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Abstract: In this paper we propose a new multiple test procedure for assess-
ing multivariate normality which combines BHEP (Baringhaus-Henze-Epps-Pulley)
tests by considering extreme and non-extreme choices of the tuning parameter in
the definition of the BHEP test statistic. Monte Carlo power comparisons indicate
that the new test presents a reasonable power against a wide range of alternative
distributions, showing it to be competitive against the most recommended proce-
dures for testing a multivariate hypothesis of normality. We further illustrate the
use of the new test for the Fisher Iris data set.
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1. Introduction

If X1, . . . , Xn, . . . is a sequence of independent copies of a d-dimensional
absolutely continuous random vector X with unknown probability density
function f , also denoted by fX , the problem of assessing multivariate nor-
mality (MVN) is to test, on the basis of X1, . . . , Xn, the hypothesis

H0 : f ∈ Nd,

against a general alternative, where Nd is the family of normal probability
density functions on R

d. The multivariate normal distribution is widely used
in many applications and several test procedures for this classical problem
have been proposed in the literature showing a continued interest in this
subject. Some of the work published in the last ten years include the papers of
Liang et al. (2005), Mecklin and Mundfrom (2005), Székely and Rizzo (2005),
Sürücü (2006), Arcones (2007), Farrel et al. (2007), Chiu and Liu (2009),
Liang et al. (2009), Tenreiro (2009, 2011), Oliveira and Ferreira (2010), Ebner
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(2012) and Wang (2013). For some additional bibliography on this topic see
Csörgő (1986), Rayner and Best (1989, p. 98–109), Thode (2002, p. 181–224)
and the review articles of Henze (2002) e Mecklin and Mundfrom (2004).
An important class of test procedures for assessing MVN is the BHEP

(Baringhaus-Henze-Epps-Pulley) family introduced by Baringhaus and
Henze (1988) and Henze and Zirkler (1990), which extends the Epps and
Pulley (1983) procedure to the multivariate context. In order to define this
family of test statistics, let us denote by

Yj = S−1/2
n (Xj − X̄n), j = 1, . . . , n

the scaled residuals associated to the observations X1, . . . , Xn, where

X̄n = n−1
n

∑

j=1

Xj and Sn = n−1
n

∑

j=1

(Xj − X̄n)(Xj − X̄n)
′,

are the sample mean vector and the sample covariance matrix, respectively,

and S
−1/2
n is the symmetric positive definite square root of S−1

n . We always
assume that Sn is nonsingular almost surely which, in accordance with Dyk-
stra (1970), holds whenever n ≥ d + 1. The BHEP test statistic associated
to the strictly positive real number h, is a weighted L2-distance between the
empirical characteristic function of the scaled residuals,

Ψn(t) =
1

n

n
∑

j=1

exp
(

i t′Yj

)

, t ∈ R
d,

and the characteristic function Φ of the d-dimensional standard Gaussian
density φ(x) = (2π)−d/2 exp(−x′x

/

2), x ∈ R
d, with weight function t →

|Φh(t)|2 = exp(−h2t′t), where Φh is the characteristic function of φh(·) =
φ(·/h)/hd. The BHEP test statistic is then defined as

B(h) = n

∫

|Ψn(t)− Φ(t)|2|Φh(t)|2dt, h > 0, (1)

where the unspecified integral denotes integration over the whole space. The
considered weight function is particularly useful because in such a case B(h)
does not require any integration. In fact we can rewrite the BHEP test
statistic as

B(h) = (2π)d
1

n

n
∑

i,j=1

Q(Yi, Yj; h),
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with

Q(u, v; h) = φ(2h2)1/2(u− v)− φ(1+2h2)1/2(u)− φ(1+2h2)1/2(v) + φ(2+2h2)1/2(0),

for u, v ∈ R
d and h > 0.

The asymptotic behaviour of B(h) under the null hypothesis, a fixed alter-
native distribution and a sequence of local alternatives, can be obtained from
the work of several authors such as Baringhaus and Henze (1988), Csörgő
(1989), Henze and Zirkler (1990), Henze (1997), and Henze and Wagner
(1997). In particular, for each 0 < h < ∞, B(h) has as limiting null distri-
bution a weighted sum of χ2 independent random variables and, contrary to
almost all MVN tests considered in the literature, the associated test proce-
dure is consistent against each fixed alternative distribution.
It is worth mentioning that statistic (1) can be interpreted as the L2-

distance between the Parzen-Rosenblatt kernel estimator based on the scaled
residuals with kernel K = φ and smoothing parameter (bandwidth) h, and
the convolution Kh ∗ φ, which can be seen as an approximation of the stan-
dardised null density when h is close to zero (see Henze and Zirkler, 1990, Fan,
1998). In this form the statistic B(h) was firstly considered by Bowman and
Foster (1993) and its asymptotic behaviour under the null hypothesis, a fixed
alternative distribution and a sequence of local alternatives was establish in
Tenreiro (2007), who also gives an unifying treatment of the asymptotic be-
haviour of B(h) for the non-fixed (h = hn → 0) and fixed (0 < h < ∞)
bandwidth cases.
From a practical point of view, it is well known that the finite sample power

performance of the BHEP test is very sensitive to the choice of h which acts
as a tuning parameter (see Henze and Zirkler, 1990, Henze and Wagner,
1997, Tenreiro, 2009). In Tenreiro (2009) the choice of h has been exam-
ined through a large-scale simulation study based on a set of meta-Gaussian
distributions whose marginal distributions are members of the generalised
lambda family discussed in Ramberg and Schmeiser (1974). Two distinct
behaviour patterns for the BHEP empirical power as a function of h were
identified which has led the author to propose two distinct choices of the
bandwidth, depending on the data dimension (2 ≤ d ≤ 15):

h = hS := 0.448 + 0.026 d and (2)

and

h = hL := 0.928 + 0.049 d. (3)
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The bandwidth hS has revealed to be suitable for short tailed or high moment
alternatives while the bandwidth hL has shown to be appropriate for long
tailed or moderately skewed alternative distributions.
If there is no relevant information about the alternative distribution, which

is the most common case in a real situation, the proposal of Tenreiro (2009)
is to use

h = h̄ = (hS + hL)/2, (4)

because this value produces an omnibus test for normality. Despite this good
property, for several alternative distributions the MVN test based on B(h̄) is
outperformed by one of the classical Mardia (1970) tests, which are among
the most recommended procedures for testing MVN. The Mardia tests are
based on the test statistics MS (multivariate skewness) and MK (multivariate
kurtosis) given by

MS = nb1,d (5)

and

MK =
√
n | b2,d − d(d+ 2)|, (6)

where

b1,d =
1

n2

n
∑

j,k=1

(Y ′
jYk)

3 and b2,d =
1

n

n
∑

j=1

(Y ′
jYj)

2, (7)

are the Mardia empirical measures of multivariate skewness and kurtosis,
respectively. The Mardia skewness test performs well for skewed or long
tailed alternatives and the Mardia kurtosis test is especially good for short
tailed alternatives (cf. Henze and Zirkler, 1990, Baringhaus and Henze, 1992,
Romeu and Ozturk, 1993).
Intending to propose a MVN test that could reveal a good empirical power

for a wider range of alternative distributions than the BHEP test based on
B(h̄), an improved Bonferroni method considered by Fromont and Laurent
(2006) is used in Tenreiro (2011) in order to combine the previous BHEP
tests based on B(hS) and B(hL), and the Mardia tests based on MS and
MK. A simulation study carried out in Tenreiro (2011) for a wide range
of alternative distributions, indicated that the resulting multiple test proce-
dure, named MB, presents a reasonable performance against a large set of
alternative distributions and a good overall performance against other highly
recommended MVN tests.
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However, other combinations of affine invariant MVN tests are naturally
possible. In this paper we consider one of such combinations which is ex-
clusively based on the BHEP test statistic this being an interesting feature
of the proposed multiple test procedure. Similarly to the MB test, the new
multiple test combines four affine invariant MVN tests. Two of them are
the BHEP tests based on B(hS) and B(hL), that were also included in the
MB multiple test. The other two tests for MVN are based on the statistics
derived in Henze (1997) by letting the bandwidth h tend to zero and to in-
finity in B(h). Therefore the resulting multiple test procedure is based on
the BHEP test statistic by combining extreme and non-extreme choices of
the tuning parameter h.
The paper is planned as follows. In Section 2 we identify the two test

statistics obtained in Henze (1997) by letting the parameter h in the definition
of the BHEP statistic tend to zero and to infinity. Two of the goodness-of-fit
tests for MVN that can be associated to these statistics are combined with
the tests based on B(hS) and B(hL) in order to propose a new multiple test
for MVN. In Section 3 we define such a multiple test procedure and, as a
consequence of the results in Tenreiro (2011), we describe its main properties.
In Section 4 we report the results of a simulation study carried out to analyse
the finite sample power performance of the new multiple test compared with
the MB multiple test, that we take here as a benchmark MVN test. For the
generality of the alternative distributions included in our Monte Carlo study,
the two tests reveal quite similar results showing a good performance for a
wide range of alternative distributions. Finally, in Section 5 the proposed test
is illustrated using the Fisher Iris data set and in Section 6 we provide some
overall conclusions. All the proofs are deferred to Section 7. The simulations
and plots in this paper were carried out using the R software (R Development
Core Team, 2011).

2. The extreme BHEP test statistics

In Henze (1997) are proposed and studied tests for multivariate normality
whose test statistics are obtained by letting the bandwidth h in the definition
of the BHEP statistic tend to zero or to infinity. In this section we identify
such test statistics and we describe the main properties of the associated
MVN tests. Here, and throughout this article || · || denotes the Euclidean

norm in R
d and

d−→ denotes the convergence in distribution.
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Lemma 1 (Henze, 1997, Theorems 2.1 and 3.1). We have:
i) Limit of B(h) as h → ∞:

lim
h→∞

(2π)−d/2(h
√
2 )d+6B(h) = n

(

b1,d/6 + b̃1,d/4
)

,

where b1,d is the Mardia skewness measure given in (7) and

b̃1,d =
1

n2

n
∑

j,k=1

Y ′
jYk||Yj||2||Yk||2.

ii) Limit of B(h) as h → 0:

lim
h→ 0

2−1n−1/2
(

(2π)−d/2B(h)− 2−d/2(h−d − n)
)

= −√
n
(

b̃2,d − 2−d/2
)

,

where

b̃2,d =
1

n

n
∑

j=1

exp
(

− ||Yj||2
/

2
)

.

Under the null hypothesis of MVN, Henze (1997) established that

n (b1,d/6 + b̃1,d/4)
d−→ 1

2(d + 4)χ2
d + χ2

d(d−1)(d+4)/6 and
√
n
(

b̃2,d − 2−d/2
) d−→

N
(

0, 3−d/2 − 2−d − d 2−(d+3)
)

, which led him to propose two new MVN tests
based on the affine invariant statistics defined as

B(∞) := n (b1,d/6 + b̃1,d/4) (8)

and
B(0) :=

√
n | b̃2,d − 2−d/2|. (9)

In both cases these tests reject H0 for large values of the corresponding test
statistics. As noticed by Henze (1997), B(∞) is based on a weighted sum
of the empirical skewness measures b1,d and b̃1,d, the latter being a sample
version of a measure of multivariate skewness introduced and studied by
Móri et al. (1993) (see also Henze, 2002). In relation to the statistic b̃2,d
involved in B(0), Henze (1997) pointed out that it is similar to the Mardia
kurtosis measure b2,d in the sense that it only uses information contained in
the Mahalanobis distances ||Y1||2, . . . , ||Yn||2.
Taking into account these similarities, it will be not surprising if the tests

based on the statistics (8) and (9) share some of the properties of the classical
Mardia’s tests based on the statistics MS and MK, respectively. As for
these tests, the tests based on B(∞) and B(0) are not consistent against
each alternative distribution. Therefore, the universal consistency of the
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BHEP test for each fixed 0 < h < ∞ (Csörgő, 1989) is lost in the limit
cases h → ∞ and h → 0. Denoting by β̃1,d = ||E

(

||W ||2W
)

||2 and β̃2,d =

E
(

exp(−||W ||2/2)
)

the population counterparts to b̃1,d and b̃2,d, respectively,

where W = Σ−1/2(X − µ), µ and Σ are the mean vector and the covariance
matrix of X, and Σ−1/2 is the symmetric positive definite square root of Σ−1,
Henze (1997) showed that if E||X||6 < ∞ and the alternative distribution
is supported by a set of positive d-dimensional Legesgue measure, then the
MVN test based on b̃1,d is consistent if β̃1,d > 0. Additionally, he established

that if E||X||2 < ∞, the MVN test based on b̃2,d is consistent if and only if

β̃2,d differs from 2−d/2.

3. A new multiple test for assessing MVN

The new test for testing MVN proposed in this paper, labelled BB hence-
forth, is based on the combination of the extreme BHEP statistics given by
(8) and (9), and the non-extreme BHEP statistics B(h) with h = hS and
h = hL given by (2) and (3), respectively.

3.1. Definition and finite sample behaviour under H0. For u ∈ ]0, 1[
and

Tn,1 = B(0), Tn,2 = B(hS), Tn,3 = B(hL) and Tn,4 = B(∞), (10)

consider the corrected statistic

Tn(u) = max
h∈H

(

Tn,h − cn,h(u)
)

, (11)

where H = {1, 2, 3, 4} and cn,h(u) is the quantile of order 1 − u of the test
statistic Tn,h under the null hypothesis of MVN. As the test statistics Tn,h, h ∈
H, are affine invariant, that is, Tn,h(AX1+b, . . . , AXn+b) = Tn,h(X1, . . . , Xn),
for all b ∈ R

d and nonsingular matrix A, and fX ∈ Nd if and only if fAX+b ∈
Nd, the quantile cn,h(u) does not depend on the distribution considered under
the null hypothesis, and thereforeTn(u) is affine invariant for every u ∈ ]0, 1[.
For a preassigned level of significance α ∈ ]0, 1[, the BB multiple test is de-

fined as the test procedure that rejects the null hypothesis of MVN whenever

Tn(un,α) > 0

where

un,α = sup In,α (12)
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with
In,α =

{

u ∈ ]0, 1[ : Pφ(Tn(u) > 0) ≤ α
}

,

and φ the d-dimensional standard Gaussian density.
Taking into account that α/4 ≤ un,α, we conclude that the BB multiple

test is at least as powerful as the Bonferroni procedure that leads to the
rejection of H0 if at least one of the test statistics Tn,h, for h ∈ H, is larger
than its quantile of order 1− α/4.
Similarly to the Bonferroni test procedure based on Tn,h, for h ∈ H, the

next non-asymptotic result, which is a consequence of Theorem 1 of Tenreiro
(2011), states that the BB multiple test has a level of significance that is at
most equal to α.

Theorem 1. For n > d and 0 < α < 1 we have Pf(Tn(un,α) > 0) ≤ α, for
all f ∈ Nd.

In practice, the value un,α, the level at which each one of the tests Tn,h,
h ∈ H, is performed, is estimated by Monte Carlo experiments under the null
hypothesis as described in Fromont and Laurent (2006). We have used 50,000
simulations under the null hypothesis of the involved test statistics and the
R function quantile(·,type=7) for estimating the 1 − u quantiles cn,h(u) for
u varying on a regular grid, ui+1 = ui + p with u1 = p and p = 0.0001, on
the interval ]0, 1[, and further 50,000 simulations were used for estimating
the probabilities Pφ(Tn(u) > 0 ). Finally, we have taken the largest value of
u that satisfies Pφ(Tn(u) > 0) ≤ α as an approximation for un,α defined by
(12).
For α = 0.01 and α = 0.05, and several sample sizes n and data dimensions

d, we present in Table 1 the estimated levels un,α based on a regular grid of
size p = 0.0001. For the large majority of the considered combinations, the
estimated level un,α is clearly larger than α/4, the level at which each one
of the tests Tn,h, h ∈ H, is performed whenever a Bonferroni multiple test
based on these statistics is used. However, for α = 0.01 and for some of the
considered sample size and data dimension combinations, the estimated level
un,α is close to α/4, which means that the considered multiple test BB is, in
those cases, close to the Bonferroni test procedure.
For the previously considered values of α, n and d, Table 2 shows estimates

for the nominal levels of significance of the BB test based on 100,000 simula-
tions under the null hypothesis. These estimates were evaluated by using an
approximation of the p-value of the BB test that can be obtained along the
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Sample size Data dimension

2 3 4 5 7 10

α = 0.01

20 3.7e-03 3.2e-03 3.3e-03 3.1e-03 2.9e-03 3.2e-03
40 3.2e-03 3.2e-03 3.0e-03 2.9e-03 2.8e-03 2.6e-03
60 3.2e-03 3.2e-03 3.1e-03 2.7e-03 3.0e-03 2.5e-03
80 3.2e-03 2.9e-03 2.9e-03 2.9e-03 2.8e-03 2.8e-03
100 3.6e-03 3.0e-03 3.0e-03 2.5e-03 3.0e-03 2.7e-03
200 3.0e-03 3.0e-03 3.3e-03 2.9e-03 3.0e-03 2.9e-03
400 3.3e-03 2.6e-03 3.1e-03 2.9e-03 3.2e-03 3.0e-03

α = 0.05

20 1.87e-02 1.69e-02 1.67e-02 1.67e-02 1.59e-02 1.59e-02
40 1.73e-02 1.76e-02 1.67e-02 1.61e-02 1.62e-02 1.45e-02
60 1.82e-02 1.63e-02 1.66e-02 1.62e-02 1.60e-02 1.52e-02
80 1.86e-02 1.70e-02 1.68e-02 1.58e-02 1.52e-02 1.49e-02
100 1.73e-02 1.63e-02 1.59e-02 1.52e-02 1.52e-02 1.50e-02
200 1.71e-02 1.65e-02 1.71e-02 1.59e-02 1.57e-02 1.54e-02
400 1.79e-02 1.61e-02 1.70e-02 1.64e-02 1.63e-02 1.58e-02

Table 1. Estimates of un,α for α = 0.01, 0.05 based on a regular
grid of size 0.0001 on the interval ]0, 1[. The number of replica-
tions for each stage of the estimation process is 50,000.

lines described in Tenreiro (2011, p. 1991). The R program for computing
the p-value may be obtained from the author. Although we were not able
to prove that the BB test has an exact α-level of significance, a sufficient
condition for which being the continuity of the distribution function of the
statistics Tn,h, for all h ∈ H (see Theorem 1 of Tenreiro, 2011), we conclude
from Table 2 that the previous implementation enables us to obtain a mul-
tiple test procedure with an attained level of significance very close to α.
With some few exceptions the estimated levels are inside the approximate
95% confidence interval for the preassigned level α.

3.2. Consistency against fixed and local alternatives. The next result,
which is a consequence of Theorem 1 of Tenreiro (2011), states that the BB
multiple test is consistent against each fixed alternative.

Theorem 2. For 0 < α < 1 we have Pf(Tn(un,α) > 0) → 1, as n → +∞,
for all f /∈ Nd.
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Sample size Data dimension

2 3 4 5 7 10

α = 0.01

20 9.81e-03 9.89e-03 9.52e-03 8.65e-03 9.89e-03 9.48e-03
40 9.18e-03 9.46e-03 9.60e-03 9.43e-03 9.32e-03 8.86e-03
60 9.27e-03 9.55e-03 9.18e-03 8.29e-03 9.71e-03 8.24e-03
80 9.67e-03 1.04e-02 8.71e-03 9.10e-03 8.80e-03 9.77e-03
100 1.05e-02 9.75e-03 8.90e-03 8.18e-03 9.77e-03 9.22e-03
200 8.70e-03 9.58e-03 9.51e-03 9.08e-03 9.92e-03 8.69e-03
400 9.78e-03 8.71e-03 9.10e-03 9.21e-03 9.33e-03 9.38e-03

α = 0.05

20 5.04e-02 4.71e-02 4.99e-02 4.82e-02 4.98e-02 4.96e-02
40 4.99e-02 5.12e-02 5.08e-02 5.09e-02 5.15e-02 4.85e-02
60 5.12e-02 4.66e-02 4.73e-02 4.62e-02 4.97e-02 4.79e-02
80 5.33e-02 4.96e-02 4.94e-02 4.90e-02 4.79e-02 4.81e-02
100 5.02e-02 4.90e-02 4.77e-02 4.77e-02 4.81e-02 4.82e-02
200 4.88e-02 4.81e-02 4.96e-02 4.87e-02 4.94e-02 4.77e-02
400 4.94e-02 4.87e-02 4.92e-02 4.96e-02 5.06e-02 4.91e-02

Table 2. Estimates of the nominal level of significance of the
multiple test BB for a preassigned level α. The number of repli-
cations for each case is 100,000.

A similar result is valid for a sequence of local alternatives converging to
the null density function at a rate slower than n−1/2. To define local alterna-
tives we consider Xn1, . . . , Xnn, . . . a sequence of independent and identically
distributed d-dimensional absolutely continuous random vectors with mean
µn and nonsingular covariance matrix Σn, whose probability density function
fn satisfies

f ∗
n(x) = φ(x)

(

1 + γnη(x) + o(γn)ηn(x)
)

,

for x ∈ R
d, with f ∗

n(x) = |Σ1/2
n |fn

(

µn +Σ
1/2
n x

)

, η an a.e. non-identically null
function, (γn) a sequence of positive real numbers tending to zero as n tends
to infinity, and the functions η and ηn satisfy

sup
x∈Rd

|η(x)| < ∞, sup
n∈N

sup
x∈Rd

|ηn(x)| < ∞.

Theorem 3. For 0 < α < 1 we have Pfn(Tn(un,α) > 0) → 1, as n → +∞,
for a sequence of local alternatives with n−1/2 = o(γn).



A NEW TEST FOR MULTIVARIATE NORMALITY 11

4. Finite sample power analysis

In this section we present the results of a simulation study that was con-
ducted to compare the empirical power performance of the new BB multiple
test against the MB multiple test proposed by Tenreiro (2011). We recall that
the latter test is defined similarly to the BB multiple test with Tn1 = MK,
Tn2 = B(hS), Tn,3 = B(hL) and Tn,4 = MS. Based on the Monte Carlo results
presented in Tenreiro (2011), we know that the MB test procedure reveals a
good empirical power for a wide range of alternative distributions, and shows
an overall good performance against the most recommended procedures for
testing MVN such as the Henze and Zirkler (1990) test which is based on
B(hHZ) with hHZ = 1.41, the BHEP test based on B(h̄) with h̄ given by (4),
and the test proposed by Székely and Rizzo (2005), among others (see Ten-
reiro, 2011, p. 1986). For this very reason the MB test is considered here as
a benchmark test for testing MVN against which we will compare the new
multiple test proposed in this paper.

4.1. The alternative distributions. A wide set of alternative distribu-
tions, including all the distributions considered in Tenreiro (2009, 2011),
was selected to our study. This set includes distributions previously consid-
ered in other simulations studies such as those of Henze and Zirkler (1990),
Romeu and Ozturk (1993), Mecklin and Mundfrom (2005) and Székely and
Rizzo (2005). We investigate: i) some symmetric distributions from Pear-
son’s Types II and VII families (see Johnson, 1987, p. 110–121); ii) some
heavily skewed distributions such as the multivariate χ2

1 and the multi-
variate lognormal with independent marginals, and some members of the
multivariate asymmetric Laplace family (see Kotz et al., 2001, chapter 6);
iii) some distributions with some characteristics identical to MVN such as
(meta-)Burr-Pareto-Logistic distributions with normal marginals (see John-
son, 1987, chapter 9) and Khintchine distributions with generalised expo-
nential power marginal distributions (see Johnson, 1987, chapter 8 and para-
graph 2.4); iv) some mixtures of two multivariate normals (location and scale
mixtures) in order to assess the effect of data contamination; and finally v)
a set of meta-Gaussian distributions whose marginal distributions, given in
Table 2 of Tenreiro (2009, p. 1043), are members of the generalised lambda
family discussed in Ramberg and Schmeiser (1974). For a detailed description
of all these alternatives see Tenreiro (2009, p. 1045; 2011, p. 1986).
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4.2. Empirical power comparisons. The Monte Carlo results presented in
this section are based on 10,000 samples of different sizes (n = 20, 40, 60, 80,
100, 200, 400) and data dimensions (d = 2, 3, 4, 5, 7, 10) from the considered
set of alternative distributions. With this number of repetitions the margin
of error for approximate 95% confidence intervals for the true power does not
exceed 0.01. The standard level of significance α = 0.05 was used.
The observed numerical results indicate that the tests MB and BB exhibit

similar behaviours for the large majority of the considered alternative distri-
butions. This is particularly clear when one of the considered non-extreme
BHEP tests, B(hS) or B(hL), is, by a wide margin, the best of the tests in-
volved in both multiple test procedures for a given alternative distribution.
As these tests are included in both multiple tests, the power performances
of MB and BB are quite similar for such alternatives. This is illustrated in
Figures 1 and 2, for two normal location mixture distributions of the form
pNd(0, I)+(1−p)Nd(µ, I) with p = 0.5 (centrally symmetric with tails lighter
than MVN) and p = 0.9 (asymmetric with tails heavier than MVN), where
I is the d-dimensional identity matrix and µ = (3, . . . , 3). Besides the em-
pirical power of the two multiple tests we want to compare, we also present
the empirical power of each one of the tests involved in both multiple test
procedures. The same situation is reported in Figure 3 where we consider a
Khintchine alternative whose values of the Mardia skewness and kurtosis are
equal to the MVN ones (high moment alternative), which explains the poor
performance of the tests MK, MS, B(0) and B(∞) for this alternative.
Next we report three other situations where the empirical powers of the

two multiple tests are not as close as before, which can be mainly explained
by the distinct power performances of the tests B(0) and MK, or B(∞) and
MS, for the considered alternatives. This is illustrated in Figures 4 and 5
for a Pearson Type II distribution (elliptically symmetric with tails lighter
than MVN) and for a centrally symmetric meta-Gaussian distribution with
generalised lambda marginals (tails lighter than MVN), and in Figure 6 for
a Burr-Pareto-Logistic distribution with normal marginals (asymmetric with
kurtosis close to the MVN one). For this latter alternative we observed the
greatest difference between the power of the tests MB and BB among the
considered set of alternative distributions. Due to the exceptional good per-
formance of the Mardia MS test in relation to B(∞), the MB test outperforms
the BB test by a wide margin, and this occurs uniformly in relation to the
considered sample sizes and data dimensions.
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Figure 1. Normal location mixture distribution with p = 0.5.
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Figure 2. Normal location mixture distribution with p = 0.9.
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Figure 3. High moment Khintchine distribution with GEP marginals.
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Figure 4. Pearson Type II distribution with m = 0.5.
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Figure 5. Meta-Gaussian distribution with marginals S.2d(0.7).
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Figure 6. Burr-Pareto-Logistic distribution with normal
marginals and α = 1.
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Taking into account the power performance of the BB test for all the con-
sidered alternative distributions, sample sizes and data dimensions (not pre-
sented here for brevity’s sake), we conclude that the new test reveals a rea-
sonable performance for a wide range of alternative distributions, showing
to be competitive against the multiple MB which has shown an overall good
performance against the most recommended procedures for testing MVN
(Tenreiro, 2011, p. 1986).

5. An example: the Fisher Iris data

We consider in this section the well-known iris data of Fisher (1936). This
data comprises flower measurements from three iris species of fifty plants
each: iris setosa, iris versicolor and iris virginica. For each plant four mea-
surements in centimeters were taken: sepal length, sepal width, petal length
and petal width. We consider testing for multivariate normality of the four
measurements for each of the considered species.

Approximations of the p-values of the multiple tests BB and MB are re-
ported in Table 3. At level α = 0.05, multivariate normality is not rejected
for iris versicolor and iris virginica data which is compatible with the re-
sults obtained by Beirlant et al. (1999, p. 124). In relation to the iris setosa
data set, the normality assumption was rejected by Small (1980) through
a test statistic that combines marginal skewness and kurtosis, and by two
of the three test statistics considered by Beirlant et al. (1999, p. 124–125).
Although smaller p-values were observed for this data set when compared
with the p-values observed for the other two iris species, the MVN hypoth-
esis was not rejected by any of the multiple tests BB or MB, which agrees
with the result obtained by the third MVN test considered by Beirlant et al.
(1999, p. 125). Of the six tests involved in the two multiple test procedures,

Data set Multiple tests

BB MB

Iris setosa 0.1385 < p-value < 0.139 0.1405 < p-value < 0.141

Iris versicolor 0.3 < p-value < 0.35 0.3 < p-value < 0.35

Iris virginica 0.3 < p-value < 0.35 0.3 < p-value < 0.35

Table 3. Approximations of the p-values of the multiple tests
BB and MB for the three iris species measurements of fifty ob-
servations each of the Fisher Iris data set.
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only the BHEP tests B(hS) and B(hL) reject, and by a small margin, the
MVN hypothesis for the iris setosa data. In fact, we obtain for both tests
approximate p-values between 0.049 and 0.0495.

6. Conclusions

In this paper we propose a new multiple test procedure for assessing MVN
which combines tests from the BHEP family by considering extreme and
non-extreme choices of the tuning parameter figuring in the definition of the
BHEP test statistic. Contrary to the multiple test MB previously proposed
by the author, which combines the Mardia and non-extreme BHEP tests
(Tenreiro, 2011), the new test exclusively combines test statistics based on the
BHEP family, this being an interesting feature of the proposed test procedure.
The Monte Carlo study indicates that the new test presents a reasonable
performance for a wide range of alternative distributions, which is a desirable
feature particularly when no information about the alternative hypothesis is
available.

7. Proofs

Proof of Theorem 1: Following closely the proof of Theorem 3 in Tenreiro
(2011, p. 1992) we conclude that the null distribution function FTn,h

of each
one of the statistics (10) is strictly increasing. Thus, from Theorem 1 of
Tenreiro (2011) we conclude that the BB multiple test I(Tn(un,α) > 0) has
a level of significance less than or equal to α. �

Proof of Theorem 2: Given f a non-normal density, we have

Tn,2 = B(hS)
p−→ +∞ under f, (13)

(see Csörgő, 1989), where
p−→ denotes the convergence in probability, and

Pf

(

Tn(un,α

)

> 0) ≥ Pf

(

Tn,2 > cn,2(un,α)
)

≥ Pf

(

Tn,2 > cn,2(α/4)
)

(14)

(the same reasoning could be based on Tn,3 = B(hL)).
Moreover, Tn,2 has a weighted sum of χ2 independent random variables

as limiting null distribution (see Baringhaus and Henze, 1988). Denoting
this limiting random variable by T∞,2, from the continuity of F−1

T∞,2
and the

convergence F−1
Tn,2

(t) −→ F−1
T∞,2

(t), for all 0 < t < 1 (see Shorack and Wellner,

1986, p. 10), we get

cn,2(α/4) = F−1
Tn,2

(1− α/4) −→ F−1
T∞,2

(1− α/4). (15)
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Finally, from (13), (14) and (15) we deduce that

Pf

(

Tn(un,α

)

> 0) ≥ Pf

(

Tn,2 > sup
n∈N

cn,2(α/4)
)

−→ 1. �

Proof of Theorem 3: Following the proof of Theorem 2, for a sequence fn of
local alternatives we have

Pfn

(

Tn(un,α

)

> 0) ≥ Pfn

(

Tn,2 > sup
n∈N

cn,2(α/4)
)

.

The stated result follows now from the fact that Tn,2 = B(hS)
p−→ +∞

under fn whenever n−1/2 = o(γn) (see Tenreiro, 2007, p. 115). �
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