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DIFFUSION, VISCOELASTICITY AND EROSION:
ANALYTICAL STUDY AND MEDICAL APPLICATIONS

E. AZHDARI, J.A. FERREIRA, P. DE OLIVEIRA AND P.M. DA SILVA

Abstract: In this paper diffusion through a viscoelastic biodegradable material is
studied. The phenomenon is described by a set of three coupled partial differential
equations that take into account passive diffusion, stress driven diffusion and the
degradation of the material. The stability properties of the model are studied.

Erodible viscoelastic materials, as biodegradable polymers, have a huge range of
applications in medicine to make drug eluting implants. Using the mathematical
model the behaviour of a particular ocular drug eluting implant which describes
drug delivery into the vitreous chamber of the eye is presented. The model consists
of coupled systems of partial differential equations linked by interface conditions.
The chemical structure, the viscoelastic properties and the diffusion in the implant
as well as the transport in the vitreous are taken into account to simulate the
evolution in vivo of released drug. The dependence of the delivery profile on the
properties of the material are addressed. Numerical simulations that illustrate the
interplay between these phenomena are included.

1. Introduction

In the past few decades diffusion through viscoelastic materials has at-
tracted the attention of many researchers ([1, 2, 3, 4, 5]). Apart from the
mathematical interest of non Fickian diffusion such research focus is also ex-
plained by the increasing practical use of polymers in coatings, packaging,
membranes for transdermal drug delivery and more generally in controlled
drug delivery ([3, 6]).
It is well known that diffusion through a viscoelastic material does not

obey Fick’s law. In fact the material opposes a resistance to the Brownian
motion of molecules that can be quantified by the stress response to the
strain induced by these molecules. Several authors ([7, 8, 9]) have proposed
a general model represented by

∂C1

∂t
= −∇.J, (1)
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where C1 represents drug concentration and J is a modified flux with a stress
driven diffusion term defined by

J = −D1∇C1 −Dv∇σ, (2)

where the stress σ is related with the concentration by some mechanistic
model ([10]). In (2) D1 represents the diffusion coefficient and Dv a vis-
coelastic parameter which meaning will clarified later.
When the polymer matrix is biodegradable the transport of molecules is not

well described by (1)-(2) and a more complex system must be considered. As
degradation proceeds, the polymer molecular weight decreases and diffusional
paths open through the matrix allowing solved drug molecules to leave the
polymeric matrix ([11]). Because of the increasing permeability of the system
upon polymer degradation, the constant diffusion coefficient is replaced by
a molecular weight dependent diffusion coefficient ([12]) and a reaction term
stands for the degradation of drug inside the polymeric matrix is considered
(k1 represents the degradation rate). Equation (1) is then replaced by

∂C1

∂t
= ∇.(D1(M)∇C1 +Dv∇σ)− k1C1

and completed with two other equations: one that describes the mechanistic
behaviour of the polymer, that is a relation between stress and strain; another
equation which represents the evolution of the material molecular weight as
drug concentration changes. One of the contributions of this paper is a
theoretical study of this system which leads to a stability restriction with a
sound physical meaning: If the Fickian diffusion dominates the non Fickian
one the mathematical model is stable. As the material where diffusion occurs
is viewed as opposing a barrier to diffusion the theoretical restriction is also
a sound physical condition.
Delivering drugs to the vitreous chamber of the eye assumes a crucial role

and is a challenging problem due to the presence of various physiological
and anatomical barriers. Classical ocular drug delivery systems for posterior
segment diseases is systemic or topical.
However none of the these drug delivery systems are effective. In fact sys-

temic delivery is not effective because as the eye has a relatively small size the
drug concentration carried by the blood stream is not enough which means
that it does not reach the therapeutic window of the drug; with topical de-
livery just a small fraction of drug reaches the posterior segment of the eye
due to physiological barriers. These classical drug delivery systems are being
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Figure 1. Anatomy of the human eye (left) and an oc-
ular implant (right) (http://en.wikipedia.org/wiki/ and
http://marcelohosoume.blogspot.pt/2010/10/iluvien-and-
future-of-ophthalmic-drug.html).

replaced by direct intravitreal injection or intravitreal implants of drug. As
vitreal injections imply several treatments and can cause side effects intravit-
real implants have deserved much attention these last years. These polymeric
matrices are being used in different medical delivery systems, for example in
ocular diseases. In fact there are a number of severe diseases that can affect
the vitreous and the retina, which must be treated over long periods of time
and where drugs must be maintained in their therapeutic windows (Figure
1). In this paper we will propose a model to simulate intravitreal delivery
of drug through viscoelastic biodegradable implants. The model consists of
coupled systems of partial differential equations linked by interface condi-
tions. The chemical structure, the viscoelastic properties and the diffusion
are taken into account to simulate the evolution of released drug.
Many drugs have a narrow concentration window of effectiveness and may

be toxic at higher concentration ([14]), so the ability to predict local drug
concentrations is necessary for proper designing of the delivery system. Math-
ematical models which couple drug delivery from a device with the transport
in the living system play a central role because not only they can be used
to explain the kinetics of the delivery by describing the interplay of the dif-
ferent phenomena as they quantify the effect of physical and physiological
parameters in the delivery trend. Several authors have studied mathemat-
ical models to describe transport and elimination of drugs in the vitreous
([14, 15, 16, 17, 18, 19]). However at the best of our knowledge the in vivo

delivery of drug from a biodegradable implant has not yet been addressed.
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Preliminary results were obtained in [20] and [21]. Another aspect we believe
is new in our approach is the fact that the theoretical results established are
used to obtain physically sound numerical simulations.
The paper is organized as follows. In Section 2 the mathematical model

of the diffusion through a viscoelastic biodegradable materials is presented.
The qualitative behaviour of the released mass is studied through an a pri-

ori energy estimate. In Section 3 the medical application is addressed. The
geometry of the vitreous chamber of the eye and of the intravitreal implant
are described and the mathematical coupled model is presented. Numerical
simulations that illustrate the kinetics of the drug release and show the ef-
fect of degradation and viscoelasticity are exhibited in Section 4. Finally in
Section 5 some conclusions are addressed.

2. Diffusion in a material

In this section the transport of a drug through a biodegradable viscoelastic
material is studied. The phenomenon is described by a set of three coupled
partial differential equations that take into account passive diffusion, stress
driven diffusion and the degradation of the material. The stability properties
of the system using the total mass are analysed.

2.1.Mathematical model. We consider a biodegradable viscoelastic mate-
rial filling a bounded domain Ω1 ⊂ R

2 with boundary ∂Ω1. A certain amount
of drug is dispersed in the polymer. We suppose that when in contact with a
penetrant solvent an instantaneous swelling occurs. The drug then dissolves
in the solvent and its diffusion through Ω1 is described by











































∂C1

∂t
= ∇.(D1(M)∇C1) +∇.(Dv∇σ)− k1C1 in Ω1 × (0, T ],

∂σ

∂t
+

E

µ
σ = EC1 in Ω1 × (0, T ],

∂M

∂t
+ β1M = β2C1 in Ω1 × (0, T ].

(3)

In (3) C1 represents the unknown diffusive concentration of the drug inside
the material, for example a polymer, σ is the unknown stress response to
the strain exerted by the dissolved drug, and M is the unknown molecular
weight of the polymer. The viscoelastic influence in the drug transport is
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represented by the term ∇.(Dv∇σ) where Dv is a viscoelastic tensor which
physical dimension is time. The term −k1C1 describes the degradation of
drug inside the polymer and the positive constant k1 is the degradation rate.
The viscoelastic term states that the polymer acts as a barrier to the diffusion
of the drug: as the drug strains the polymer it reacts with a stress of opposite
sign. To account for the increasing permeability of the system upon polymer
degradation, the diffusion coefficient is defined by ([12])

D1(M) = D0e
M0

M+M0 , (4)

whereD0 is the diffusion coefficient of the drug in the non hydrolyzed polymer
and M0 is the initial molecular weight of the polymeric matrix. The second
equation in (3) defines the viscoelastic behaviour of the polymer by Maxwell
fluid model ([1, 2, 7, 8, 10])

∂σ

∂t
+

E

µ
σ = E

∂ǫ

∂t
, (5)

where E represents the Young modulus of the material, µ is its viscosity and
ǫ is the strain produced by the drug molecules. Assuming that the polymer
acts as a barrier to the release of the drug, σ and ǫ are of opposite sign, and
a minus sign should be considered in the right hand side of (5). To eliminate
the strain ǫ in (5) we assume

ǫ(x, t) = k

∫ t

0

C1(x, s)ds, (6)

where k is a dimensional positive constant ([3]). Replacing (6) in (5) and
considering the minus sign in the right hand side of (5) we obtain the second
equation in (3) where E = −Ek. The viscoelastic tensor Dv has a precise
physical meaning and for one dimensional model it can be proved thatDv > 0
([22]). In [9, 23, 24] the authors considered Dv < 0 and the stress σ and the
strain ǫ with the same sign. Even if these arguments are not physically
correct from a practical point of view the sign of the viscoelastic term is the
same as in our approach. In the third equation of (3) β1 and β2 are positive
constants that characterize the degradation properties of the material.
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System (3) is completed with initial conditions






















C1(x, 0) = C0, x ∈ Ω1,

σ(x, 0) = σ0, x ∈ Ω1,

M(x, 0) = M0, x ∈ Ω1,

(7)

and boundary conditions






















C1(x, 0) = 0 on ∂Ω1 × (0, T ],

σ(x, t) = σ0e
−E

µ
t
on ∂Ω1 × (0, T ],

M(x, t) = M0e
−β1t

on ∂Ω1 × (0, T ],

(8)

where ∂Ω1 denotes the boundary of Ω1. The first boundary condition means
that the drug is immediately removed as it attains the boundary. The bound-
ary conditions for σ and M have been obtained from the solutions of the
second and the third equations of (3), respectively.

2.2. Qualitative behaviour of solution. In this section we study the
qualitative behaviour of the energy functional

Q(t) = ‖C1(t)‖
2, t ≥ 0, (9)

where ‖.‖ represents the usual norm in L2(Ω1) which is induced by the cor-
responding inner product (., .).
In what follows we drop the argument x and we assume that D1 and Dv are

diagonal matrices where the nonzero entries of D1, (D1)ii, i = 1, 2, satisfy
(D1)ii ≥ D0 > 0, i = 1, 2, and the nonzero entries of Dv, (Dv)ii, i = 1, 2,
satisfy |(Dv)ii| ≤ Dv. From the second equation of (3) we easily get

σ(t) = E

∫ t

0

e−
E
µ
(t−s)C1(s)ds+ σ(0)e−

E
µ
t, t ≥ 0,

with E = −Ek and replacing in the first equation of (3) we obtain for C1

∂C1

∂t
= ∇.(D1(M)∇C1)− Ek

∫ t

0

e−
E
µ
(t−s)∇.(Dv∇C1(s))ds− k1C1, (10)

in Ω1 × (0, T ].
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As
1

2

dQ

dt
= (C1(t),

∂C1

∂t
(t)) we deduce, from (10), after multiplying scalarly

by C1(t) and using the first equation of (8) the following

1

2

dQ

dt
= −

∥

∥

∥

∥

√

D1(M)∇C1(t)

∥

∥

∥

∥

2

+

((

Ek

∫ t

0

e−
E
µ
(t−s)Dv∇C1(s)ds,∇C1(t)

))

− k1‖C1(t)‖
2, (11)

where
√

D1(M) is defined considering the square root of the entrance of
D1(M). In (11) ((., .)) denotes inner product of (L2(Ω1))

2 and ||.|| represents
the associated norm. From (11) and using Cauchy-Schwarz inequality, we
have

1

2

dQ

dt
(t) +D0

∥

∥

∥

∥

∇C1(t)

∥

∥

∥

∥

2

≤
Ek

4δ2

∥

∥

∥

∥

∫ t

0

e−
E
µ
(t−s)∇C1(s)ds

∥

∥

∥

∥

2

+D
2
vEkδ2

∥

∥

∥

∥

∇C1(t)

∥

∥

∥

∥

2

− k1Q(t), (12)

where δ 6= 0. We note that in the application of Cauchy- Schwarz inequality
the factors are defined as to be dimensionally sound. From the previous
inequality we deduce

1

2

dQ

dt
(t) + k1Q(t) + (D0 −D

2
vEkδ2)

∥

∥

∥

∥

∇C1(t)

∥

∥

∥

∥

2

≤
Ek

4δ2

∫ t

0

e−2E
µ
(t−s)ds

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds, (13)

and then

Q(t) + 2k1

∫ t

0

Q(s)ds+ 2(D0 −D
2
vEkδ2)

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds

≤
Ek

4δ2E
µ

∫ t

0

∫ s

0

∥

∥

∥

∥

∇C1(µ)

∥

∥

∥

∥

2

dµds+Q(0).

If δ2 is such that
D0 −D

2
vEkδ2 > 0

we obtain

Q(t) +

∫ t

0

Q(s)ds+

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds
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≤
kµ

min{1, 2k1, 2(D0 −D
2
vEkδ2)}4δ2

∫ t

0

∫ s

0

∥

∥

∥

∥

∇C1(µ)

∥

∥

∥

∥

2

dµds

+
1

min{1, 2k1, 2(D0 −D
2
vEkδ2)}

Q(0).

Finally Gronwall’s Lemma leads to

Q(t) +

∫ t

0

Q(s)ds+

∫ t

0

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds

≤
1

min{1, 2k1, 2(D0 −D
2
vEkδ2)}

Q(0)e
kµ

min{1,2k1,2(D0−D
2
vEkδ2)}4δ2

t
. (14)

This last inequality establishes that Q(t),

∫ t

0

Q(s)ds and

∫ t

0

∥

∥∇C1(s)
∥

∥

2
ds

are bounded for bounded intervals of time. Inequality (14) can be improved
by eliminating the exponential factor in its right hand side. Following [25]
we multiply (10) by eγt, where γ is a positive constant, obtaining

eγt
∂C1

∂t
= ∇.(D1(M)∇C1)e

γt − Ek

∫ t

0

e−
E
µ
(t−s)eγt∇.(Dv∇C1(s))ds− k1e

γtC1.(15)

Adding γeγtC1(t) to both sides of (15) we have

∂C1,γ

∂t
= ∇.(D1(M)∇C1,γ)− Ek

∫ t

0

e(γ−
E
µ
)(t−s)∇.(Dv∇C1,γ(s))ds (16)

+γC1,γ(t)− k1C1,γ(t),

where C1,γ(t) = eγtC1(t). The last equation leads to
(

dC1,γ

dt
(t), C1,γ(t)

)

+ (D1(M)∇C1,γ(t),∇C1,γ(t))

= Ek

((
∫ t

0

e(γ−
E
µ
)(t−s)Dv∇C1,γ(s)ds,∇C1,γ(t)

))

+(γ − k1)(C1,γ(t), C1,γ(t)).

Using the Cauchy-Schwarz inequality, the first equation of (8) and the
notation Qγ(t) = ‖C1,γ(t)‖

2 , we easily deduce

d

dt
Qγ(t) + 2k1Qγ(t)− 2γQγ(t) + 2D0

∥

∥

∥

∥

∇C1,γ(t)

∥

∥

∥

∥

2
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≤ 2DvEk

∫ t

0

e(γ−
E
µ
)(t−s)

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

∥

∥

∥

∥

∇C1,γ(t)

∥

∥

∥

∥

ds

≤ 2δ2D
2
vEk

∥

∥

∥

∥

∇C1,γ(t)

∥

∥

∥

∥

2

+
βγEk

2δ2

∫ t

0

e(γ−
E
µ
)(t−s)

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds,

for γ such that γ − E
µ
< 0 and where βγ is defined by
∫ t

0

e(γ−
E
µ
)(t−s)ds <

1
E
µ
− γ

= βγ. (17)

Since

∥

∥

∥

∥

C1,γ

∥

∥

∥

∥

≤ KΩ

∥

∥

∥

∥

∇C1,γ

∥

∥

∥

∥

, where KΩ represents the Poincaré’s constant,

we have

Qγ(t) + 2k1

∫ t

0

Qγ(s)ds+ (2D0 − 2γK2
Ω − 2δ2D

2
vEk)

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds

≤ Q(0) +
βγEk

2δ2

∫ t

0

∫ η

0

e(γ−
E
µ
)(η−s)

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

dsdη. (18)

Changing the order of integration in the double integral in the right hand
side of (18) we have

Qγ(t) + 2k1

∫ t

0

Qγ(s)ds+ (2D0 − 2γK2
Ω − 2δ2D

2
vEk)

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds

≤ Q(0) +
βγEk

2δ2

∫ t

0

∫ t

s

e(γ−
E
µ
)(η−s)dη

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds. (19)

Computing the interior integral in the right hand side of (19) and considering
(17) we obtain

Qγ(t) + 2k1

∫ t

0

Qγ(s)ds+ (2D0 − 2γK2
Ω − 2δ2D

2
vEk)

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds

≤ Q(0) +
β2
γEk

2δ2

∫ t

0

∥

∥

∥

∥

∇C1,γ(s)

∥

∥

∥

∥

2

ds. (20)

As Qγ(t) = e2γtQ(t) we establish

Q(t) + 2k1

∫ t

0

e−2γ(t−s)Q(s)ds
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+

(

2D0 − 2γK2
Ω − 2δ2D

2
vEk −

Ek

2δ2(E
µ
− γ)2

)

∫ t

0

e−2γ(t−s)

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds

≤ e−2γtQ(0).

We now look for γ such that

2D0 − 2γK2
Ω − 2δ2D

2
vEk −

Ek

2δ2(E
µ
− γ)2

> 0,

with
E

µ
− γ > 0.

The parameter δ is arbitrary so we select δ = 1. The function f defined by

f(γ) = 2D0 − 2γK2
Ω − 2D

2
vEk −

Ek

2(E
µ
− γ)2

is a continuous function for γ ∈ [0, E
µ
[. We have

f(0) = 2D0 − 2D
2
vEk −

µ2k

2E

and lim
γ→E

µ

f(γ) < 0. If we impose

D0 −D
2
vEk −

µ2k

4E
> 0, (21)

the non linear equation

f(γ) = 0

has a positive root in ]0, E
µ
[.

We have then proved the following result for the energy functional defined
in (9).

Theorem 2.1. If D0, Dv, E, k and µ are such that

D0 −D
2
vEk −

µ2k

4E
> 0 (22)

then ∃γ ∈]0, E
µ
[ such that

Q(t) +

∫ t

0

e−2γ(t−s)Q(s)ds+

∫ t

0

e−2γ(t−s)

∥

∥

∥

∥

∇C1(s)

∥

∥

∥

∥

2

ds ≤ Ce−2γtQ(0), t ≥ 0,

(23)
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where

C =
1

min{1, 2k1, 2D0 − 2γK2
Ω − 2D

2
vEk − Ek

2(E
µ
−γ)2

}
.

We note that the restriction on the parameters imposed in Theorem 2.1
have a physical meaning. It establishes that the Fickian contribution domi-
nates the non Fickian one, which is a physically sound restriction. In fact if
we make a dimensional analysis of (22) for 1D case we conclude that all the

terms are consistent with dimension L2

T
, where L2 stands for square length

and T for time.
To simulate in vivo the drug release, the polymeric matrix is coupled with

a living system. In this case the Dirichlet boundary conditions (8) should be
replaced by a Robin boundary condition of type

J.η = AcC1, (24)

where J stands for the flux, η is the exterior unit outward normal to ∂Ω1

and Ac is a positive constant. The problem to be solved is then the third
equation of system (3) and the equation (10) coupled with initial condition
(7) and boundary condition in ∂Ω1

(

−D1(M)∇C1(t) +DvEk

∫ t

0

e−
E
µ
(t−s)∇C1(s)ds

)

.η = AcC1(t). (25)

The same arguments used in the proof of Theorem 2.1 still hold. In fact
equation (10) is of form

∂C1

∂t
(t) = −∇.J(t)− k1C1(t)

and multiplying scalarly by C1 we have

1

2

dQ

dt
(t) = −

(

J.η, C1

)

∂Ω1

+
(

J,∇C1

)

− k1

∥

∥

∥
C1

∥

∥

∥

2

,

where
(

J.η, C1

)

∂Ω1

=

∫

∂Ω1

J.ηC1(x, t)dx.

From (24) and (25) we obtain, instead of (11), the inequality

1

2

dQ

dt
(t) ≤ (J(t),∇C1(t))− k1‖C1(t)‖

2,
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and estimate (14) then follows. To eliminate the exponential factor we used
the same arguments as in the proof of Theorem 2.1. In this case the existence
of γ ∈]0, E

µ
[ such that (23) holds with

C =
1

min{1, 2(k1 − γ), 2(D0 −D
2
vEk − Ek

4(E
µ
−γ)2

)}
,

is guaranteed provided (22) holds and E
µ
< k1.

3. A medical application

In this section we present a medical application of a biodegradable vis-
coelastic drug eluting implant. As described in Section 1 this type of implant
is used for instance in the vitreous chamber of the eye to release drug to the
retina. The model presented here describes in vivo drug delivery as it couples
system (3) with the kinetics of drug in the vitreous chamber of the eye.

3.1. Geometry. The geometrical model of the human eye adopted in the
present study is shown in Figure 2 and is based on physiological dimensions
([15]).

Hyaloid membrane

∂Ω2

Hyaloid membrane

∂Ω3Lens

∂Ω4

Retina
∂Ω5

Vitreous chamber
Ω2

Ω1

∂Ω1

Figure 2. Geometry of the vitreous chamber of the human eye
(Ω2), hyaloid membrane (∂Ω2, ∂Ω3), lens (∂Ω4), retina (∂Ω5),
ocular implant (Ω1) and its boundary (∂Ω1).
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The vitreous chamber Ω2 is mainly composed by vitreous humor and it
occupies about two-third of the eye. The lens is located behind the iris and
is modeled here as an ellipsoid. The hyaloid membrane and the lens separate
the anterior chamber and the posterior chamber of the eye from the vitreous
chamber. The retina forms the boundary of the vitreous on the posterior
surface and is modeled as a spherical surface with a radius of 9.1 mm. The
intravitreal implant Ω1 is placed into the vitreous, as shown in Figure 2, and
it is geometrically represented by a cylinder with radius 0.023 mm and height
0.6 mm.

3.2. Mathematical model. The implant Ω1 containing dispersed drug is
placed into the vitreous, near the retina (Figure 2). The drug is released in
a controlled manner through the vitreous which is a porous media, and its
target is the retina affected by an inflammatory process.
The diffusion-reaction equation that describes the drug dynamics in the

polymeric implant is represented by system (3), coupled with initial con-
ditions (7). We couple with this system the drug dynamics in the vitreous,
where the diffusion of drug occurs from the polymer towards the vitreous and
the retina. Mass transport in the vitreous is described by diffusion and con-
vection. Convection is due to the steady permeation of the aqueous humor
through the vitreous, and diffusion is driven by the concentration gradient
([17]). To simulate the dynamics of the drug in the vitreous we use a diffu-
sion reaction equation, where the permeation velocity of the aqueous humor
is given by Darcy’s law ([14, 15, 18, 19, 26, 27]), as follows:

∂C2

∂t
+∇.(C2v)−∇.(D2∇C2) = 0 in Ω2 × (0, T ], (26)

and










v = −
K

µ1
∇p in Ω2 × (0, T ]

∇.v = 0 in Ω2 × (0, T ]

. (27)

In equation (26) C2 represents the concentration of the drug in the vitreous,
D2 is the diffusion coefficient of the drug in the vitreous and v is the velocity
of aqueous humor permeation given by (27). In this last system K is the
permeability of the vitreous and µ1 is the viscosity of the permeating aqueous

humour ([17]). The term
K

µ1
is referred to as the hydraulic conductivity.
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Equations (3), (26) and (27) are completed with initial conditions represented
by















C1(x, 0) = C0 in Ω1,
σ(x, 0) = σ0 in Ω1,
M(x, 0) = M0 in Ω1,
C2(x, 0) = 0 in Ω2.

(28)

Boundary conditions of different types will be used in the model:

- Boundary conditions for the pressure:

p = 2000 on ∂Ω2 ∪ ∂Ω3 × (0, T ],

p = 1200 on ∂Ω5 × (0, T ].

We note that ∂Ω2 ∪ ∂Ω3 represents the hyaloid membrane and ∂Ω5

represents the retina. The two previous values of the pressure that
we considered correspond to the intra ocular pressure in the anterior
chamber near the lens and the pressure of the blood system, respec-
tively.

- Boundary conditions for the drug concentration:

C2 = 0 on ∂Ω5 × (0, T ],

(−D2∇C2 + vC2).η = 0 on ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 × (0, T ].

- Wall conditions for the velocity:

v = 0

on the boundary ∂Ω4 of the vitreous chamber Ω2 and on the boundary
of the implant ∂Ω1 (Figure 2).

- Interface boundary conditions for the flux of drug concentration:

(−D1(M)∇C1 −Dv∇σ).η = Ac(C1 − C2) on ∂Ω1 × (0, T ],

where Ac is the permeability constant and η is the unit exterior normal
to ∂Ω1.
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3.3. Numerical simulations. In this section we illustrate the behaviour of
drug concentration in the implant and in the vitreous. In the case the values
of the constants are not available in the literature, we use values that make
physical sense but that may not correspond to the exact characteristics of
the intravitreous implants in the market. For this reason the present study
has for the moment mainly a qualitative character.
The numerical simulations have been obtained with C0 = 1.7887 × 10−6,

M0 = 0.5 × 10−6 and σ0 = 0.5 × 10−6, that represent the initial drug con-
centration, initial stress and the initial molecular weight in the implant, re-
spectively. The units used for concentration are mol/mm3. For the other
variables the units are selected such that the equations are dimensionally
correct.
The diffusion coefficient of the drug in the implant is defined considering

D0 = 1 × 10−11I2 in (4), where I2 is the identity matrix and its diffusion
coefficient in the vitreous is defined by D2 = 1× 10−8I2. We recall that the
diffusion coefficient in the polymer will increase as the molecular weight de-
creases that is as degradation occurs. The following values for the parameters
have been considered:

k1 = 1×10−10, β1 = 5×10−4, β2 = 1×10−9, µ = 2×10−4, E = 1×10−7, k = 1,

and

Ac = 5× 10−5, Dv = 1× 10−11I2, µ1 = 0.7, ρ = 970, K = 0.7× 8.4× 10−8.

The units of the previous parameters are such that the equations are di-
mensionally correct when concentrations are considered in mol/mm3 as pre-
viously indicated. We observe that the parameters which are used in the
numerical simulations are in agreement with condition (22) imposed in The-
orem 2.1.
In Figure 3 the drug concentration at time t = 5min and t = 1 h are

presented. It can be observed that as time evolves the drug is released and
less drug concentration is inside the implant. We remark that the maximum
concentration for t = 5min is higher than the maximum concentration at
t = 1 h.
The pressure in the vitreous chamber is showed in Figure 4. The evolution

of the pressure from the top (p = 2000Pa) to the boundary of the vitreous
chamber that is in contact with the retina (p = 1200Pa), can be observed.
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Figure 3. Drug concentration in the implant at 5min (left) and
1 h (right).

Figure 4. Steady pressure in the vitreous chamber.

In Figure 5 the drug concentration in the vitreous chamber is plotted for
t = 5min and t = 1 h.

Figure 5. Drug concentration in the vitreous chamber at 5min
(left) and 1 h (right).

During the first instants of the delivery process, no drug is observed in
the vitreous, except near the ocular implant, and as time increases more
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drug concentration is available to diffuse. For a better understanding of
the qualitative behaviour of the drug concentration in the vitreous chamber,
we present in Figure 6, the plot of drug concentration vs time inside the
implant and the vitreous chamber. It can be observed that the drug concen-
tration in the vitreous chamber increases until it attains a maximum value
at t = 30min; for t > 30min the drug concentration decreases until no drug
concentration is present in the ocular implant. This qualitative behaviour is
in agreement with medical data, establishing that for a duration of T units of
time the maximum concentration of drug is attained for T , where T

4 < T < T
3 .

Figure 6. Drug concentration in the implant (left) and in the
vitreous chamber (right) during two hours.

Figure 7. Drug concentration in the implant at t = 2h - in-
fluence of degradation rate β1 = 5 × 10−4 (down line) and
β1 = 1× 10−5 (top line).

In Figure 7 the influence of the degradation rate is illustrated: a smaller
value of β1 leads to a slower degradation process and consequently more
concentration is observed inside the polymeric implant.
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Figure 8. Drug concentration at a point of the boundary of the
implant around t = 110min - influence of E, E = 1× 10−7 (top
line) and E = 1× 10−9 (bottom line).

In Figure 8 the influence of Young’s modulus is illustrated. As expected
the increase of Young’s modulus, E, delays the drug release and consequently
more drug concentration is observed inside the polymer. In fact as crosslink-
ing density is proportional to E, the large is this parameter, the more stiff is
the material and a more significant barrier difficults the release of drug.
In Figure 9 the influence of diffusion D0 on the mass of drug delivered in

the vitreous is shown. It is observed that as D0 increases the mass increases
because the diffusion process becomes faster.

Figure 9. Influence of parameters D0 on the mass of drug in the vitreous.

In Figure 10 we observe that increasing the diffusion coefficient of drug in
the vitreous, the mass of drug is also increasing as expected.
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Figure 10. Influence of parameter D2 in the mass of drug re-
leased in the vitreous.

4. Conclusion

A coupled model to simulate in vivo drug delivery from an intravitreal
viscoelastic biodegradable implant has been developed. The whole process is
described by a set of partial differential equations that take into account pas-
sive diffusion, convection resulting from the permeation of aqueous humor,
stress driven diffusion and the degradation of the polymer. At the best of our
knowledge the dynamics of diffusion has not been described so far in the lit-
erature considering the simultaneous interplay between mechanical, physical
and chemical effects. The numerical simulations show qualitative agreement
with the physical expected behavior. The model clarifies the large influence
of the degradation parameter in sustained drug delivery. The viscoelastic
properties of the polymeric implant are also shown to be an effective control
mechanism to delay or to speed up the release of drug.
Mathematical modeling is a unique tool to explain transport mechanisms,

and to help in implant design, avoiding expensive and extensive experimen-
tation. In future work physical values for all the parameters of the model
should be retrieved. Also more realistic mechanical models will be consid-
ered and the heterogeneous structure of the vitreous, that is characteristic of
elderly patients, should be taken into account.
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