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OPTIMAL PAIR OF TWO LINEAR VARIETIES
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ABSTRACT: The optimal pair of two linear varieties is considered as a best approx-
imation problem, namely the distance between a point and the difference set of two
linear varieties. The Gram determinant allows to get the optimal pair in closed
form.
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1. Introduction

In this paper we deal with the problem of finding the the optimal points
of two linear varieties in a finite dimensional real linear space.

The distance between two linear varieties has been dealt with in several
papers: [2], [3] and [5]. In [5], only the distance is considered and the points
that realize the distance are not exhibited. In [2] the best approximation
points are found.

In [2] projecting equations were called into play; in [3] the difference set of
two closed convex sets in IR™ was considered.

In this paper, we formulate the problem as suggested by [3, page 196] and
we use Gram theory [9, page 74], [4, page 65] to solve it.

We use results on existence and uniqueness of optimal points by considering
a least norm problem of the difference set of two closed convex sets in IR™
[3]. For the concepts, results and motivation on the study of the distance
between convex sets see [3].

We endow the space IR™ with the usual inner product e:

?‘7 =p1q1 + p2q2 + - PiGm
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Where?:[pl Py - pm]Tandﬁz[ql qa - qm}TandWiththe

Euclidean norm
IZI=VPep.

2. The Result

We are looking for the optimal pair of two linear varieties V; and Vzin IR™
defined by

Vei={b+Bi: d€R"} and V;:= {¢— C7: 7€ R"},

with b and & given vectors in IR".

Following [3, page 196] the distance d(V}, Vz) between the two linear va-
rieties V3 and Vz is obtained through the minimization of || A% — d||, where
d=3c—b; A=[B Clis a real mx (l;+1) matrix; and 7 = [@7 #7]T € Rh .

So the distance d(V;, Vz) between the varieties Vi and Vz, may be studied
using the shortest distance between a point d and the subspace Range(A),
the column space of matrix A.

Besides getting the distance d(V}, Vz), we also find the points b* € Vi and
¢ € Vzsuch that d(V;, Vz) = |6 — |, that is to say b* and & are the best
approximation points.

In this new setting, and using the Euclidean norm, Gram theory [9] can
play an important role.

Some definitions are needed.

Definition 2.1. The optimal pair of two linear varieties A and B is the pair
(@, b*) € A x B satistying d(A, B) = ||a* — b*||, where d(A, B), the distance
between A and B, is defined as

d(A,B) = inf{||@a—b| : @€ A,b € B}.
Definition 2.2. Let yq, 9, ..., y, be elements of IR™. The n x n matrix
ey yi®y2 - Y19Yn
Gy1, s - - - Un) = ?J2T?J1 y2ty2 ?J2°:?Jn

Yn @Y1 Yn®Y2 - Yn®Yn
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is called the Gram matrix of y1,¥s, . .., y,. The determinant g(y1, yo, -

of the Gram matrix is known as the Gram determinant.
It is known, see for example [8], [9], that
9y Y2, syn) =20 and  g(y1,y2, ... yn) =0
if and only if y1, s, ..., y, are linearly dependent.
Proposition 2.3. Let be given the linear varieties

Vi:={b+Bi: @€ R"Y}, Vi:={¢—C7: 7 € R?},

<3 Yn)

where b and & are any vectors in R™ and B € R™" , C € R™" are fized

matrices.

Let consider d = —b and assume that A= [B C] = a1 d) ... d,] € R™",

n =1y + s, is a full column rank matriz. Then:

(A) The optimal pair (5*, c*) is obtained as
b* =b+ Bi*, & =c— O,

with
de a
[a’*] 1 G(a17a27---7an) :
>k - — — — — d.CL_) )
U g(ai,as, ..., dp) n
ai a3 ap | 0

(1)

where the (formal) determinant is to be expanded by the last row to
yield a linear combination of the columns ai,as, ..., a, of the matrix

A.
(B) The distance between V; and Vz is given by

d(Vi, Vo) = [|b° = &

and also

d,a,,d, ... d,
d2(‘/;‘)’ ‘/5’) _ g( 7?17 29 ,CL).




Proof: From [3, page 196] we must minimize HA? -d
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,Wher67= [Z_L,*]
U

and this is equivalent to find the distance from the point j to the column-
space Range(A) of A.
By hypothesis, the columns of the matrix A are linearly independent. Then

from [9, page 74] we obtain (1) and from [4, page 65] we obtain (2). |
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