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AMÍLCAR BRANQUINHO AND EDMUNDO J. HUERTAS
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Weyl function associated to the corresponding block Jacobi matrix as well as the
Stieltjes matrix function. Next, from an arbitrary sequence of type II multiple or-
thogonal polynomials with respect to a set of d linear functionals, we obtain a total
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1. Introduction

In recent years an increasing attention has been paid to the notion of mul-
tiple orthogonality. Multiple orthogonal polynomials are a generalization of
orthogonal polynomials [11], satisfying orthogonality conditions with respect
to a number of measures, instead of just one measure. There exists a vast
literature on this subject, e.g. the classical works [1], [2], [18, Ch. 23] and [27]
among others. A characterization through a vectorial functional equation,
where the authors call them d–orthogonal polynomials instead of multiple
orthogonal polynomials, was done in [14]. Their asymptotic behavior have
been studied in [4], also continued in [12], and properties for their zeros have
been analyzed in [17].
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Bcklund transformations resulted from the symmetrization process in the
usual (standard) orthogonality, which allows one to jump, from one hierarchy
to another, in the whole Toda lattices hierarchy (see [19]). That is, they allow
reinterpretations inside the hierarchy. In [8], the authors have found certain
Bcklund–type transformations (also known as Miura–type transformations)
which allow to reduce problems in a given full Konstant–Toda hierarchy
to another. Also, in [5], where Peherstorfer’s work [28] is extended to the
whole Toda hierarchy, it is shown how this system can be described with
the evolution of only one parameter instead of two, using exactly this kind
of transformations. Other application to the Toda systems appear in [3],
[6], and [7], where the authors studied Bogoyavlenskii systems which were
modeled by certain symmetric multiple orthogonal polynomials.
In this paper, we are interested in analyze the effect of symmetrization in

systems of multiple orthogonality measures. Our viewpoint seeds some new
light on the subject, and we prove that the symmetrization process in multiple
orthogonality is a model to define the aforementioned Bcklund–type transfor-
mations, as happens in the scalar case with the Bcklund transformations (see
[11], [24], [28]). Furthermore, we solve the so called symmetrization problem
in the theory of multiple orthogonal polynomials. We apply certain Darboux
transformations, already described in [8], to a (d+2)–banded matrix, associ-
ated to a (d+2)–term recurrence relation satisfied by an arbitrary sequence of
type II multiple orthogonal polynomials, to obtain a total of d+1 sequences
of not necessarily symmetric multiple orthogonal polynomials, which we use
to construct a new sequence of symmetric multiple orthogonal polynomials.
On the other hand, following the ideas in [24] (and the references therein)

for standard sequences of orthogonal polynomials, in [26] (see also [13]) the
authors provide a cubic decomposition for sequences of polynomials, multiple
orthogonal with respect to a two different linear functionals. Concerning the
symmetric case, in [25] this cubic decomposition is analyzed for a 2-symmetric
sequence of polynomials, which is called a diagonal cubic decomposition (CD)
by the authors. Here, we also extend this notion of diagonal decomposition to
a more general case, considering symmetric sequences of polynomials multiple
orthogonal with respect to d > 3 linear functionals.
The structure of the manuscript is as follows. In Section 2 we summarize

without proofs the relevant material about multiple orthogonal polynomials,
and a basic background about the matrix interpretation of the type II multi-
orthogonality conditions with respect to the a regular system of d linear
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functionals {u1, . . . , ud} and diagonal multi–indices. In Section 3 we fully
characterize the Weyl function RJ and the Stieltjes matrix function F associ-
ated to the block Jacobi matrix J corresponding to a (d+2)–term recurrence
relation satisfied by a symmetric sequence of type II multiple orthogonal po-
lynomials. In Section 4, starting from an arbitrary sequence of type II mul-
tiple polynomials satisfying a (d+ 2)–term recurrence relation, we state the
conditions to find a total of d+1 sequences of type II multiple orthogonal po-
lynomials, in general non–symmetric, which can be used to construct a new
sequence of symmetric type II multiple orthogonal polynomials. Moreover,
we also deal with the converse problem, i.e., we propose a decomposition of
a given symmetric type II multiple orthogonal polynomial sequence, which
allows us to find a set of other (in general non–symmetric) d + 1 sequences
of type II multiple orthogonal polynomials, satisfying in turn (d + 2)–term
recurrence relations. Finally, in Section 5, we present a Favard-type result,
showing that certain 3 × 3 matrix decomposition of a type II multiple 2–
orthogonal polynomials, satisfy a matrix four–term recurrence relation, and
therefore it is type II multiple 2–orthogonal (in a matrix sense) with respect
to a certain system of matrix measures.

2. Definitions and matrix interpretation of multiple or-

thogonality

Let n = (n1, ..., nd) ∈ N
d be a multi–index with length |n| := n1 + · · ·+ nd

and let {uj}dj=1 be a set of linear functionals, i.e. uj : P → C. Let {Pn} be a
sequence of polynomials, with degPn is at most |n|. {Pn} is said to be type II
multiple orthogonal with respect to the set of linear functionals {uj}

d
j=1 and

multi–index n if

uj(xkPn) = 0 , k = 0, 1, . . . , nj − 1 , j = 1, . . . , d . (1)

A multi–index n is said to be normal for the set of linear functionals {uj}
d
j=1,

if the degree of Pn is exactly |n| = n. When all the multi–indices of a given
family are normal, we say that the set of linear functionals {uj}

d
j=1 is regular.

In the present work, we will restrict our attention ourselves to the so called
diagonal multi–indices n = (n1, ..., nd) ∈ I, where

I = {(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1),

(2, 1, . . . , 1), . . . , (2, 2, . . . , 2), . . .}.
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Notice that there exists a one to one correspondence, i, between the above set
of diagonal multi–indices I ⊂ N

d and N, given by i(Nd) = |n| = n. Therefore,
to simplify the notation, we write in the sequel Pn ≡ P|n| = Pn. The left–
multiplication of a linear functional u : P → C by a polynomial p ∈ P is
given by the new linear functional p u : P → C such that

p u(xk) = u(p(x)xk) , k ∈ N .

Next, we briefly review a matrix interpretation of type II multiple orthogo-
nal polynomials with respect to a system of d regular linear functionals and
a family of diagonal multi–indices. Throughout this work, we will use this
matrix interpretation as a useful tool to obtain some of the main results of
the manuscript. For a recent and deeper account of the theory (in a more
general framework, considering quasi–diagonal multi–indices) we refer the
reader to [10].
Let us consider the family of vector polynomials

P
d = {

[
P1 · · · Pd

]T
, d ∈ N, Pj ∈ P},

and Md×d the set of d× d matrices with entries in C. Let {Xj} be the family
of vector polynomials Xj ∈ P

d defined by

Xj =
[
xjd · · · x(j+1)d−1

]T
, j ∈ N, (2)

where X0 =
[
1 · · · xd−1

]T
. By means of the shift n → nd, associated with

{Pn}, we define the sequence of vector polynomials {Pn}, with

Pn =
[
Pnd(x) · · · P(n+1)d−1(x)

]T
, n ∈ N, Pn ∈ P

d. (3)

Let uj : P → C with j = 1, . . . , d a system of linear functionals as in (1).

From now on, we define the vector of functionals U =
[
u1 · · · ud

]T
acting

in P
d → Md×d, by

U(P) =
(
U·PT

)T
=



u1(P1) · · · ud(P1)

... . . . ...
u1(Pd) · · · ud(Pd)


 .

Let

Aℓ(x) =
ℓ∑

k=0

Aℓ
k x

k,

be a matrix polynomial of degree ℓ, where Aℓ
k ∈ M2×2, and U a vector of

functional. We define the new vector of functionals called left multiplication
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of U by a matrix polynomial Aℓ, and we denote it by AℓU, to the map of Pd

into Md×d, described by

(AℓU) (P) =
ℓ∑

k=0

(
xkU

)
(P) (An

k)
T . (4)

From (4) we introduce the notion of moments of order j ∈ N, associated with
the vector of functionals xkU, which will be in general the following d × d
matrices

U
k
j =

(
xkU

)
(Xj) =




u1(xjd+k) · · · ud(xjd+k)
... . . . ...

u1(x(j+1)d−1+k) · · · ud(x(j+1)d−1+k)


 ,

with j, k ∈ N, and from this moments, we construct the block Hankel matrix
of moments

Hn =



U0

0 · · · Un
0

... . . . ...
U0

n · · · Un
n


 , n ∈ N.

We say that the vector of functionals U is regular, if the determinants of the
principal minors of the above matrix are non-zero for every n ∈ N. Having
in mind (2) it is obvious that Xj = (xd)jX0, j ∈ N. Thus, from (3) we can
express Pn(x) in the alternative way

Pn(x) =
n∑

j=0

P n
j Xj , P n

j ∈ Md×d , (5)

where the matrix coefficients P n
j , j = 0, 1, . . . , n are uniquely determined.

Thus, it also occurs
Pn(x) = Wn(x

d)X0 , (6)

where Wn is a matrix polynomial (i.e., Wn is a d × d matrix whose entries
are polynomials) of degree n and dimension d, given by

Wn(x) =
n∑

j=0

P n
j x

j , P n
j ∈ Md×d. (7)

Notice that the matrices P n
j ∈ Md×d in (7) are the same as in (5). Within

this context, we can now describe the matrix interpretation of multiple or-
thogonality for diagonal multi–indices. Let {Pn} be a sequence of vector
polynomials with polynomial entries as in (3), and a vector of functionals U
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as described above. {Pn} is said to be a type II vector multiple orthogonal
polynomial sequence with respect to the vector of functionals U, and a set of
diagonal multi–indices, if

i) (xkU)(Pn) = 0d×d , k = 0, 1, . . . , n− 1 ,
ii) (xnU)(Pn) = ∆n ,

}
(8)

where ∆n is a regular upper triangular d× d matrix (see [10, Th. 3] consid-
ering diagonal multi–indices).
Next, we introduce a few aspects of the duality theory, which will be useful

in the sequel. We denote by P
∗ the dual space of P, i.e. the linear space

of linear functionals defined on P over C. Let {Pn} be a sequence of monic
polynomials. We call {ℓn}, ℓn ∈ P

∗, the dual sequence of {Pn} if ℓi(Pj) =
δi,j, i, j ∈ N holds. Given a sequence of linear functionals {ℓn} ∈ P

∗, by
means of the shift n → nd, the vector sequence of linear functionals {Ln},
with

Ln =
[
ℓnd · · · ℓ(n+1)d−1

]T
, n ∈ N, (9)

is said to be the vector sequence of linear functionals associated with {ℓn}.
It is very well known (see [14]) that a given sequence of type II polynomials

{Pn}, simultaneously orthogonal with respect to a d linear functionals, or
simply d–orthogonal polynomials, satisfy the following (d + 2)–term order
recurrence relation

xPn+d(x) = Pn+d+1(x) + βn+dPn+d(x) +
d−1∑

ν=0

γd−1−ν
n+d−νPn+d−1−ν(x) , (10)

γ0
n+1 6= 0 for n ≥ 0, with the initial conditions P0(x) = 1, P1(x) = x − β0,

and

Pn(x) = (x− βn−1)Pn−1(x)−
n−2∑

ν=0

γd−1−ν
n−1−νPn−2−ν(x) , 2 ≤ n ≤ d .

E.g., if d = 2, the sequence of monic type II multiple orthogonal polynomials
{Pn} with respect to the regular system of functionals {u1, u2} and normal
multi–index satisfy, for every n ≥ 0, the following four term recurrence rela-
tion (see [10, Lemma 1-a], [22])

xPn+2(x) = Pn+3(x) + βn+2Pn+2(x) + γ1
n+2Pn+1(x) + γ0

n+1Pn(x) , (11)

where βn+2, γ
1
n+2, γ

0
n+1 ∈ C, γ0

n+1 6= 0, P0(x) = 1, P1(x) = x−β0 and P2(x) =
(x− β1)P1(x)− γ1

1P0(x).
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We follow [14, Def. 4.1.] in assuming that a monic system of polynomials
{Sn} is said to be d–symmetric when it verifies

Sn(ξkx) = ξnkSn(x) , n ≥ 0 , (12)

where ξk = exp (2kπi/(d+ 1)), k = 1, . . . , d, and ξd+1
k = 1. Notice that,

if d = 1, then ξk = −1 and therefore Sn(−x) = (−1)nSn(x) (see [11]).
We also assume (see [14, Def. 4.2.]) that the vector of linear functionals

L0 =
[
ℓ0 · · · ℓd−1

]T
is said to be d–symmetric when the moments of its

entries satisfy, for every n ≥ 0,

ℓν(x
(d+1)n+µ) = 0 , ν = 0, 1, . . . , d− 1 , µ = 0, 1, . . . , d , ν 6= µ . (13)

Observe that if d = 1, this condition leads to the well known fact ℓ0(x
2n+1) =

0, i.e., all the odd moments of a symmetric moment functional are zero
(see [11, Def. 4.1, p.20]).
Under the above assumptions, we have the following

Theorem 1 (cf. [14, Th. 4.1]). For every sequence of monic polynomials
{Sn}, d–orthogonal with respect to the vector of linear functionals L0 =[
ℓ0 · · · ℓd−1

]T
, the following statements are equivalent:

(a) The vector of linear functionals L0 is d–symmetric.
(b) The sequence {Sn} is d–symmetric.
(c) The sequence {Sn} satisfies

xSn+d(x) = Sn+d+1(x) + γn+1Sn(x) , n ≥ 0, (14)

with Sn(x) = xn for 0 ≤ n ≤ d.

Notice that (14) is a particular case of the (d+2)–term recurrence relation
(10). Continuing the same trivial example above for d = 2, it directly implies
that the sequence of polynomials {Sn}, satisfy the particular case of (10), i.e.
S0(x) = 1, S1(x) = 1, S2(x) = x2 and

xSn+2(x) = Sn+3(x) + γn+1Sn(x) , n ≥ 0.

Notice that the coefficients βn+2 and γ1
n+2 of polynomials Sn+2 and Sn+1

respectively, on the right hand side of (11) are zero.
On the other hand, the (d+2)–term recurrence relation (14) can be rewrit-

ten in terms of vector polynomials (3), and then we obtain what will be
referred to as the symmetric type II vector multiple orthogonal polynomial
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sequence Sn =
[
Snd · · · S(n+1)d−1

]T
. For n → dn+ j, j = 0, 1, . . . d− 1 and

n ∈ N, we have the following matrix three term recurrence relation

xSn = ASn+1 +BSn + CnSn−1 , n = 0, 1, . . . (15)

with S−1 =
[
0 · · · 0

]T
, S0 =

[
S0 · · · Sd−1

]T
, and matrix coefficients A,

B, Cn ∈ Md×d given

A =




0 0 · · · 0
...

... . . . ...
0 0 · · · 0
1 0 · · · 0


 , B =




0 1
. . . . . .

0 1
0


 , and (16)

Cn = diag [γ1, γ2, . . . , γnd].

Note that, in this case, one has

S0 = X0 =
[
1 x · · · xd−1

]T
.

Since {Sn} satisfies (14), it is clear that this d–symmetric type II multiple
polynomial sequence will be orthogonal with respect to certain system of d
linear functionals, say {v1, . . . , vd}. Hence, according to the matrix interpre-
tation of multiple orthogonality, the corresponding type II vector multiple
polynomial sequence {Sn} will be orthogonal with respect to a symmetric

vector of functionals V =
[
v1 · · · vd

]T
. The corresponding matrix ortho-

gonality conditions for {Sn} and V are described in (8).
One of the main goals of this manuscript is to analyze symmetric sequences

of type II vector multiple polynomials, orthogonal with respect to a symmet-
ric vector of functionals. The remainder of this section will be devoted to the
proof of one of our main results concerning the moments of the d functional
entries of such symmetric vector of functionals V. The following theorem
states that, under certain conditions, the moment of each functional entry
in V can be given in terms of the moments of other functional entry in the
same V.

Lemma 1. If V =
[
v1 · · · vd

]T
is a symmetric vector of functionals, the

moments of each functional entry vj, j = 1, 2, . . . , d in V, can be expressed
for all n ≥ 0 as

(i) If µ = 0, 1, . . . , j − 2

vj(x(d+1)n+µ) =
vj,µ

vµ+1,µ
vµ+1(x(d+1)n+µ), (17)



SYMMETRIZATION PROBLEM IN MULTIPLE ORTHOGONALITY 9

where vk,l = vk(Sl).
(ii) If µ = j − 1, the value vj(x(d+1)n+µ) depends on vj, and it is different

from zero.
(iii) If µ = j, j + 1, . . . , d

vj(x(d+1)n+µ) = 0.

Proof : In the matrix framework of multiple orthogonality, the type II vector
polynomials Sn are multiple orthogonal with respect to the symmetric vector

moment of functionals V : P
d → Md×d, with V =

[
v1 · · · vd

]T
. If we

multiply (15) by xn−1, together with the linearity of V, we get, for n = 0, 1, . . .

V (xnSn) = AV
(
xn−1

Sn+1

)
+BV

(
xn−1

Sn

)
+ CnV

(
xn−1

Sn−1

)
, n = 0, 1, . . . .

By the orthogonality conditions (8) for V, we have

AV
(
xn−1

Sn+1

)
= BV

(
xn−1

Sn

)
= 0d×d , n = 0, 1, . . . ,

and iterating the remain expression

V (xnSn) = CnV
(
xn−1

Sn−1

)
, n = 0, 1, . . .

we obtain

V (xnSn) = CnCn−1 · · ·C1V (S0) , n = 0, 1, . . . .

The above matrix V (S0) is given by

V (S0) = V
0
0 =




v1(S0) · · · vd(S0)
... . . . ...

v1(Sd−1) · · · vd(Sd−1)


 .

To simplify the notation, in the sequel vi,j−1 denotes vi(Sj−1). Notice that
(8) leads to the fact that the above matrix is an upper triangular matrix,
which in turn means that vi,j−1 = 0, for every i, j = 1, . . . , d− 1, that is

V
0
0 =




v1,0 v2,0 · · · vd,0
v2,1 · · · vd,1

. . . ...
vd,d−1


 . (18)

Let L0 be a d–symmetric vector of linear functionals as in Theorem 1. We
can express V in terms of L0 as V = G0L0. Thus, we have

(G−1
0 V)(S0) = L0(S0) = Id .
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From (4) we have

(
G−1

0 V
)
(S0) = V (S0) (G

−1
0 )T = V

0
0(G

−1
0 )T = Id .

Therefore, taking into account (18), we conclude

G0 = (V0
0)

T =




v1,0
v2,0 v2,1
...

... . . .
vd,0 vd,1 · · · vd,d−1


 . (19)

Observe that the matrix (V0
0)

T is lower triangular, and every entry in their
main diagonal is different from zero, so G0 always exists and is a lower tri-
angular matrix. Since V = G0L0, we finally obtain the expressions

v1 = v1,0ℓ0,
v2 = v2,0ℓ0 + v2,1ℓ1,
v3 = v3,0ℓ0 + v3,1ℓ1 + v3,2ℓ2,
· · ·
vd = vd,0ℓ0 + vd,1ℓ1 + · · ·+ vd,d−1ℓd−1,

(20)

between the entries of L0 and V.
Next, from (20), (13), together with the crucial fact that every value in the

main diagonal of V0
0 is different from zero, it is a simple matter to check that

the three statements of the lemma follow. We conclude the proof only for
the functionals v2 and v1. The other cases can be deduced in a similar way.
From (20) we get v1(x(d+1)n+µ) = v1,0 · ℓ0(x

(d+1)n+µ) 6= 0. Then, from (13)
we see that for every µ 6= 0 we have v1(x(d+1)n+µ) = 0 (statement (iii)). If
µ = 0, we have v1(x(d+1)n) = v1,0 ·ℓ0(x

(d+1)n) 6= 0 (statement (ii)). Next, from
(20) we get v2(x(d+1)n+µ) = v2,0 ·ℓ0(x

(d+1)n+µ)+v2,1 ·ℓ1(x
(d+1)n+µ). Then, from

(13) we see that for every µ 6= 1, we have v2(x(d+1)n+µ) = 0 (statement (iii)).
If µ = 0 we have

v2(x(d+1)n) =
v2,0
v1,0

v1(x(d+1)n) (statement (i)).

If µ = 1 then v2(x(d+1)n+1) = v2,1 · ℓ1(x
(d+1)n+1) 6= 0 (statement (ii)).

Thus, the lemma follows.
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3. Representation of the Stieltjes and Weyl functions

Let U a vector of functionals U =
[
u1 · · · ud

]T
. We define the Stieltjes

matrix function associated to U (or matrix generating function associated to
U), F by (see [10])

F(z) =
∞∑

n=0

(xnU) (X0(x))

zn+1
.

In this Section we find the relation between the Stieltjes matrix function
F, associated to a certain d–symmetric vector of functionals V, and certain
interesting function associated to the corresponding block Jacobi matrix J .
Here we deal with d–symmetric sequences of type II multiple orthogonal
polynomials {Sn}, and hence J is a (d + 2)–banded matrix with only two
extreme non-zero diagonals, which is the block–matrix representation of the
three–term recurrence relation with d×d matrix coefficients, satisfied by the
vector sequence of polynomials {Sn} (associated to {Sn}), orthogonal with
respect to V.
Thus, the shape of a Jacobi matrix J , associated with the (d+2)–term re-

currence relation (14) satisfied by a d–symmetric sequence of type II multiple
orthogonal polynomials {Sn} is

J =




0 1
0 0 1
... . . . . . .
0 0 1
γ1 0 0 1

γ2 0 0 . . .
. . . . . . . . .




. (21)

We can rewrite J as the block tridiagonal matrix

J =




B A
C1 B A

C2 B A
. . . . . . . . .




associated to a three term recurrence relation with matrix coefficients, satis-
fied by the sequence of type II vector multiple orthogonal polynomials {Sn}
associated to {Sn}. Here, every block matrix A, B and Cn has d × d size,
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and they are given in (16). When J is a bounded operator, it is possible to
define the resolvent operator by

(zI − J)−1 =
∞∑

n=0

Jn

zn+1
, |z| > ||J ||,

(see [9]) and we can put in correspondence the following block tridiagonal
analytic function, known as the Weyl function associated with J

RJ(z) =
∞∑

n=0

eT0 J
n e0

zn+1
, |z| > ||J ||, (22)

where e0 =
[
Id 0d×d · · ·

]T
. If we denote by Mij the d× d block matrices of

a semi-infinite matrix M , formed by the entries of rows d(i − 1) + 1, d(i −
1) + 2, . . . , di , and columns d(j − 1) + 1, d(j − 1) + 2, . . . , dj , the matrix Jn

can be written as the semi-infinite block matrix

Jn =



Jn
11 Jn

12 · · ·
Jn
21 Jn

22 · · ·
...

... . . .


 .

We can now formulate our first important result in this Section. For more
details we refer the reader to [6, Sec. 1.2] and [3].
Let {Sn} be a symmetric type II vector multiple polynomial sequence or-

thogonal with respect to the d–symmetric vector of functionals V. Following
[10, Th. 7], the matrix generating function associated to V, and the Weyl
function associated with J , the block Jacobi matrix corresponding to {Sn},
can be put in correspondence by means of the matrix expression

F(z) = RJ(z)V(X0) , (23)

where, for the d–symmetric case, V(X0) = V(S0) = V0
0, which is explicitly

given in (18).
First we study the case d = 2, and next we consider more general situations

for d > 2 functional entries in V. From Lemma 1, we obtain the entries for
the representation of the Stieltjes matrix function F(z), associated with V =
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[
v1 v2

]
, as

F(z) =
∞∑

n=0

[
v1(x3n)

v2,0·v
1(x3n)

v1,0

0 v2(x3n+1)

]
/z3n+1 +

∞∑

n=0

[
0 v2(x3n+1)
0 0

]
/z3n+2

+
∞∑

n=0

[
0 0

v1(x3n+3)
v2,0·v

1(x3n+3)
v1,0

]
/z3n+3 . (24)

Notice that we have F(z) = F1(z) + F2(z) + F3(z). The following theorem
shows that we can obtain F(z) in our particular case, analyzing two different
situations.

Theorem 2. Let V =
[
v1 v2

]T
be a symmetric vector of functionals, with

d = 2. Then the Weyl function is given by

RJ(z) =
∞∑

n=0

[
v1(x3n)
v1,0

0

0 v2(x3n+1)
v2,1

]

z3n+1
+

∞∑

n=0

[
0 v2(x3n+1)

v2,1

0 0

]

z3n+2
+

∞∑

n=0

[
0 0

v1(x3n+3)
v1,0

0

]

z3n+3

Proof : It is enough to multiply (24) by (V0
0)

−1. The explicit expression for
V0
0 is given in (18).

Computations considering d > 2 functionals, can be cumbersome but
doable. The matrix generating function F (as well as the Weyl function),
will be the sum of d + 1 matrix terms, i.e. F(z) = F1(z) + · · · + Fd+1(z),
each of them of size d× d.
Let us now outline the very interesting structure of RJ(z) for the general

case of d functionals. We shall describe the structure of RJ(z) for d = 3,
comparing the situation with the general case. Let ∗ denote every non-zero
entry in a given matrix. Thus, there will be four J11 matrices of size 3 × 3.

Here, and in the general case, the first matrix [J
(d+1)n
11 ]d×d will allways be

diagonal, as follows

[J4n
11 ]3×3 =



∗ 0 0
0 ∗ 0
0 0 ∗


 .
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Indeed, observe that for n = 0, [J
(d+1)n
11 ]d×d = Id. Next, we have

[J4n+1
11 ]3×3 =



0 ∗ 0
0 0 ∗
0 0 0


 .

From (14) we know that the “distance” between the two extreme non-zero
diagonals of J will allways consist of d zero diagonals. It directly implies

that, also in the general case, every entry in the last row of [J
(d+1)n
11 ]d×d will

always be zero, and therefore the unique non-zero entries in [J
(d+1)n
11 ]d×d will

be one step over the main diagonal.
Next we have

[J4n+2
11 ]3×3 =



0 0 ∗
0 0 0
∗ 0 0


 .

Notice that for every step, the main diagonal in [J
(d+1)n
11 ]d×d goes “one diago-

nal” up, but the other extreme diagonal of J is also moving upwards, with
exactly d zero diagonals between them. It directly implies that, no matter

the number of functionals, only the lowest-left element of [J
(d+1)n+2
11 ]d×d will

be different from zero. Finally, we have

[J4n+3
11 ]3×3 =



0 0 0
∗ 0 0
0 ∗ 0


 .

Here, the last non-zero entry of the main diagonal in [J4n
11 ]3×3 vanishes. In

the general case, it will occur exactly at step [J
(d+1)n+(d−1)
11 ]d×d, in which

only the uppest-right entry is different from zero. Meanwhile, in matrices

[J
(d+1)n+3
11 ]d×d up to [J

(d+1)n+(d−2)
11 ]d×d will be non-zero entries of the two ex-

treme diagonals. In this last situation, the non-zero entries of [J
(d+1)n+(d−1)
11 ]d×d,

will always be exactly one step under the main diagonal.

4. The symmetrization problem for multiple OP

Throughout this section, let {A1
n} be an arbitrary and not necesarily sym-

metric sequence of type II multiple orthogonal polynomials, satisfying a
(d + 2)–term recurrence relation with known recurrence coefficients, and let
J1 be the corresponding (d + 2)–banded matrix. Let J1 be such that the
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following LU factorization

J1 = LU = L1L2 · · ·LdU (25)

is unique, where U is an upper two–banded, semi–infinite, and invertible
matrix, L is a (d + 1)–lower triangular semi–infinite with ones in the main
diagonal, and every Li, i = 1, . . . , d is a lower two–banded, semi–infinite,
and invertible matrix with ones in the main diagonal. We follow [8, Def.
3], where the authors generalize the concept of Darboux transformation to
general Hessenberg banded matrices, in assuming that any circular permu-
tation of L1L2 · · ·LdU is a Darboux transformation of J1. Thus we have
d possible Darboux transformations of J1, say Jj, j = 2, . . . , d + 1, with
J2 = L2 · · ·LdUL1 , J3 = L3 · · ·LdUL1L2 ,. . . , Jd+1 = UL1L2 · · ·Ld .
Next, we solve the so called symmetrization problem in the theory of mul-

tiple orthogonal polynomials, i.e., starting with {A1
n}, we find a total d + 1

type II multiple orthogonal polynomial sequences {Aj
n}, j = 1, . . . , d+1, sat-

isfying (d + 2)–term recurrence relation with known recurrence coefficients,
which can be used to construct a new d–symmetric type II multiple orthogo-
nal polynomial sequence {Sn}. It is worth pointing out that all the aforesaid
sequences {Aj

n}, j = 1, . . . , d + 1 are of the same kind, with the same num-
ber of elements in their respectives (d + 2)–term recurrence relations, and
multiple orthogonal with respect to the same number of functionals d.

Theorem 3. Let {A1
n} be an arbitrary and not necesarily symmetric se-

quence of type II multiple orthogonal polynomials as stated above. Let Jj,
j = 2, . . . , d + 1, be the Darboux transformations of J1 given by the d cy-
clid permutations of the matrices in the right hand side of (25). Let {Aj

n},
j = 2, . . . , d + 1, d new families of type II multiple orthogonal polynomials
satisfying (d + 2)–term recurrence relations given by the matrices Jj, j =
2, . . . , d+ 1. Then, the sequence {Sn} defined by





S(d+1)n(x) = A1
n(x

d+1),
S(d+1)n+1(x) = xA2

n(x
d+1),

· · ·
S(d+1)n+d(x) = xdAd+1

n (xd+1),

(26)

is a d–symmetric sequence of type II multiple orthogonal polynomials.
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Proof : Let {A1
n} satify the (d+ 2)–term recurrence relation given by (10)

xA1
n+d(x) = A1

n+d+1(x) + b
[1]
n+dA

1
n+d(x) +

d−1∑

ν=0

c
d−1−ν,[1]
n+d−ν A1

n+d−1−ν(x) ,

c
0,[1]
n+1 6= 0 for n ≥ 0, with the initial conditions A1

0(x) = 1, A1
1(x) = x−b

[1]
0 , and

A1
n(x) = (x− b

[1]
n−1)A

1
n−1(x)−

n−2∑

ν=0

c
d−1−ν,[1]
n−1−ν A1

n−2−ν(x) , 2 ≤ n ≤ d ,

with known recurrence coefficients. Hence, in a matrix notation, we have

xA1 = J1A
1, (27)

where

J1 =




b
[1]
d 1

c
d−1,[1]
d+1 b

[1]
d+1 1

c
d−2,[1]
d+1 c

d−1,[1]
d+2 b

[1]
d+2 1

... c
d−2,[1]
d+2 c

d−1,[1]
d+3 b

[1]
d+3 1

c
0,[1]
d+1 · · · c

d−2,[1]
d+3 c

d−1,[1]
d+4 b

[1]
d+4 1

. . . . . . . . . . . . . . . . . .




.

Following [8] (see also [23]), the unique LU factorization for the square (d+2)–
banded semi-infinite Hessenberg matrix J1 is such that

U =




γ1 1
γd+2 1

γ2d+3 1

γ3d+4
. . .
. . .




is an upper two-banded, semi-infinite, and invertible matrix, and L is a (d+
1)–lower triangular, semi–infinite, and invertible matrix with ones in the
main diagonal. It is clear that the entries in L and U depend entirely on the
known entries of J1. Thus, we rewrite (27) as

xA1 = LU A1. (28)

Next, we define a new sequence of polynomials {Ad+1
n } by xAd+1 = UA1.

Multiplying both sides of (28) by the matrix U , we have

x
(
U A1

)
= UL

(
U A1

)
= x(xAd+1) = UL(xAd+1),
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and pulling out x we get

xAd+1 = ULAd+1, (29)

which is the matrix form of the (d+ 2)–term recurrence relation satisfied by
the new type II multiple polynomial sequence {Ad+1

n }.
Since L is given by (see [8])

L = L1L2 · · ·Ld,

where every Lj is the lower two-banded, semi-infinite, and invertible matrix

Lj =




1
γd−j 1

γ2d+1−j 1
γ3d+2−j 1

. . . . . .




with ones in the main diagonal, it is also clear that the entries in Lj will
depend on the known entries in J1. Under the same hypotheses, we can
define new d − 1 polinomial sequences starting with A1 as follows: A2 =
L−1
1 A1, A3 = L−1

2 A2, . . . , Ad = L−1
d−1A

d−1 up to Ad+1 = L−1
d Ad. That is,

Aj+1 = L−1
j Aj, j = 1, . . . d− 1. Combining this fact with (29) we deduce

xAd = LdUL1L2 · · ·Ld−1A
d,

xAd−1 = Ld−1LdUL1L2 · · ·Ld−2A
d−1,

up to the known expression (27)

xA1 = L1L2 · · ·LdUA1.

The above expresions mean that all these d+1 sequences {Aj}, j = 1, . . . , d+1
are in turn type II multiple orthogonal polynomials. Finally, from these
d + 1 sequences, we construct the type II polynomials in the sequence {Sn}
as (26). Note that, according to (12), it directly follows that {Sn} is a d–
symmetric type II multiple orthogonal polynomial sequence, which proves
our assertion.

Next, we state the converse of the above theorem. That is, given a sequence
of type II d–symmetric multiple orthogonal polynomials {Sn} satisfying the
high–term recurrence relation (14), we find a set of d+1 polynomial families
{Aj

n}, j = 1, . . . , d + 1 of not necessarily symmetric type II multiple ortho-
gonal polynomials, satisfying in turn (d + 2)–term recurrence relations, so
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o they are themselves sequences of type II multiple orthogonal polynomials.
When d = 2, this construction goes back to the work of Douak and Maroni
(see [13]).

Theorem 4. Let {Sn} be a d–symmetric sequence of type II multiple ortho-
gonal polynomials satisfiyng the corresponding high–order recurrence relation
(14), and {Aj

n}, j = 1, . . . , d + 1, the sequences of polynomials given by
(26). Then, each sequence {Aj

n}, j = 1, . . . , d+ 1, satisfies the (d+ 2)–term
recurrence relation

xAj
n+d(x) = Aj

n+d+1(x) + b
[j]
n+dA

j
n+d(x) +

d−1∑

ν=0

c
d−1−ν,[j]
n+d−ν Aj

n+d−1−ν(x) ,

c
0,[j]
n+1 6= 0 for n ≥ 0, with initial conditions Aj

0(x) = 1, Aj
1(x) = x− b

[j]
0 ,

Aj
n(x) = (x− b

[j]
n−1)A

j
n−1(x)−

n−2∑

ν=0

c
d−1−ν,[j]
n−1−ν Aj

n−2−ν(x) , 2 ≤ n ≤ d ,

and therefore they are type II multiple orthogonal polynomial sequences.

Proof : Since {Sn} is a d–symmetric multiple orthogonal sequence, it satisfies
(14) with Sn(x) = xn for 0 ≤ n ≤ d. Shifting, for convenience, the multi–
index in (14) as n → (d + 1)n − d + j, j = 0, 1, 2, ....d, we obtain the
equivalent system of (d+ 1) equations




xS(d+1)n(x) = S(d+1)n+1(x) + γ(d+1)n−d+1S(d+1)n−d(x) , j = 0,
xS(d+1)n+1(x) = S(d+1)n+2(x) + γ(d+1)n−d+2S(d+1)n−d+1(x) , j = 1,

...
...

xS(d+1)n+d−1(x) = S(d+1)n+d(x) + γ(d+1)nS(d+1)n−1(x) , j = d− 1,
xS(d+1)n+d(x) = S(d+1)n+(d+1)(x) + γ(d+1)n+1S(d+1)n(x) , j = d.

.

Substituting (26) into the above expressions, and replacing xd+1 → x, we get
the following system of (d+ 1) equations





1) A1
n(x) = A2

n(x) + γ(d+1)n−(d−1)A
2
n−1(x) ,

2) A2
n(x) = A3

n(x) + γ(d+1)n−(d−2)A
3
n−1(x) ,

...
...

d) Ad
n(x) = Ad+1

n (x) + γ(d+1)nA
d+1
n−1(x),

d+ 1) xAd+1
n (x) = A1

n+1(x) + γ(d+1)n+1A
1
n(x) .

(30)
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Notice that having x = 0, we define the γ as

γ(d+1)n+1 =
−A1

n+1(0)

A1
n(0)

.

In the remainder of this section we deal with the matrix representation of
each equation in (30). Notice that the first d equations of (30), namely

Aj
n = Aj+1

n + γ(d+1)n+(j−d)A
j+1
n−1, j = 1, . . . , d, can be written in the matrix

way
Aj = Lj A

j+1, (31)

where Lj is the lower two-banded, semi-infinite, and invertible matrix

Lj =




1
γd−j 1

γ2d+1−j 1
γ3d+2−j 1

. . . . . .



,

and
Aj =

[
Aj

0(x) Aj
1(x) Aj

2(x) · · ·
]T

.

Similarly, the d+ 1)–th equation in (30) can be expressed as

xAd+1 = U A1, (32)

where U is the upper two-banded, semi-infinite, and invertible matrix

U =




γ1 1
γd+2 1

γ2d+3 1

γ3d+4
. . .
. . .



.

It is clear that the entries in the above matrices Lj and U are given in terms
of the recurrence coefficients γn+1 for {Sn} given (14). From (31) we have
A1 defined in terms of A2, as A1 = L1A

2. Likewise A2 in terms of A3 as
A2 = L2A

3, and so on up to j = d. Thus, it is easy to see that,

A1 = L1L2 · · ·LdA
d+1.

Next, we multiply by x both sides of the above expression, and we apply (32)
to obtain

xA1 = L1L2 · · ·LdU A1.
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Since each Lj and U are lower and upper two-banded semi-infinite matrices,
it follows easily that L1L2 · · ·Ld is a lower triangular (d+ 1)–banded matrix
with ones in the main diagonal, so the above decomposition is indeed a LU de-
composition of certain (d+2)–banded Hessenberg matrix J1 = L1L2 · · ·LdU
(see for instance [8] and [23, Sec. 3.2 and 3.3]). The values of the entries of
J1 come from the usual definition for matrix multiplication, matching every
entry in J1 = L1L2 · · ·LdU , with Lj U given in (31) and (32) respectively.
On the other hand, starting with A2 = L2A

3 instead of A1, and proceeding
in the same fashion as above, we can reach

xA2 = L2 · · ·LdUL1A
2,

xA3 = L3 · · ·LdUL1L2A
3,

...

xAd+1 = UL1L2 · · ·LdA
d+1.

Observe that Jj denotes a particular circular permutation of the matrix pro-
duct L1L2 · · ·LdU . Thus, we have J1 = L1L2 · · ·LdU , J2 = L2 · · ·LdUL1 ,
. . . , Jd+1 = UL1L2 · · ·Ld . Using this notation, Jj is the matrix representa-
tion of the operator of multiplication by x in

xAj = JjA
j, (33)

which from (10) directly implies that each polynomial sequence {Aj}, j =
1, . . . d + 1, satisfies a (d + 2)–term recurrence relation as in the statement
of the theorem, with coefficients given in terms of the recurrence coefficients
γn+1 , from the high–term recurrence relation (14) satisfied by the symmetric
sequence {Sn}.
This completes the proof.

5.Matrix multiple orthogonality

For an arbitrary system of type II vector multiple polynomials {Pn} ortho-

gonal with respect to certain vector of functionals U =
[
u1 u2

]T
, with

Pn =
[
P3n(x) P3n+1(x) P3n+2(x)

]T
, (34)

there exists a matrix decomposition

Pn = Wn(x
3)Xn →




P3n(x)
P3n+1(x)
P3n+2(x)


 = Wn(x

3)



1
x
x2


 , (35)
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with Wn being the matrix polynomial (see [25])

Wn(x) =



A1

n(x) A2
n−1(x) A3

n−1(x)
B1

n(x) B2
n(x) B3

n−1(x)
C1

n(x) C2
n(x) C3

n(x)


 . (36)

Throughout this Section, for simplicity of computations, we assume d = 2 for
the vector of functionals U, but the same results can be easily extended for an
arbitrary number of functionals. We first show that, if a sequence of type II
multiple 2–orthogonal polynomials {Pn} satisfy a recurrence relation like
(11), then there exists a sequence of matrix polynomials {Wn}, Wn(x) ∈ P

3×3

associated to {Pn} by (34) and (35), satisfying a matrix four term recurrence
relation with matrix coefficients.

Theorem 5. Let {Pn} be a sequence of type II multiple polynomials, 2–
orthogonal with respect to the system of functionals {u1, u2}, i.e., satisfying
the four–term type recurrence relation (11). Let {Wn}, Wn(x) ∈ P

3×3 asso-
ciated to {Pn} by (34) and (35). Then, the matrix polynomials Wn satisfy a
matrix four term recurrence relation with matrix coefficients.

Proof : We first prove that the sequence of vector polynomials {Wn} satisfy
a four term recurrence relation with matrix coefficients, starting from the
fact that {Pn} satisfy (11). In order to get this result, we use the matrix
interpretation of multiple orthogonality described in Section 2. We know that
the sequence of type II multiple 2–orthogonal polynomials {Pn} satisfy the
four term recurrence relation (11). From (34), using the matrix interpretation
for multiple orthogonality, the above expression can be seen as the matrix
three term recurrence relation

xPn = APn+1 +BnPn + CnPn−1

or, equivalently

x




P3n

P3n+1

P3n+2


 =



0 0 0
0 0 0
1 0 0





P3n+3

P3n+4

P3n+5




+




b3n 1 0
c3n+1 b3n+1 1
d3n+2 c3n+2 b3n+2






P3n

P3n+1

P3n+2


+



0 d3n c3n
0 0 d3n+1

0 0 0





P3n−3

P3n−2

P3n−1
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Multiplying the above expression by x we get

x2Pn = AxPn+1 +BnxPn + CnxPn−1

= A [xPn+1] +Bn [xPn] + Cn [xPn−1]

= AAPn+2 + [ABn+1 +BnA]Pn+1 (37)

+ [ACn+1 +BnBn + CnA]Pn

+ [BnCn + CnBn−1]Pn−1 + CnCn−1Pn−2

The matrix A is nilpotent, so AA is the zero matrix of size 3× 3. Having

A
〈1〉
n = ABn+1 + BnA, B

〈1〉
n = ACn+1 +BnBn + CnA,

C
〈1〉
n = BnCn + CnBn−1, D

〈1〉
n = CnCn−1,

where the entries of A
〈1〉
n , B

〈1〉
n , and C

〈1〉
n can be easily obtained using a com-

putational software as Mathematicar or Mapler, from the entries of An, Bn,
and Cn. Thus, we can rewrite (37) as

x2Pn = A〈1〉
n Pn+1 +B〈1〉

n Pn + C〈1〉
n Pn−1 +D〈1〉

n Pn−2.

We now continue in this fashion,multiplying again by x

x3Pn = A〈1〉
n xPn+1 +B〈1〉

n xPn + C〈1〉
n xPn−1 +D〈1〉

n xPn−2

= A〈1〉
n APn+2 +

[
A〈1〉

n Bn+1 +B〈1〉
n A

]
Pn+1

+
[
A〈1〉

n Cn+1 +B〈1〉
n Bn + C〈1〉

n A
]
Pn

+
[
B〈1〉

n Cn + C〈1〉
n Bn−1 +D〈1〉

n A
]
Pn−1

+
[
C〈1〉

n Cn−1 +D〈1〉
n Bn−2

]
Pn−2 +D〈1〉

n Cn−2Pn−3

The matrix products A
〈1〉
n A and D

〈1〉
n Cn−2 both give the zero matrix of size

3× 3, and the remaining matrix coefficients are

A
〈2〉
n = A

〈1〉
n Bn+1 +B

〈1〉
n A, B

〈2〉
n = A

〈1〉
n Cn+1 +B

〈1〉
n Bn + C

〈1〉
n A,

C
〈2〉
n = B

〈1〉
n Cn + C

〈1〉
n Bn−1 +D

〈1〉
n A, D

〈2〉
n = C

〈1〉
n Cn−1 +D

〈1〉
n Bn−2.

(38)
Using the expressions stated above, the matrix coefficients (38) can be easily
obtained as well. Beyond the explicit expression of their respective entries,

the key point is that they are structured matrices, namely A
〈2〉
n is lower-

triangular with one’s in the main diagonal, D
〈2〉
n is upper-triangular, and
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B
〈2〉
n , C

〈2〉
n are full matrices. Therefore, the sequence of type II vector multi-

ple orthogonal polynomials satisfy the following matrix four term recurrence
relation

xPn = A〈2〉
n Pn+1 +B〈2〉

n Pn + C〈2〉
n Pn−1 +D〈2〉

n Pn−2, n = 2, 3, . . . , (39)

Next, combining (35) with (39), we can assert that

x3Wn(x
3)



1
x
x2


 = A〈2〉

n Wn+1(x
3)



1
x
x2


+ B〈2〉

n Wn(x
3)



1
x
x2




+ C〈2〉
n Wn−1(x

3)



1
x
x2


+D〈2〉

n Wn−2(x
3)



1
x
x2


 , n = 2, 3, . . . .

The vector
[
1 x x2

]T
can be removed, and after the shift x3 → x the above

expression may be simplified as

xWn(x) = A〈2〉
n Wn+1(x) +B〈2〉

n Wn(x) + C〈2〉
n Wn−1(x) +D〈2〉

n Wn−2(x), (40)

where W−1 = 03×3 and W0 is certain constant matrix, for every n = 1, 2, . . .,
which is the desired matrix four term recurrence relation for Wn(x).

This kind of matrix high–term recurrence relation completely characterizes
certain type of orthogonality. Hence, we are going prove a Favard type
Theorem which states that, under the assumptions of Theorem 5, the matrix
polynomials {Wn} are type II matrix multiple orthogonal with respect to a
system of two matrices of measures {dM1, dM2}.
Next, we briefly review some of the standard facts on the theory of matrix

orthogonality, or orthogonality with respect to a matrix of measures (see [15],
[16] and the references therein). Let W,V ∈ P

3×3 be two matrix polynomials,
and let

M(x) =



µ11(x) µ12(x) µ13(x)
µ21(x) µ22(x) µ23(x)
µ31(x) µ32(x) µ33(x)


 ,

be a matrix with positive Borel measures µi,j(x). Let M(E) be positive
definite for any Borel set E ⊂ R, having finite moments

µ̄k =

∫

E

dM(x)xk, k = 0, 1, 2, . . .
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of every order, and satisfying that
∫

E

V (x)dM(x)V ∗(x),

where V ∗ ∈ P
3×3 is the adjoint matrix of V ∈ P

3×3, is non-singular if the
matrix leading coefficient of the matrix polynomial V is non-singular. Un-
der these conditions, it is possible to associate to a weight matrix M, the
Hermitian sesquilinear form

〈W,V 〉 =

∫

E

W (x)dM(x)V ∗(x).

We then say that a sequence of matrix polynomials {Wn}, Wn ∈ P
3×3 with

degree n and nonsingular leading coefficient, is orthogonal with respect to
M if

〈Wm,Wn〉 = ∆nδm,n , (41)

where ∆n ∈ M3×3 is a positive definite upper triangular matrix, for n ≥ 0.
We can define the matrix moment functional M acting in P

3×3 over M3×3,
in terms of the above matrix inner product, by M(WV ) = 〈W,V 〉. This
construction is due to Jódar et al. (see [20], [21]) where the authors extend
to the matrix framework the linear moment functional approach developed
by Chihara in [11]. Hence, the moments of M(x) and (41) can be written

M(xk) = µ̄k , k = 0, 1, 2, . . . ,
M(WmVn) = ∆nδm,n , m, n = 0, 1, 2, . . . .

Let m = (m1,m2) ∈ N
2 be a multi–index with length |m| := m1+ · · ·+m2

and let {M1,M2} be a set of matrix moment functionals as defined above.
Let {Wm} be a sequence of matrix polynomials, with degWm is at most |m|.
{Wm} is said to be a type II multiple orthogonal with respect to the set
of linear functionals {M1,M2} and multi–index m if it satisfy the following
orthogonality conditions

Mj(xkWn) = 03×3 , k = 0, 1, . . . , nj − 1 , j = 1, 2. (42)

A multi–index m is said to be normal for the set of matrix moment func-
tionals {M1,M2}, if the degree of Wm is exactly |m| = m. Thus, in what
follows we will write Wm ≡ W|m| = Wm.
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In this framework, let consider the sequence of vector of matrix polynomials
{Bn} where

Bn =

[
W2n

W2n+1

]
. (43)

We define the vector of matrix–functionals M =
[
M1 M2

]T
, with M :

P
6×3 → M6×6, by means of the action M on Bn, as follows

M (Bn) =

[
M1(W2n) M2(W2n)
M1(W2n+1) M2(W2n+1)

]
∈ M6×6 . (44)

where

Mi(Wj) =

∫
Wj(x)dM

i = ∆i
j, i = 1, 2, and j = 0, 1, (45)

with {dM1, dM2} being a system of two matrix of measures as described
above. Thus, we say that a sequence of vectors of matrix polynomials {Bn}
is orthogonal with respect to a vector of matrix functionals M if

i) M(xkBn) = 06×6 , k = 0, 1, . . . , n− 1 ,
ii) M(xnBn) = Ωn ,

}
(46)

where Ωn is a regular block upper triangular 6× 6 matrix, holds.
Now we are in a position to prove the following

Theorem 6 (Favard type). Let {Bn} a sequence of vectors of matrix polyno-
mials of size 6×3, defined in (43), with Wn matrix polynomials satisfying the
four term recurrence relation (40). The following statements are equivalent:

(a) The sequence {Bn}n≥0 is orthogonal with respect to a certain vector of
two matrix–functionals.

(b) There are sequences of scalar 6×6 block matrices {A
〈3〉
n }n≥0, {B

〈3〉
n }n≥0,

and {C
〈3〉
n }n≥0, with C

〈3〉
n block upper triangular non-singular matrix

for n ∈ N, such that the sequence {Bn} satisfy the matrix three term
recurrence relation

xBn = A〈3〉
n Bn+1 +B〈3〉

n Bn + C〈3〉
n Bn−1, (47)

with Bn−1 =
[
03×3 03×3

]T
, B0 given, and C

〈3〉
n non-singular.
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Proof : First we prove that (a) implies (b). Since the sequence of vector of
matrix polynomials {Bn} is a basis in the linear space P

6×3, we can write

xBn =
n+1∑

k=0

Ãn
kBk, Ãn

k ∈ M6×6 .

Then, from the orthogonality conditions (46), we get

M (xBn) = M(Ãn
kBk) = 06×6, k = 0, 1, . . . , n− 2.

Thus,

xBn = Ãn
n+1Bn+1 + Ãn

nBn + Ãn
n−1Bn−1 .

Having Ãn
n+1 = A

〈3〉
n , Ãn

n = B
〈3〉
n , and Ãn

n−1 = C
〈3〉
n , the result follows.

To proof that (b) implies (a), we know from Theorem 5 that the sequence of
vector polynomials {Wn} satisfy a four term recurrence relation with matrix
coefficients. We can associate this matrix four term recurrence relation (40)
with the block matrix three term recurrence relation (47). Then, it is suffi-
cient to show that M is uniquely determined by its orthogonality conditions

(46), in terms of the sequence {C
〈3〉
n }n≥0 in that (47).

Next, from (43) we can rewrite the matrix four term recurrence relation
(40) into a matrix three term recurrence relation

xBn =

[
03×3 03×3

A
〈2〉
2n+1 03×3

]
Bn+1 +

[
B

〈2〉
2n A

〈2〉
2n

C
〈2〉
2n+1 B

〈2〉
2n+1

]
Bn +

[
D

〈2〉
2n C

〈2〉
2n

03×3 D
〈2〉
2n+1

]
Bn−1,

where the size of Bn is 6×3. We giveM in terms of its block matrix moments,
which in turn are given by the matrix coefficients in (47). There is a unique
vector moment functional M and hence two matrix measures dM1 and dM2,
such that

M (B0) =

[
M1(W0) M2(W0)
M1(W1) M2(W1)

]
= C

〈3〉
0 ∈ M6×6,

where Mi(Wj) was defined in (45). For the first moment of M0 we get

M0 = M (B0) =

[
∆1

0 ∆2
0

∆1
1 ∆2

1

]
= C

〈3〉
0 .

Hence, we haveM (B1) = 06×6, which from (47) also implies 06×6 = xM (B0)−

B
〈3〉
0 M (B0) = M1 − B

〈3〉
0 M0. Therefore

M1 = B
〈3〉
0 C

〈3〉
0 .



SYMMETRIZATION PROBLEM IN MULTIPLE ORTHOGONALITY 27

By a similar argument, we have

06×6 = M

(
(A

〈3〉
0 )−1x2B0 − (A

〈3〉
0 )−1B

〈3〉
0 xB0 − B

〈3〉
1 (A

〈3〉
0 )−1xB0

+ B1(A
〈3〉
0 )−1B

〈3〉
0 B0 − C

〈3〉
1 B0

)

= (A
〈3〉
0 )−1

M2 −
(
(A

〈3〉
0 )−1B

〈3〉
0 + B

〈3〉
1 (A

〈3〉
0 )−1

)
M1

+
(
B

〈3〉
1 (A

〈3〉
0 )−1B

〈3〉
0 − C

〈3〉
1

)
M0,

which in turn yields the second moment of M

M2 =
(
B

〈3〉
0 + A

〈3〉
0 B

〈3〉
1 (A

〈3〉
0 )−1

)
B

〈3〉
0 C

〈3〉
0 −A

〈3〉
0

(
B

〈3〉
1 (A

〈3〉
0 )−1B

〈3〉
0 − C

〈3〉
1

)
C

〈3〉
0 .

Repeated application of this inductive process, enables us to determine M in
a unique way through its moments, only in terms of the sequences of matrix

coefficients {A
〈3〉
n }n≥0, {B

〈3〉
n }n≥0 and {C

〈3〉
n }n≥0.

On the other hand, because of (44) and (47) we have

M (xBn) = 06×6, n ≥ 2.

Multiplying by x both sides of (47), from the above result we get

M
(
x2Bn

)
= 06×6, n ≥ 3.

The same conclusion can be drawn for 0 < k < n

M
(
xkBn

)
= 06×6, 0 < k < n, (48)

and finally

M (xnBn) = C〈3〉
n M

(
xn−1

Bn−1

)
.

Notice that the repeated application of the above argument leads to

M (xnBn) = C〈3〉
n C

〈3〉
n−1C

〈3〉
n−2 · · ·C

〈3〉
1 C

〈3〉
0 . (49)

From (48), (49) we conclude

M
(
xkBn

)
= C〈3〉

n C
〈3〉
n−1C

〈3〉
n−2 · · ·C

〈3〉
1 C

〈3〉
0 δn,k

= Ωnδn,k, n, k = 0, 1, . . . , k ≤ n,

which are exactly the desired orthogonality conditions (46) for M stated in
the theorem.
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