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Universidade de Coimbra
Preprint Number 13–50

CHARACTERISTIC SUBOBJECTS

IN SEMI-ABELIAN CATEGORIES

ALAN S. CIGOLI AND ANDREA MONTOLI

Abstract: We extend to semi-abelian categories the notion of characteristic sub-
object, which is widely used in group theory and in the theory of Lie algebras.
Moreover, we show that many of the classical properties of characteristic subgroups
of a group hold in the general semi-abelian context, or in stronger ones.
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1. Introduction

The notion of characteristic subgroup (which means a subgroup that is in-
variant under all automorphisms of the bigger group) is widely used in group
theory. Examples of characteristic subgroups are the centre and the derived
subgroup of any group. The main properties of characteristic subgroups are
the following: if H is a characteristic subgroup of K and K is a characteristic
subgroup of G, then H is a characteristic subgroup of G; moreover, if H is
characteristic in K and K is normal in G, then H is normal in G. These
transitivity properties of characteristic subgroups imply, for example, that
the derived series and the central series of a group are normal series, and this
fact is very useful in order to deal with solvable and nilpotent groups.

An analogous notion exists for Lie algebras (over a commutative ring R):
a characteristic ideal of a Lie algebra is a subalgebra which is invariant under
all derivations of the bigger one. The two transitivity properties mentioned
above hold also in this context, and again this allows to easily describe solv-
able and nilpotent Lie algebras.
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The strong parallelism between these two contexts is explained by the fact
that automorphisms represent group actions, as well as derivations represent
actions of Lie algebras in the following sense. An action of a group B on a
group G can be described simply as a group homomorphism B → Aut(G);
in the same way, an action of a Lie algebra B on a Lie algebra G is a
homomorphism of Lie algebras B → Der(G).

The aim of this paper is to extend the definition and the main properties of
characteristic subobjects to a categorical context. In order to do this, we will
use the notion of internal action introduced in [3]. In [9] it is proved that,
in semi-abelian categories [18], internal actions are equivalent to split exten-
sions, via a semidirect product construction which generalises the classical
one known for groups. Examples of semi-abelian categories are groups, rings,
associative algebras, Lie algebras and, in general, any variety of Ω-groups.

We define a characteristic subobject as a subobject H of an object G which
is invariant under all (internal) actions over G. In the semi-abelian context,
we can use the equivalence between actions and split extensions mentioned
above in order to deduce properties of characteristic subobjects from prop-
erties of the kernel functor which associates with any split epimorphism its
kernel.

The paper is organized as follows: in Section 2 we give the definition of
characteristic subobject and we prove some properties that hold in any semi-
abelian category, like the transitivity properties mentioned at the beginning,
or the fact that the intersection of characteristic subobjects is characteristic.
Then we study properties that hold in stronger contexts, such as:

- the join of two characteristic subobjects is characteristic (Section 3);
- the commutator of two characteristic subobjects is characteristic (Sec-
tion 4);

- the centraliser of a characteristic subobject is characteristic (Section
5).

Some properties about actors of characteristic subobjects are studied in Sec-
tion 6 in the context of action representative categories [4, 2] and analogous
results are proved in action accessible categories [10], replacing actors with
suitable objects.
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2. Definition and basic properties

A characteristic subgroup of a group G is classically defined as a subgroup
H of G which is invariant under all the automorphisms of G. This means
that any automorphism of G restricts to an automorphism of H. Since the
automorphism group Aut(G) of a group G classifies all the group actions on
G, a subgroup H of a group G is characteristic if and only if any group action
on G restricts to an action on H.
In other algebraic contexts it is no longer true that automorphisms classify

actions, hence the notions of invariance under automorphisms and under
actions are different. As already explained in the introduction, here we are
interested in the latter. In order to study it in a categorical setting, we are
going to use the notion of internal action, introduced in [3]. We briefly recall
the definition.

Let C be a pointed category with finite limits and finite coproducts. For
any object B in C, we can define the category PtB(C) of points over B, whose
objects are split epimorphisms (A, p, s) with codomain B and whose arrows
are commutative triangles of the following form, with p′f = p and fs = s′:

A
f

//

p

��@
@@

@@
@@

A′

p′~~}}
}}

}}
}

B
s

__@@@@@@@

s′
>>}}}}}}}

We then get the two following functors:

KerB : PtB(C) → C ,

given by KerB(A, p, s) = Ker p, and

B + (−) : C → PtB(C) ,

where B + (X) is the point B +X
[1,0]

//
B

ιB
oo .

These functors give rise to an adjunction. The corresponding monad on
C is denoted by B♭(−). For any object X ∈ C, we have that B♭X is the
kernel of the morphism [1, 0] : B +X → B. The algebras for this monad are
called internal actions. The comparison functor associates with every point
(A, p, s) an action ξ as described in the following diagram (where X is the
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kernel of p and ξ is induced by the universal property of X):

B♭X
ker[1,0]

//

ξ
��

B +X
[1,0]

//

[s,k]
��

B
ι
B

oo

X
k // A

p
//
B

s
oo

When C is the category Gp of groups, the elements of B♭X are generated
by formal sequences of type (b; x; b−1) with b ∈ B and x ∈ X, and the
internal action ξ is nothing but the realisation of these sequences in X, that
is ξ(b; x; b−1) = bxb−1, or more properly ξ(b; x; b−1) = k−1(s(b)k(x)s(b−1))
since the product is actually computed in A.
Vice versa, given a group action ξ of B over K, we can always associate

with it the semidirect productK⋊ξB and a point as in the following diagram
where the left hand side square is constructed as a pushout:

B♭X
ker[1,0]

//

ξ
��

B +X
[1,0]

//

��

B
ι
B

oo

X
iX

// X ⋊ξ B
pB //

B
iB

oo

We can repeat the same construction in the categorical context mentioned
above. However, in general, the bottom row is not always a split short exact
sequence. This is the case when the comparison functor is an equivalence,
as, for example, in any semi-abelian category [18, 1], as shown in [9], where
the categorical notion of semi-direct product is introduced.

We are now ready to give the following definition:

Definition 2.1. Let C be a pointed category with finite limits and finite co-
products. Let G be an object in C and h : H  G a subobject. We say that
H is characteristic in G, and we write H <

char
G, if, for all pairs (B, ξ), with

B an object of C and ξ an internal action of B on G, the action ξ restricts
to the subobject H. In other words, there exists a (unique) action ξ of B on
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H which makes the following diagram commute:

B♭H

ξ
��

1♭h // B♭G

ξ
��

H //
h

// G

When C is a semi-abelian category, the above mentioned equivalence be-
tween actions and points allows us to reformulate the definition of character-
istic subobject.

Proposition 2.2. Let C be a semi-abelian category. A subobject h : H  G
is characteristic in G if and only if for every split extension of kernel G

G
� ,2 // X

//
Boo

there exist a split extension H
� ,2 // Y // B and a morphism of split exten-

sions inducing h on kernels and 1B on cokernels (it is necessarily a monomor-
phism thanks to the split short five lemma):

H
� ,2 //

��
h
��

Y
//

��

��

Boo

G
� ,2 // X

//
Boo

As we will see afterwards, this reformulation makes the notion of charac-
teristic subobject much easier to handle. Moreover, the translation in terms
of points reveals that, when actions are equivalent to points, many proper-
ties of characteristic subobjects are strictly related with the properties of the
fibration of points (see [1]) or, to be more precise, of the kernel functors:

KerB : PtB(C) → C

For these reasons, in our investigation, we will focus on contexts which are
at least semi-abelian, possibly with additional requirements. The behaviour
of characteristic subobjects in weaker contexts is material for future work.

Proposition 2.3. If H is a characteristic subobject of K, and K is a char-
acteristic subobject of G, then H is characteristic in G.

Proof : The result is a straightforward consequence of Definition 2.1.

Proposition 2.4. If H is a characteristic subobject of K, and K is a normal
subobject of G, then H is normal in G.
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Proof : It suffices to observe that, in the semi-abelian context, normal sub-
objects are exactly those closed under the conjugation action (i.e. clots, see
for example [19]). Indeed, the conjugation action of G on itself restricts to
K by normality, and then to H, since H <

char
K, thus proving that H ⊳G.

Corollary 2.5. If H is a characteristic subobject of G, then H is normal in
G.

Proposition 2.6. Let I be a set of indices. If {Hi}i∈I is a family of char-
acteristic subobjects of G, then the intersection

∧
i∈I Hi is characteristic in

G.

Proof : If hi : Hi  G is a characteristic subobject, then, for every action
ξ : B♭G → G, there is a morphism in PtB(C):

Hi
� ,2 //

_��
hi

��

Yi

pi //

��

��

B
si

oo

G
� ,2 // G⋊ξ B

//
Boo

Since the kernel functor KerB : PtB(C) → C has a left adjoint, it preserves
intersections, so the object

∧
i∈I Hi in C is the kernel of the intersection∧

i∈I(Yi, pi, si) in PtB(C).

When the category C is not only semi-abelian, but also strongly proto-
modular [7], internal actions behave well with respect to quotients. More
precisely, in [20] the following result is proved.

Proposition 2.7. A semi-abelian category is strongly semi-abelian (i.e. semi-
abelian and strongly protomodular) if and only if the following property holds:

• for every normal subobject H ⊳ G and every action ξ : B♭G → G, if ξ
restricts to H, then ξ also induces a (unique) action ξ̃ on the quotient
G/H:

B♭H //

ξ
��

B♭G //

ξ
��

B♭(G/H)

ξ̃
��

H
� ,2

h
// G q

� ,2 G/H

In terms of split extensions, this means that if a kernel h is the restriction
of some φ in PtB(C), then q = coker(h) is the restriction of γ = coker(φ) in
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PtB(C):

H
� ,2 //

_��
h
��

Y
//

��
φ
��

Boo

G
� ,2 //

q
_��

X
//

γ
_��

Boo

G/H � ,2 // Z
//
Boo

(1)

In fact, it turns out that, for the special class of characteristic subobjects,
strong protomodularity is not needed in order to transfer actions to the
quotient.

Proposition 2.8. If H is a characteristic subobject of G, then every action
on G induces an action on the quotient G/H, as in the diagram of Proposition
2.7.

Proof : By Proposition 2.4, for every action ξ : B♭G → G, H is a normal
subobject of G⋊ξB. Then the arrow Y  G⋊ξB, induced by the restriction
of ξ to H, is a normal monomorphism in PtB(C), according to [1, Proposition
6.2.1]:

H
� ,2 //

_��
h
��

Y
//

��

��

Boo

G
� ,2 // G⋊ξ B

//
Boo

By taking its cokernel, we get an exact sequence as in diagram (1).

Proposition 2.9. If H ≤ K ≤ G, H is characteristic in G and K/H is
characteristic in G/H, then K is characteristic in G.

Proof : Let us consider the following diagram

H
� ,2 // K

� ,2

��
k
��

K/H
��
k̃
��

H
� ,2 // G q

� ,2 G/H

The right hand side square is a pullback (this comes from the fact that the
category C, being semi-abelian, is protomodular [5]). By Proposition 2.8
every action of some B on G induces an action on G/H. By assumption,
the same action restricts to K/H. In terms of points, we have a cospan in

PtB(C) whose restriction to the kernels is the pair (q, k̃). Now, since the
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kernel functors preserve pullbacks, K is the kernel of the pullback in PtB(C)
of the same cospan, hence the action of B on G restricts to K.

Proposition 2.10. If H is characteristic in G, then its corresponding equiv-
alence relation R on G is closed under actions on G, i.e. there exists an
action R(ξ) of B on R which makes the following diagram commute:

B♭R

R(ξ)
��

1♭r1 //

1♭r2

// B♭G

ξ
��

R
r1 //

r2
// G

Proof : By Proposition 2.8 every action of some B on G induces an action on
G/H. Now, since kernel functors preserve pullbacks, R is the kernel of the
kernel pair in PtB(C) of the morphism γ of diagram (1):

R
� ,2 //

r1
��

r2
��

Rγ
//

����

Boo

G
� ,2 //

q
_��

X
//

γ
_��

Boo

G/H � ,2 // Z
//
Boo

We can make explicit the previous proposition in the category Gp. It says
that for all pairs (x, y) ∈ R and for all b ∈ B, the pair (bx, by) ∈ R.
More in general, whenever B acts on G, there is an induced action on G×G

(simply computing the product in PtB(C)), and the inclusion R  G × G
is compatible with the corresponding actions. However, this does not mean
that R is a characteristic subobject of G×G.

3. Joins

While the outcomes listed in Section 2 hold in the very general case of semi-
abelian categories, the property that finite joins of characteristic subobjects
are characteristic (which is true in the category of groups, for example) seems
to hold only in stronger contexts.
An additional requirement, for a semi-abelian category, which turns out

to be crucial in this sense, is to ask that kernel functors preserve jointly
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strongly epimorphic pairs. This is equivalent to the fact that, for all pairs
((Y, p1, s1), (Z, p2, s2)) of objects in PtB(C), the canonical arrow in C:

KerB(Y, p1, s1) + KerB(Z, p2, s2) → KerB((Y, p1, s1) + (Z, p2, s2))

is a regular epimorphism.

Lemma 3.1 ([15]). Let C be a semi-abelian category. For any object B ∈ C

the kernel functor PtB(C) → C preserves jointly strongly epimorphic pairs if
and only if it preserves binary joins.

It is worth noting that the previous lemma does not say, in particular, that,
under the assumption, kernel functors preserve coproducts. A counterexam-
ple to this fact is given in the proof of Proposition 6.2 in [16] for the category
of commutative (not necessarily unitary) rings.

Proposition 3.2. Let C be a semi-abelian category where kernel functors
preserve jointly strongly epimorphic pairs. If H and K are characteristic
subobjects of G, then H ∨K is characteristic in G.

Proof : Being H and K characteristic, for every action of B on G, the cospan

H // h //G Koo
koo is the restriction to kernels of a cospan in PtB(C). By Lemma

3.1, H ∨K is the kernel of a point over B.

A context in which the property of preservation of binary joins by the kernel
functor holds is the one of locally algebraically cartesian closed categories [8].
A semi-abelian category C is said locally algebraically cartesian closed (or
simply LACC) if, for any morphism p : E → B in C, the change of base
functor

p∗ : PtB(C) → PtE(C),

defined by taking pullbacks along p, has a right adjoint. Examples of this
situation are the categories Gp of groups and Lie of Lie algebras over a fixed
commutative ring R. In this context the kernel functors (which are change of
base functors with E = 0), having right adjoints, preserve all finite colimits,
and hence the canonical arrow

KerB(Y, p1, s1) + KerB(Z, p2, s2) → KerB((Y, p1, s1) + (Z, p2, s2))

mentioned above is an isomorphism.

Another context in which preservation of binary joins holds is given by
categories of interest [22]. We recall that a category of interest is a category C
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whose objects are groups with a set of operation Ω and with a set of equalities
E, such that E includes the group laws and the following conditions hold. If
Ωi is the set of i-ary operations in Ω, then:

(a) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(b) the group operations (written additively: 0,−,+, even if the group is

not necessarily abelian) are elements of Ω0, Ω1 and Ω2 respectively.
Let Ω′

2 = Ω2\{+}, Ω′
1 = Ω1\{−} and assume that if ∗ ∈ Ω′

2, then Ω′
2

contains ∗◦ defined by x ∗◦ y = y ∗ x. Assume further that Ω0 = {0};
(c) for any ∗ ∈ Ω′

2, E includes the identity x ∗ (y + z) = x ∗ y + x ∗ z;
(d) for any ω ∈ Ω′

1 and ∗ ∈ Ω′
2, E includes the identities ω(x + y) =

ω(x) + ω(y) and ω(x) ∗ y = ω(x ∗ y);
(e) Axiom 1 x1 + (x2 ∗ x3) = (x2 ∗ x3) + x1 for any ∗ ∈ Ω′

2;
(f) Axiom 2 for any ordered pair (∗, ∗) ∈ Ω′

2 × Ω′
2 there is a word W

such that

(x1 ∗ x2)∗x3 = W (x1(x2x3), x1(x3x2), (x2x3)x1, (x3x2)x1,

x2(x1x3), x2(x3x1), (x1x3)x2, (x3x1)x2),

where each juxtaposition represents an operation in Ω′
2.

Examples of categories of interest are groups, Lie algebras, rings, associa-
tive algebras, Leibniz algebras, Poisson algebras and many others. Also in
this context the kernel functors preserve binary joins, as follows from [12]
and Lemma 3.1 herein.
Since it will be useful later, we give here a description of internal actions in

categories of interest (called derived actions in [11]). In a category of interest
C, an action of an object B on an object X is a set of functions:

f∗ : B ×X → X ,

one for each operation ∗ in Ω2 (we will write b · x for f+(b, x) and b ∗ x for
f∗(b, x), with ∗ ∈ Ω′

2), such that the one corresponding to the group operation
+ satisfies the usual axioms for a group action, the others are bilinear with
respect to + and moreover the following axioms are satisfied (for all b, bi ∈ B,
x, xi ∈ X and ∗, ∗ ∈ Ω′

2):

(1) b · (x1 ∗ x2) = x1 ∗ x2;
(2) x1 + (b ∗ x2) = (b ∗ x2) + x1;
(3) (b1 ∗ b2) · x = x;
(4) b1 · (b2 ∗ x) = b2 ∗ x;
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(5)
(b ∗ x1)∗x2 = W (b(x1x2), b(x2x1), (x1x2)b, (x2x1)b,

x1(bx2), x1(x2b), (bx2)x1, (x2b)x1);

(6)
(x1 ∗ x2)∗b = W (x1(x2b), x1(bx2), (x2b)x1, (bx2)x1,

x2(x1b), x2(bx1), (x1b)x2, (bx1)x2);

(7)
(b1 ∗ b2)∗x = W (b1(b2x), b1(xb2), (b2x)b1, (xb2)b1,

b2(b1x), b2(xb1), (b1x)b2, (xb1)b2);

(8)
(b1 ∗ x)∗b2 = W (b1(xb2), b1(b2x), (xb2)b1, (b2x)b1,

x(b1b2), x(b2b1), (b1b2)x, (b2b1)x);

where W indicates the same word in Axiom 2 corresponding to the choice
of ∗ and ∗.
Observe that axioms 1–4 above come from Axiom 1, while axioms 5–8

come from Axiom 2 by replacing each operation with the corresponding ac-
tion (notice that the group action replaces the conjugation and not the group
operation). These axioms are nothing but the translation of the condition
that one obtains by considering the equivalence between actions and points
and expressing the action as the conjugation into the semidirect product.
More explicitly, given a split extension:

X
k // A

p
//
B

s
oo

the corresponding action is given by:

b · x = k−1(s(b) + k(x)− s(b));
b ∗ x = k−1(s(b) ∗ k(x)).

A wider class of semi-abelian varieties is given by groups with operations
introduced by Porter in [23]. In that class, the description of internal actions
is similar to the one given above; axioms 1–8 are replaced by suitable ones
coming from the identities of the corresponding algebraic theory.

4. Commutators

Another classical property of characteristic subgroups of a group is the
fact that the commutator of two characteristic subgroups is characteristic as
well. In order to study this property in a categorical setting, we will use an
intrinsic definition of the commutator of two subobjects. There are different
possible definitions. The first we consider is the so-called Huq commutator
[17]. It can be constructed in the following way (see [1] and [19]): given two
subobjects h : H  G and k : K  G of an object G, the Huq commutator
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[H,K]G of H and K is given by the following diagram:

H +K
ΣH,K

//

[h,k]
��

H ×K

��

[H,K]G
� ,2 // G π

// G
[H,K]G

,

where ΣH,K is the canonical map

ΣH,K = 〈[1, 0], [0, 1]〉 = [〈1, 0〉, 〈 0, 1〉] : H +K → H ×K

from the coproduct to the product and the commutative square is a pushout.
Then the Huq commutator appears as the kernel of the morphism π. Being
a kernel, the Huq commutator is always a normal subobject, even if H and
K are not.

Another possible way to define the commutator is via the so-called Higgins
commutator [19]. Given two subobjects h : H  G and k : K  G of an
object G, let us denote by σH,K : H ⋄K → H+K the kernel of the canonical
morphism ΣH,K : H + K → H × K. The Higgins commutator [H,K] of H
and K is the regular image of H ⋄ K under the morphism [h, k]σH,K, as in
the following diagram:

H ⋄K // //
_��

σH,K

��

[H,K]
��

��

H +K
[h,k]

// G.

The Higgins commutator of H and K is not necessarily a normal subobject
of G, even when H and K are. In fact, its normalisation in G is the Huq
commutator. A category C is said to satisfy the (NH) property when the
Higgins commutator of two normal subobjects is normal, or, in other words,
when Higgins and Huq commutators of normal subobjects coincide. The
(NH) property is satisfied both by (LACC) categories and by categories of
interest (see [13]).
Let us observe that in the special case where H = K = G and h =

k = 1G, [G,G] is always normal in G, since the map [1, 1] : G + G → G
is a regular epimorphism and in the semi-abelian context regular images of
normal subobjects along regular epimorphisms are normal.

Let us now start the study of the Huq commutator of two characteristic
subobjects.
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Proposition 4.1. Let C be a semi-abelian category satisfying the following
properties:

(1) the kernel functors Ker: PtB(C) → C preserve jointly strongly epimor-
phic pairs;

(2) the kernel functors Ker: PtB(C) → C preserve cokernels.

If H and K are characteristic subobjects of G, then the Huq commutator
[H,K]G is a characteristic subobject of G.

Proof : If H and K are characteristic subobjects of G, then, for every action
ξ : B♭G → G, there is a cospan in PtB(C):

H
� ,2

k1 //

��
h
��

Y
p1 //

��

��

B
s1

oo

G
� ,2
iG // G⋊ξ B

pB //
B

iB
oo

K
� ,2

k2 //

OOk

OO

Z
p2 //

OO

OO

B
s2

oo

The product (Y, p1, s1) × (Z, p2, s2) in PtB(C) has H × K as kernel. As al-
ready explained in the proof of the Lemma 3.1, the kernel N of the coproduct
(Y, p1, s1) + (Z, p2, s2) is different, in general, from H + K; however, under
the assumption 1, the canonical map u : H + K → N is a regular epimor-
phism. Now, consider the following commutative diagram, where α is the
arrow induced on kernels by the canonical morphism (Y, p1, s1)+(Z, p2, s2) →
(Y, p1, s1) × (Z, p2, s2) in PtB(C), β is induced by (Y, p1, s1) + (Z, p2, s2) →
(G⋊ B, pB, iB), and j = ker(α):

H ⋄K
� ,2
σH,K

//

v
_��

H +K
ΣH,K � ,2

p

u
_��

H ×K

M
� ,2

j
//

��

N
α � ,2

p

β
��

H ×K

��

[H,K]G
� ,2 // G

� ,2 G/[H,K]G

The arrow v : H ⋄ K → M is a regular epimorphism, thanks to the short
five lemma. The Huq commutator [H,K]G is defined as the kernel of the
pushout of ΣH,K along βu = [h, k]. Moreover, G/[H,K]G = Coker(βuσH,K)



14 A. S. CIGOLI AND A. MONTOLI

by composition of pushouts, and, as v is a regular epimorhism, we also have
G/[H,K]G = Coker(βj).
Remembering that kernel functors preserve kernels, M is the kernel of the

object in PtB(C) defined as the kernel of the arrow (Y, p1, s1) + (Z, p2, s2) →
(Y, p1, s1)× (Z, p2, s2), so βj is the arrow induced on kernels by an arrow in
PtB(C). Now, by hypothesis 2, the kernel functors preserve cokernels, so that
G/[H,K]G turns out to be the kernel of a cokernel in PtB(C). In particular,
this means that there is an action of B on G/[H,K]G induced by the one on
G. As a consequence, we also have an action of B on [H,K]G, again because
the kernel functors preserve kernels.

Corollary 4.2. Let C be a semi-abelian category satisfying the following prop-
erties:

(1) the kernel functors Ker: PtB(C) → C preserve jointly strongly epimor-
phic pairs;

(2) the kernel functors Ker: PtB(C) → C preserve cokernels.

The derived subobject [G,G] is characteristic in G.

Corollary 4.3. Let C be either a semi-abelian (LACC) category or a category
of interest. If H and K are characteristic subobjects of G, then the Huq
commutator [H,K]G is a characteristic subobject of G.

Proof : This depends on the fact that both classes of categories satisfy the
conditions of Proposition 4.1.
This is obvious in the case of (LACC) categories. For categories of interest,

it is proved in [12].

An analogous result can be stated for the Higgins commutator.

Proposition 4.4. Let C be a semi-abelian category where the kernel functors
Ker: PtB(C) → C preserve jointly strongly epimorphic pairs. If H and K
are characteristic subobjects of G, then the Higgins commutator [H,K] is a
characteristic subobject of G.

Proof : The result is a straightforward consequence of Proposition 6.2 in [13].

As a consequence, we have:

Corollary 4.5. Under the assumptions of the previous proposition, if H and
K are characteristic subobjects of an object X in C then the Huq commutator
and the Higgins commutator of H and K coincide.
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In the category of (not necessarily unitary) rings, given a ring X and two
subrings H and K, the commutator [H,K] is nothing but the subring HK
of X generated by H and K. Hence Proposition 4.4 says that, if H and
K are characteristic, HK also is. The same happens in the category of Lie
algebras (over a commutative ring R), where the commutator [H,K] of two
subalgebras is the Lie subalgebra generated by H and K.

Remark 4.6. When the category C satisfies (NH), Propositions 4.1 and 4.4
are both consequences of Proposition 3.3 in [13], where it is shown that, in
the semi-abelian context, the property

H,K characteristic in X ⇒ [H,K] characteristic in X

can be deduced directly from (NH).

The fact that the Huq (or the Higgins) commutator of two characteristic
subobjects is characteristic is not true in a general semi-abelian category. Not
even the derived subobject of an object (which is the same in the Higgins or
in the Huq sense) is characteristic in general, as the following example shows.

Example 4.7. Let us consider the category NARng of not necessarily asso-
ciative rings, i.e. abelian groups with a binary operation which is distributive
w.r.t. the group operation. Let G be the object in NARng given by the free
abelian group on two generators G = Zx + Zy, endowed with a distributive
binary operation, defined on generators as:

∗ x y
x x 0
y 0 0

Then the derived subobject [G,G] = Zx is an ideal (i.e. a normal subobject)
of G, but it is not characteristic in G. Indeed, if we consider the object given
by the abelian group Z with trivial multiplication, [G,G] is not stable under
the following action of Z over G:

Z×G → G , z ∗ (αx+ βy) = (zβ)x+ (zα)y ,
G× Z → G , (αx+ βy) ∗ z = (zβ)x+ (zα)y .

We emphasize that G is, in fact, an associative ring, but the present is not a
counterexample for the category Rng of rings, since the one described above
is an action in NARng but not in Rng. Indeed, according to the explicit
description of actions recalled at the end of Section 3, an action of Z over
G in NARng is just a pair of bilinear maps Z × G → G and G × Z → G,
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while an action in Rng must also satisfy some “associativity” axioms. In the
example above, the axiom

z ∗ (xx) = (z ∗ x)x

is not satisfied, indeed z ∗ (xx) = z ∗ x = zy, while (z ∗ x)x = (zy)x = 0.

5. Centres and centralisers

Given a characteristic subgroup H of a group G, its centraliser ZG(H) is
characteristic, too. In particular, the centre of a group is always a character-
istic subgroup. This is not true in any semi-abelian category, as we will show
later, so we need to consider further hypotheses on the category in order to
get this property. In a semi-abelian category C, given a subobject H of an
object G, the centraliser of H in G is the largest subobject ZG(H) of G such
that the Huq commutator [H,ZG(H)]G vanishes. The centre of an object G
is the largest subobject Z(G) of G such that [G,Z(G)] = 0.

The centres and centralisers do not always exist in a semi-abelian cate-
gory, and even when they exist, they can be difficult to handle. Bourn and
Janelidze introduced in [10] a categorical context, namely action accessible
categories, in which the centres and the centralisers have an easy description.
We recall now the definition of action accessible categories and their basic
properties.

Let C be a semi-abelian category. Fixed an object K ∈ C, a split extension
with kernel K is a diagram

K
k // A

p
// B

s
oo ,

such that ps = 1B and k = Ker(p). We denote such a split extension by
(B,A, p, s, k). Given another split extension (D,C, q, t, l) with the same ker-
nel K, a morphism of split extensions

(g, f) : (B,A, p, s, k) −→ (D,C, q, t, l) (2)

is a pair (g, f) of morphisms:

K
k // A

f

��

p
// B

g

��

s
oo

K
l // C

q
// D

t
oo

(3)



CHARACTERISTIC SUBOBJECTS IN SEMI-ABELIAN CATEGORIES 17

such that l = fk, qf = gp and fs = tg. Let us notice that, since the category
C is protomodular, the pair (k, s) is jointly (strongly) epimorphic, and then
the morphism f in (3) is uniquely determined by g.
The split extensions with fixed kernel K form a category, denoted by

SplExtC(K), or simply by SplExt(K).

Definition 5.1 ([10]).
• An object in SplExt(K) is said to be faithful if any object in SplExt(K)
admits at most one morphism into it.

• Split extensions with a morphism into a faithful one are called acces-
sible.

• If, for any K ∈ C, every object in SplExt(K) is accessible, we say that
the category C is action accessible.

In the case of groups, faithful extensions are those inducing a group action
of B on K (via conjugation in A) which is faithful. Every split extension
in Gp is accessible and a morphism into a faithful one can be performed by
taking the quotients of B and A over the centraliser ZB(K), i.e. the (normal)
subobject of A given by those elements of B that commute in A with every
element of K.

In [21] it is proved that any category of interest in the sense of [22] is action
accessible. Examples of action accessible categories are then groups, rings,
associative algebras, Lie algebras, Leibniz algebras and Poisson algebras, as
mentioned before.

In the context of action accessible categories it is easy to describe the
centraliser of a normal subobject. We give now a brief description of the
construction, without proof (that can be found, for example, in [14]). Let
x : X → A be a normal subobject of A, and let R[p] be the equivalence
relation onA induced byX (i.e. the kernel pair of the quotient p : A → A/X).
Consider the following morphism of split extensions, where the codomain is
a faithful one (it exists because the category is action accessible):

X
〈x,0〉

// R[p]
r0 //

f
��

A
s0

oo

g
��

X
k

// C
q

// D.
t

oo
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Then the kernel of g is the centraliser ZA(X) of X in A. This implies, in
particular, that in an action accessible category the centraliser of a normal
subobject is normal [14, Corollary 2.6], which is not always the case in general
semi-abelian categories, even when ZA(X) exists (see examples in [14]).

We are now ready to prove that, in the context of action accessible cate-
gories, the centraliser of a characteristic subobject is characteristic.

Lemma 5.2 ([13]). Consider a split extension as in the bottom row of the
diagram

K
_��

k
��

//___ K ′

���
�
�

//___
Z

�
�
�

�
�
�

oo_ _ _

X
� ,2
x

// Y
f

//
Z

s
oo

such that xk is normal. Then this split extension lifts along k : K → X to
yield a normal monomorphism of split extensions.

Proof : The needed lifting is obtained via the pullback of split extensions in
the diagram

K

rrrr

uuuuuuuuuuuu

uuuuuuuuuuuu _��

k

��

� ,2 //____________ K ′

pppp

zzuuuuuuuuuuuu

���
�
�
�
�
�
�
�
�
�
�
�
�

//____________
Z

tt
tt

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

s

zzuuuuuuuuuuuuu
oo_ _ _ _ _ _ _ _ _ _ _ _

K
� ,2 //

_��

xk

��

R
r1 //

〈r1,r2〉

��

Yoo

X
� ,2

x
//

5v�

x

zzuuu
uu

uuu
uu

uu
Y

f
//

〈sf,1Y 〉

zzuuuuuuuuuuuu
Z

s
oo

s

zzuuuuuuuuuuuuu

Y
� ,2

〈0,1Y 〉
// Y × Y

π1 //
Y

〈1Y ,1Y 〉
oo

where R is the denormalisation ([6, 1]) of xk.

Lemma 5.3. Let C be a semi-abelian category where, for every normal sub-
object H ⊳G, the centraliser ZG(H) of H in G is normal in G. Then if G is
a normal subobject of G′, ZG(H) is also normal in G′.
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Proof : By definition of centraliser, ZG(H) is the largest subobject of G such
that [H,ZG(H)]G′ = 0. Hence, it is contained in both G and ZG′(H), and it
is the largest with this property, so it is defined by the following pullback:

ZG(H) � ,2 //
_��

��

ZG′(H)
_��

��

G
� ,2 // G′

In other words, ZG(H) = ZG′(H) ∧ G and it is normal in G as intersection
of two normal subobjects.

Proposition 5.4. Let C be a semi-abelian category where, for every normal
subobject H ⊳ G, the centraliser ZG(H) of H in G is normal in G. Then if
H is a characteristic subobject of G, ZG(H) is also characteristic in G.

Proof : Consider an object B and an action ξ : B♭G → G. G is a normal
subobject of G ⋊ξ B; so, being characteristic in G, H is normal in G ⋊ξ B
by Proposition 2.4. Hence, by Lemma 5.3, ZG(H) is a normal subobject of
G⋊ξ B. Now, we can apply Lemma 5.2 to the following situation:

ZG(H)
_��

��

�  )

%%KKK
KKKK

KK

0 // G
� ,2

iG
// G⋊ξ B

pB //
B

iB
oo // 0

thus obtaining a morphism of split extensions:

0 // ZG(H)
_��

��

� ,2 // ZG⋊ξB(G)
_��

��

//
Boo // 0

0 // G
� ,2

iG
// G⋊ξ B

pB //
B

iB
oo // 0

which gives the desired action ξ′ : B♭ZG(H) → ZG(H) as a restriction of the
action ξ.

Corollary 5.5. Let C be a semi-abelian category where, for every normal
subobject H ⊳G, the centraliser ZG(H) of H in G is normal in G. Then the
centre Z(G) is a characteristic subobject of G.
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In the category of (not necessarily unitary) rings, given an ideal H of a
ring G, the centraliser ZG(H) is the annihilator of H in G, i.e.

ZG(H) = {g ∈ G | gh = hg = 0 for all h ∈ H}.

Hence, if H is characteristic in G, then the annihilator of H in G is char-
acteristic, as well. In particular, for any ring G, the annihilator of G is a
characteristic ideal of G. The same happens in the category of Lie algebras
over a commutative ring R.

Proposition 5.4 and Corollary 5.5 are true, in particular, in semi-abelian
action accessible categories. However, they do not hold in any semi-abelian
category. The following is a counterexample.

Example 5.6. Let us consider again the category NARng of not necessar-
ily associative rings and the object G in NARng described in Example 4.7.
The centre Z(G) = Zy is an ideal (i.e. a normal subobject) of G, but it is
not characteristic in G, since it is not stable under the action of Z over G
described in the same example.

6. Induced morphisms between actors

In the category Gp of groups, if H is a characteristic subgroup of G, then
there are induced morphisms Aut(G) → Aut(H) and Aut(G) → Aut(G/H).
This comes from the fact that actions on G (which are equivalent to split
extensions with kernel G, as already observed) are represented by the auto-
morphism group Aut(G), in the sense that an action of a group B on G can
be described simply as a group homomorphism B → Aut(G). We are going
to show that the same induced morphisms exist in a context in which internal
actions (which are equivalent to split extensions in a semi-abelian category)
are representable. Categories in which this happens are called action rep-
resentative [4, 2]. We now recall the definition of an action representative
category.

Definition 6.1 ([4]). A semi-abelian category C is action representative if,
for any object X ∈ C, there exists an object Act(X), called the actor of X,
and a split extension

X // X ⋊ Act(X) // Act(X)oo ,
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called the split extension classifier of X, such that, for any split extension
with kernel X:

X
k // A

p
// B

s
oo

there exists a unique morphism ϕ : B → Act(X) such that the following
diagram commutes:

X
k // A

ϕ1

��

p
// B

s
oo

ϕ
��

X // X ⋊ Act(X) // Act(X)oo

where the morphism ϕ1 is uniquely determined by ϕ and the identity on X
(since k and s are jointly strongly epimorphic).

Examples of action representative categories are the category Gp of groups,
where the actor is the group of automorphisms, and the category Lie of Lie
algebras over a commutative ring R, where the actor of a Lie algebra X is
the Lie algebra Der(X) of derivations of X.

It is well-known that the assignment G 7→ Act(G) is not functorial. Nev-
ertheless, it behaves well with respect to characteristic subobjects.

Proposition 6.2. Let C be a semi-abelian action representative category.
Every characteristic subobject h : H  G induces a morphism between split
extension classifiers:

G
� ,2 //

q
_��

G⋊ Act(G) //

��

Act(G)oo

��

G/H � ,2 // G/H ⋊ Act(G/H) // Act(G/H)oo

(4)

and a morphism between actors: Act(G) → Act(H).

Proof : As explained in Section 2, ifH is a characteristic subobject of G, then,
for every action ξ : B♭G → G, there exists an exact sequence in PtB(C):

H
� ,2 //

_��
h
��

Y
//

��
φ
��

Boo

G
� ,2 //

q
_��

X
//

γ
_��

Boo

G/H � ,2 // Z
//
Boo
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Since the category C is action representative, we can choose, in particular,
B = Act(G) and the middle row to be the split extension classifier of G.
Thus, thanks to Proposition 2.8, we have a morphism in PtAct(G)(C):

G
� ,2 //

_��

G⋊Act(G) //

��

Act(G)oo

G/H � ,2 // Z
// Act(G)oo

By composing with the arrow to the split extension classifier of G/H, we get
the desired morphism (4).
For the same reason, we also have a morphism:

H
� ,2 //

_��
h

��

Y
//

��

��

Act(G)oo

G
� ,2 // G⋊ Act(G) // Act(G)oo

The arrow from the upper split extension to the split extension classifier of
H produces the morphism Act(G) → Act(H).

It is worth translating the above proposition in terms of internal actions.
The first assertion says that there exists a morphism q̃ : Act(G) → Act(G/H)
making the following diagram commute:

Act(G)♭G
q̃♭q

//

ζG
��

Act(G/H)♭(G/H)

ζG/H
��

G q
� ,2 G/H

where ζG and ζG/H are the canonical actions of the actors. On the other hand,

the second statement says that there exists a morphism h : Act(G) → Act(H)
making this triangle commute:

Act(G)♭H
h♭1 //

ζG ((PPPPPPPPPPPPPP
Act(H)♭H

ζH
��

H

where ζG is the action on H induced by ζG and ζH is the canonical action of
the actor.
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Let us observe that any action representative category is action accessi-
ble: indeed, it is easy to see that the split extension classifier is a faithful
split extension. On the other hand, the category Rng of rings is action ac-
cessible [10] but not action representative. In the case of action accessible
categories, one cannot recover the same properties described above for action
representative categories, because there can be many faithful split extensions
associated with a given one. However, as observed in [14], there always exists
a canonical faithful split extension associated with a given one, and it has
properties analogous to the ones described above.

Given a split extension

X
k // A

p
// B

s
oo

in a regular action accessible category, and a morphism of split extensions
with faithful codomain:

X
k // A

f
��

p
// B

s
oo

g
��

X // C
q

// D
t

oo

the canonical (regular epi, mono) factorization gives rise to another faithful
split extension:

X
k // A

ef ����

p
// B

s
oo

eg����

X // T1
��

mf

��

// T0
��
mg

��

oo

X // C
q

// D.
t

oo

The important fact here is that the faithful split extension in the middle of
the previous diagram does not depend on the choice of the lower one, so it
is a canonical faithful split extension associated with (A,B, p, s). The object
T0 is actually the quotient B/ZB(X) of B over the centraliser of X in B (i.e.
the largest subobject of B commuting with X in A), while T1 is the quotient
A/ZB(X).

As above, let H be a characteristic subobject of G. Then, for every action
ξ : B♭G → G, there exists an exact sequence in PtB(C) as in diagram (1).
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Let

G
� ,2 // X

//

_��

Boo

_��

G
� ,2 // T1(B,G, ξ) // T0(B,G, ξ)oo

be the morphism onto the canonical faithful split extension (and similarly
for the induced split extensions of kernels H and G/H).

Proposition 6.3. Let C be a semi-abelian action accessible category. Every
characterstic subobject h : H  G induces a morphism between canonical
faithful split extensions:

G
� ,2 //

q

_��

T1(B,G, ξ) //

��

T0(B,G, ξ)oo

��

G/H � ,2 // T1(B,G/H, ξ̃)
//
T0(B,G/H, ξ̃)oo

(5)

and a morphism: T0(B,G, ξ) → T0(B,H, ξ).

Proof : As explained above, the object T0(B,G, ξ) is nothing but the quotient
B/ZG(B), and T1(B,G, ξ) ∼= X/ZG(B), and similarly for Ti(B,H, ξ) and

Ti(B,G/H, ξ̃). The desired morphism (5) will be the bottom rectangle in the
following commutative diagram:

G
q

6v� v
vvvvvvvvvv

� ,2 // X

γ
6v� v

vvv
vvv

vv
vvv

v

_��

//
B

_��

vv
vv

vv
vv

vv
vv

vv

vv
vv

vv
vv

vv
vv

vv
oo

G/H � ,2 // Z
//

_��

Boo

_��

G
� ,2 //

q
6v� v

vvvvvvvvvv
T1(B,G, ξ) //

q16v� v
v

v
v

v
T0(B,G, ξ)oo

q06v� v
v

v
v

v

G/H � ,2 // T1(B,G/H, ξ̃)
//
T0(B,G/H, ξ̃)oo
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It is constructed as follows. By definition, the centraliser ZG(B) is such
that [G,ZG(B)]X = 0. Composing with γ, we also have [G/H,ZG(B)]Z =
0, so that ZG(B) ≤ ZG/H(B), and this induces the arrow q0 between the
corresponding cokernels over B. On the other hand, q1 is the arrow which
completes the following morphism of short exact sequences:

ZG(B) � ,2 //

��

��

X
� ,2

γ

_��

T1(B,G, ξ)

q1

_��
�
�
�
�
�

ZG/H(B) � ,2 // Z
� ,2 T1(B,G/H, ξ̃)

To prove the second assertion, consider the morphism below in PtB(C):

H
� ,2 //

_��

h

��

Y
//

��

φ

��

Boo

G
� ,2 // X

//
Boo

By definition, [G,ZG(B)]X = 0 and, as a consequence, [H,ZG(B)]X = 0.
Since φ is monomorphic, this implies that [H,ZG(B)]Y = 0 too, hence
ZG(B) ≤ ZH(B). The morphism

T0(B,G, ξ) → T0(B,H, ξ)

is the one induced on the corresponding cokernels over B.

7. Summarising table

We conclude this paper by displaying, in the following table, a list of the
properties of characteristic subobjects we proved. In the second column, a
categorical context is indicated for each property to hold. In many cases, it is
not the most general one; possible extensions to wider contexts are suggested
by the proofs.
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Property True in Reference

H <
char

G ⇒ H ⊳ G C semi-abelian 2.5

H <
char

K ⊳ G ⇒ H ⊳ G C semi-abelian 2.4

H <
char

K <
char

G ⇒ H <
char

G C semi-abelian 2.3

Hi <
char

G (i ∈ I) ⇒
∧

i∈I
Hi <

char

G C semi-abelian 2.6

H <
char

G, B acts on G ⇒ B acts on G/H C semi-abelian 2.8

H ≤ K ≤ G, H <
char

G, K/H <
char

G/H

⇒ K <
char

G
C semi-abelian 2.9

H <
char

G, (R kernel pair of G → G/H)

⇒ R closed under actions on G
C semi-abelian 2.10

H,K <
char

G ⇒ H ∨K <
char

G
C (LACC)

C category of interest
3.2

[G,G] <
char

G
C (LACC)

C category of interest
4.2

H,K <
char

G ⇒ [H,K] <
char

G
C (LACC)

C category of interest
4.1

Z(G) <
char

G C action accessible 5.5

H <
char

G ⇒ ZG(H) <
char

G C action accessible 5.4

H <
char

G ⇒

{
Act(G) → Act(G/H)
Act(G) → Act(H)

C action representative 6.2
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