(α(x, y), 0) + y = θ(α(θ(α(x, y), 0), 0), y) (by (IV))

= θ(α(x, y), y) = x (by (II));

(d)

(x+ y)− y = θ(α(x, 0), y)− y = θ(α(θ(α(x, 0), y), y), 0) (by (IV))

= θ(α(x, 0), 0) = x (by (II)).

Let us observe that J.R.A. Gray and N. Martins-Ferreira proved in [7] that
the existence of suitable maps ϕ and ψ for any split epimorphism in a va-
riety (giving natural transformations of suitable functors between categories
of points) allows to define operations θ and αi satisfying equations (I). This
means that, in a semi-abelian variety, for any set of operations (αi, θ) there
exists exactly one pair of maps (ϕ, ψ) for any split epimorphism. Theorem
4.2 extends then the results of [8] and [7], giving a complete characterization
of those semi-abelian varieties in which the semidirect product of two ob-
jects X and B (w.r.t. an action of B on X) naturally underlies the cartesian
product of B and a certain number of copies of X, and, moreover, we show
that one single copy of X suffices.

Let us observe, moreover, that, if a semi-abelian variety C satisfies the
conditions of Theorem 4.2, then the maps ϕ and ψ induce bijections between
X and Xn for any split epimorphism (∗∗). If n ≥ 2, this implies that all the
algebras of the variety, except the trivial one, are infinite. The following is
an example of a variety, with n ≥ 2, which satisfies equation (IV).

Example 4.3. Let C be the variety defined by the following operations: a
unique constant 0, two binary operations α1 and α2 and a ternary operation θ
satisfying the equations (I), (II) and (IV). A concrete example of an algebra
belonging to this variety is given by the set RN of real sequences (but R can be
replaced by any non-trivial, not necessarily infinite, right Ω-loop) equipped
with the operations defined by

α1(x, y) = (x2n−1 − y2n−1)n∈N = (x1 − y1, x3 − y3, . . .),

α2(x, y) = (x2n − y2n)n∈N = (x2 − y2, x4 − y4, . . .),

θ(x, y, z) = (x1 + z1, y1 + z2, x2 + z3, y2 + z4, . . .),
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for any x = (xn)n∈N, y = (yn)n∈N and z = (zn)n∈N in RN. It is immediate to
see that the equations (I) are satisfied. Concerning equation (II) we have:

θ(α1(x, y), α2(x, y), y) = θ((x2n−1 − y2n−1)n∈N, (x2n − y2n)n∈N, y)

= (x1 − y1 + y1, x2 − y2 + y2, x3 − y3 + y3, x4 − y4 + y4, . . .)

= x.

Finally, concerning equation (IV), we have:

α1(θ(x, y, z), z) = α1((x1 + z1, y1 + z2, x2 + z3, y2 + z4, . . .), z)

= (x1 + z1 − z1, x2 + z3 − z3, . . .) = x,

and

α2(θ(x, y, z), z) = α2((x1 + z1, y1 + z2, x2 + z3, y2 + z4, . . .), z)

= (y1 + z2 − z2, y2 + z4 − z4, . . .) = y.

Then C satisfies the conditions of Theorem 4.2, and hence, for any split
extension (∗∗) in C, we have that A is in bijection with the cartesian product
X2 × B. This example can be easily generalized to the case of any n ≥ 2.
Observe that, in this case, the operations + and − which give the structure
of right Ω-loop are the usual sum and subtraction of sequences, respectively,
i.e.:

x+ y = (xn + yn)n∈N,

x− y = (xn − yn)n∈N.

Then C can be seen as a semi-abelian variety using both sets of operations
{0,+,−} and {0, α1, α2, θ}. Using the first one, we have that, for any split
extension (∗∗), the object A is in bijection with X × B, while, using the
second one, A is in bijection with X2 × B.

The previous example shows that, if a variety can be described as semi-
abelian using two different sets of operations, then the two corresponding
descriptions of the semidirect products may be different.

5. Examples
In this section we present examples that illustrate the results of Section

3 in the absence of equation (IV). Given a split epimorphism A
f

// B
soo
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in a semi-abelian variety C with binary operations αi, i = 1, . . . , n, and an
(n+ 1)-operation θ satisfying equations (I) and (II), diagram (∗ ∗ ∗):

Xn

ϕX

��

〈1,0〉
// Xn × B

ϕ
��

πB
// B

ϕB

��

〈0,1〉
oo

X

ψX

OO

k
// A

ψ

OO

f
// B

ψB

OO

soo

gives an inclusion 〈1, 0〉ψX of X into the cartesian product Xn × B. In the
following examples we show that this inclusion can be of different forms.

Example 5.1. Let C be the variety of Heyting semilattices, which is defined
by a constant ⊤ and two binary operations ∧ and ⇒ satisfying the following
equations:

⊤ ∧ x = x, x ∧ x = x, x ∧ y = y ∧ x,

x ∧ (y ∧ z) = (x ∧ y) ∧ z, (x⇒ x) = ⊤,

x ∧ (x⇒ y) = x ∧ y, y ∧ (x⇒ y) = y,

x⇒ (y ∧ z) = (x⇒ y) ∧ (x⇒ z).

P.T. Johnstone proved in [10] that the variety of Heyting semilattices is semi-
abelian, with the following operations:

α1(x, y) = (x⇒ y), α2(x, y) = (((x⇒ y) ⇒ y) ⇒ x),

θ(x, y, z) = (x⇒ z) ∧ y.

In this variety, given a split extension (∗∗), we have, for x ∈ X:

ψ(x) = (α1(x, sf(x)), α2(x, sf(x)), f(x)) = (α1(x,⊤), α2(x,⊤),⊤) =

= ((x⇒ ⊤), (((x⇒ ⊤) ⇒ ⊤) ⇒ x),⊤) = (⊤, x,⊤),

hence the inclusion of X into X ×X ×B is given by the second inclusion of
X into the product:

X
〈0,1,0〉

// X ×X ×B.

Example 5.2. Let C be the variety defined by the following operations: a
unique constant 0, a binary subtraction α (which means a binary operation
α such that α(x, x) = 0 and α(x, 0) = x for any x) and a ternary operation
θ satisfying the following equation:

θ(α(x, y), α(x, y), y) = x.
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It is a semi-abelian variety, with n = 2 and α1 = α2 = α. A concrete example
of this situation is given by the divisible abelian group (Q,+) with α and θ
given by:

α(x, y) = x− y, θ(x, y, z) =
x+ y + 2z

2
.

In this variety, given a split extension (∗∗), we have, for x ∈ X:

ψ(x) = (α(x, sf(x)), α(x, sf(x)), f(x)) = (α(x, 0), α(x, 0), 0) = (x, x, 0),

hence the inclusion of X into X ×X ×B is given by the diagonal of X:

X
〈1,1,0〉

// X ×X ×B.

Example 5.3. Let C be the semi-abelian variety having a unique constant
0, a binary subtraction α, a binary sum ρ and a ternary operation θ, such
that ρ and α satisfy the usual group equations, and, moreover, the following
equation is satisfied:

θ(α(x, y), α(x, y), y) = x.

A concrete example of this situation is the divisible abelian group (Q,+)
considered in the example above, with ρ, α and θ given by:

ρ(x, y) = x + y, α(x, y) = x− y, θ(x, y, z) =
x + y + 2z

2
.

There are two ways of describing C as a semi-abelian variety. One is with
n = 1, using the group operations ρ and α. From this point of view, given a
split extension (∗∗), we have that A is in bijection with the cartesian product
X × B. The second way is with n = 2, using α1 = α2 = α and the ternary
operation θ. From this second point of view, given a split extension (∗∗), we
have that A is in bijection with a subset of the cartesian product X×X×B.
The two points of view are not in contradiction, because, as observed in the
previous example, the fact that α is a subtraction implies that the inclusion
of X into X ×X ×B is given by the diagonal of X.

6. The semidirect product of topological algebras
F. Borceux and M.M. Clementino proved in [2] that, given a semi-abelian

theory T, the category Top(T) of its topological models has semidirect prod-
ucts in the categorical sense, although it is not a semi-abelian category, be-
cause it fails to be Barr-exact in general. The results presented in Section 3
allow us to give an explicit description of the semidirect products in Top(T),
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as we are going to show.

Let T be a semi-abelian theory determined by a constant 0, n binary oper-
ations αi and an (n+1)-ary operation θ satisfying equations (I) and (II), and
let E be a finitely complete category. We will denote by E(T) the category of
models of T in E. When E = Set, C is the semi-abelian variety corresponding
to the theory T. Let

U : E(T) → E

be the (forgetful) functor which forgets the algebraic structure of any object

in E(T). Given a split epimorphism A
f

// B
soo in E(T), we can repeat inter-

nally in E the construction of the maps ϕ and ψ studied in Proposition 3.3,
obtaining thus two morphisms in E:

ϕ : U(X)n × U(B) → U(A), ψ : U(A) → U(X)n × U(B),

where X is the kernel of f . The proof of Proposition 3.3 uses only finite lim-
its, hence it is Yoneda-invariant. This means that, for any finitely complete
category E and for any split extension (∗∗) in E(T), U(A) is a subobject of
U(X)n × U(B).

In particular, when E = Top, for any split extension (∗∗) in Top(T) we
have that, as a topological space, A is a subspace, actually a retract, of the
topological product Xn ×B. More explicitly:

Proposition 6.1. Given a semi-abelian theory T and a split extension (∗∗)
in Top(T), the maps

ϕ : Xn × B → A and ψ : A→ Xn ×B,

of Proposition 3.3 are continuous.

Proof : ϕ and ψ are defined using only the operations θ and αi, that are
continuous because they are morphisms in Top, and the canonical morphisms
induced by the products in Top, hence they are continuous.

From Proposition 6.1 and Theorem 3.4 it follows that:

Theorem 6.2. Let T be an algebraic theory. Given objects B,X and an

internal action ξ : B♭X → X on X in Top(T), the semidirect product X⋊ξB
of X and B w.r.t the action ξ is the algebra Y ⊆ Xn×B described in Theorem

3.4 equipped with the product topology. In particular, if the theory T defines
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a variety of right Ω-loops, then X ⋊ξ B is isomorphic, as a topological space,

to the topological product X × B.

The results above can be applied not only for E = Top, but for any subcat-
egory of Top which is closed under finite products, like the subcategories of
compact, Hausdorff, connected, and totally disconnected spaces. Moreover,
we immediately get that, given a split extension (∗∗) in Top(T), if both X
and B are compact, then A also is, and the same holds for the properties of
being Hausdorff, connected and totally disconnected.

We conclude by observing that the last statement of Theorem 6.2 actually
holds if we replace Top with any finitely complete category E: if the algebraic
theory T defines a variety of right Ω-loops, let us consider the category E(T)
of its models in E. Given a split extension (∗∗) in E(T), we have that U(A)
is isomorphic to U(X) × U(B), where U is, as above, the forgetful functor
U : E(T) → E. If the category E(T) has pushouts of split monomorphisms,
this fact can be use to prove that it has semidirect products in the categorical
sense recalled in Section 2, using the same argument that was used in [11]
for the case of internal groups and internal groupoids with a fixed object of
objects.
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