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1. Introduction
The notion of semi-abelian category [10] allowed to describe intrinsically

many classical properties and results in group theory (see, for example, [1]),
and to point out the similarities with other algebraic structures, like rings,
associative algebras, Lie algebras and many others.

From a categorical point of view, much less is known for other algebraic
structures, like monoids. However, as Mac Lane observed in the preface of
[11], the notion of monoid is fundamental in category theory. Until now,
the most important categorical property of monoids that has been pointed
out is unitality [2]; this property allows to describe the algebraic notion of
commutativity of subobjects and, more generally, of morphisms.
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In the recent paper [12], the three last authors introduced the algebraic con-
text of monoids with operations, inspired by the analogous notion, introduced
by Porter [14], of groups with operations. This new context includes, among
other examples, monoids, commutative monoids, semirings, join-semilattices
with a bottom element and distributive lattices with a bottom element (or
a top one). The study of the semidirect products in this setting allowed
to identify a class of split epimorphisms, called Schreier split epimorphisms
(the name is inspired by the notion of Schreier internal category introduced
by Patchkoria [13] in the category of monoids). Schreier split epimorphisms
correspond to actions via the semidirect product construction, as it is proved
in [12].

In the monograph [7], and in the paper [6], the present authors observed
moreover that, in the case of monoids, Schreier split epimorphisms satisfy
some important properties that are classically known to be satisfied by all
split epimorphisms of groups (but not by all split epimorphisms of monoids),
like the split short five lemma. Defining a Schreier reflexive relation as a
reflexive relation such that the split epimorphism, given by the first projec-
tion and the reflexivity morphism, is a Schreier one, it was proved that any
Schreier reflexive relation is transitive. Moreover, many others interesting
properties of Schreier split epimorphisms of monoids were studied, and they
were extended to the case of semirings. In particular, it was shown that spe-
cial Schreier extensions with a fixed abelian kernel form an abelian group, as
it happens for all extensions with abelian kernel in the category of groups.

All these results gave evidence of the need of a conceptual notion which
captures this algebraic context; it was introduced, in the pointed case, in
[7], under the name of S-protomodularity, where S is a suitable class of split
epimorphisms. The aim of the present paper is to investigate the properties
of this intrinsic setting and to show how it conceptually allows to recover
many partial aspects of the properties of Mal’tsev [8] and protomodular [1]
categories. By [7], the main examples of such a situation are the category
Mon of monoids and SRng of semirings with the class S of Schreier split
epimorphisms. We show here that the same is true for the general context
of monoids with operations.
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Among other things, the definition of S-special morphism (see Section 6)
allows to associate with any S-protomodular category C a protomodular sub-
category S♯C, called the protomodular core of C relatively to S. If C is the
category of monoids, equipped with the class of Schreier split epimorphisms,
its protomodular core is the category of groups. This gives then a charac-
terization of groups among monoids. In the same way, we prove that the
protomodular core of the category of semirings is the category of rings, and
we generalize this result to any category of monoids with operations. The no-
tion of S-special morphism permits also a characterization of reflexive graphs
(relatively to the class S) that are internal groupoids. This characterization
is completely analogous to the one known for Mal’tsev categories (see [9]).

The paper is organized as follows. In Section 2 we recall from [2] the no-
tion of unital category, and from [7] a generalization of it, namely the notion
of C′-unital category, which will be used later to describe some Mal’tsev-
type properties of S-protomodular categories. In Section 3 we define S-
protomodular categories and we study their first properties. In Section 4 we
recall the notion of monoids with operations and of the class S of Schreier
split epimorphisms, and we show that they are examples of S-protomodular
categories. In Section 5 we prove that a S-reflexive graph has at most one
structure of internal category, and that any S-reflexive relation is transitive,
relating S-protomodular categories with Mal’tsev ones. In Section 6 we de-
fine S-special morphisms and we use them to characterize internal groupoids
among internal S-categories and equivalence relations among S-reflexive re-
lations. Moreover, we define the protomodular core of a S-protomodular
category, and describe it in the examples of monoids with operations. In
Section 7 we describe other Mal’tsev aspects of S-protomodular categories,
mainly related with the centrality for reflexive relations. Moreover, we show
that a S-reflexive graph such that the domain morphism is S-special is an in-
ternal groupoid if and only if the kernel pairs of the domain and the codomain
centralize each other.

2. Unital and C′-unital categories
We start by recalling from [2] the following definition.
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Definition 2.1. Let C be a pointed category with finite products. Given two
objects A and B in C, consider the following diagram

A
⟨1A,0⟩

// A×B
πAoo

πB // B.
⟨0,1B⟩
oo (1)

The category C is said to be unital if, for every pair of objects A,B ∈ C, the
morphisms ⟨1A, 0⟩ and ⟨0, 1B⟩ are jointly strongly epimorphic.

If moreover C is finitely complete, then any pair (⟨1A, 0⟩, ⟨0, 1B⟩) is jointly
epimorphic. Hence finitely complete unital categories are a setting where it
is possible to express a categorical notion of commutativity.

Definition 2.2 ([3]). Let C be a finitely complete unital category. Two mor-
phisms with the same codomain f : X → Z and g : Y → Z are said to
cooperate (or to commute) if there exists a morphism φ : X × Y → Z such
that both triangles in the following diagram commute:

X
⟨1X ,0⟩

//

f $$H
HHHHHHHHH X × Y

φ
��

Y
⟨0,1Y ⟩oo

g{{vvvvvvvvvv

Z.

The morphism φ is necessarily unique, because ⟨1X , 0⟩ and ⟨0, 1Y ⟩ are jointly
epimorphic, and it is called the cooperator of f and g.

The uniqueness of the cooperator makes commutativity a property and not
an additional structure in the category C.

Definition 2.3 ([3]). An object A of a finitely complete unital category C is
said to be commutative if the identity 1A cooperates with itself.

A generalization of the notion of unital category, that we shall need later
on, is given by the following definition, that we recall from [7].

Definition 2.4. Let C′ be a full subcategory of any pointed category C with
finite products. The category C is said to be C′-unital when, for any object
A ∈ C′ and any object B ∈ C, the morphisms ⟨1A, 0⟩ and ⟨0, 1B⟩ in the
following diagram are jointly strongly epimorphic:

A
⟨1A,0⟩

// A×B
πAoo

πB // B.
⟨0,1B⟩
oo (2)
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In a finitely complete C′-unital category we can still speak of cooperating
pairs (f, g) of morphisms, provided that the domain X of f belongs to C′.
More generally,X×Y being isomorphic to Y×X, we can speak of cooperating
pair as soon as the domain of one of the two maps is in C′. Accordingly, we
can still speak of commutative objects in C′.

Proposition 2.5. Suppose that C is C′-unital and that C′ is closed under
finite products (in particular, it contains the zero object 0). Then C′ is unital.

Proof : Straightforward.

3. S-protomodular categories
From now on, we will denote by C a pointed finitely complete category.

Let S be a class of split epimorphisms in C which is stable under pullbacks
in the following sense: given a downward pullback

X ′

f ′

��

g′
// X

f
��

Y ′

s′

OO

g
// Y,

s

OO

where the two vertical morphisms are split epimorphisms and the upward
square commutes (or, in other terms, the pair (g, g′) is a morphism of points),
if (f, s) belongs to S, then (f ′, s′) belongs to S, too. Accordingly this class
determines a subfibration ¶S

C of the fibration of points ¶C : PtC → C. Let us
denote by SPtC the full subcategory of PtC whose objects are those which
are in S:

SPtC //
j

//

¶S
C $$H

HHHHHHH PtC

¶C||yy
yy

yy
y

C

Given a split epimorphism A
f

// B
soo in C, we say that it is a strongly

split epimorphism (see [4], and [12], where strongly split epimorphisms were
introduced under the name of regular points) if the pair (k, s), where k is a
kernel of f , is jointly strongly epimorphic.

Definition 3.1. The pointed category C will be said to be S-protomodular
when:

(1) any object in SPtC is a strongly split epimorphism;
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(2) SPtC is closed under finite limits in PtC (in particular, it contains
the terminal object 0 � 0 of PtC).

So, S is a class of strongly split epimorphisms. The first part of condition
2 implies that any fiber SPtYC is closed under finite limits in the fiber PtYC
and that any change-of-base functor with respect to ¶S

C is left exact. The
fact that SPtC contains the terminal object implies that the class S contains
the isomorphisms (because S is stable under pullbacks, and any isomorphism
can be seen as a pullback of the terminal object 0 � 0 of PtC). Hence, any
fiber SPtYC is pointed.

Theorem 3.2. Let C be a pointed finitely complete category and S a class
of split epimorphisms stable under pullbacks. Then:

(1) when S satisfies the condition 1 of Definition 3.1, any fiber PtYC is
SPtYC-unital;

(2) when C is S-protomodular, any fiber SPtYC is unital;
(3) when C is S-protomodular, any change of base functor with respect to

the fibration ¶S
C is conservative.

Proof : (1) Consider the following left hand side downward pullback of
split epimorphisms, where the split epimorphism (f, s) is in the fiber
SPtYC:

X ′
g′

//

f ′

��

X
t′oo

f
��

K[f ] // k // X
t′ //

f
��

X ′

f ′

��

Y ′
g

//

s′

OO

Y
too

s

OO

Y
t

//

s

OO

Y ′

s′

OO
(3)

Then (f ′, s′) belongs to SPtY ′C, since ¶S
C is a subfibration of ¶C. So

the split epimorphism (f ′, s′) is a strongly split epimorphism. On the
other hand, the right hand side square is still a pullback, so the map
t′k (where k is a kernel of f) is a kernel of f ′. Accordingly the pair
(t′k, s′) is jointly strongly epimorphic. So this is equally the case for
the pair (t′, s′). Accordingly the fibre PtYC is SPtYC-unital.

(2) This comes immediately from 1, because, as we already observed, if
C is S-protomodular, then SPtYC is closed under finite products in
PtYC.

(3) Since any change-of-base functor with respect to ¶S
C is left exact, it

is enough to prove that it is conservative on monomorphisms (see
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Lemma 3.3 below). Let us consider the following diagram, where all
the quadrangles are pullbacks and all the split epimorphisms are in
SPtC:

K[f ′]
%% K(m′)

%%KKKKK

��

kf ′
// X ′

  m′

  B
BB

BB

f ′

��

x // X �� m
��?

??
??

f

��

K[f̄ ′]

~~}}
}}

}}
}}

}}
}

kf̄ ′
// X̄ ′

f̄ ′

����
��

��
��

�

x̄ // X̄

f̄

��















1
//
Y ′ y

//

s′

OO

s̄′

DD���������
Y

s

OO

s̄

EE










Suppose moreover thatm′, and consequentlyK(m′), are isomorphisms.
Since K(m) ≃ K(m′) is an isomorphism, and the pairs (kf , s) and
(kf̄ , s̄) are jointly strongly epimorphic, then m is a strong epimor-
phism, and hence it is an isomorphism.

Lemma 3.3. Suppose that U : C → D is a left exact functor such that, for
any monomorphism m in C, if Um is an isomorphism in D then m is an
isomorphism. Then U is conservative.

Proof : Given any morphism f in C, consider the kernel pair of f :

R[f ]
p0 //

p1
// Xs0oo

f
// Y.

Since U is left exact, we have that UR[f ] is the kernel pair of Uf :

UR[f ] = R[Uf ]
Up0 //

Up1

// UXUs0oo
Uf

// UY.

Suppose that Uf is an isomorphism. Then Us0 is an isomorphism. Since s0
is a monomorphism, our hypothesis implies that s0 is an isomorphism. But
then f is a monomorphism, hence an isomorphism by our hypothesis.

Proposition 3.4. Let C be a pointed finitely complete category, and S a
class of strongly split epimorphisms which is stable under pullbacks. Given
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any commutative square of split epimorphisms:

X ′
f ′

//

g′

��

X
s′oo

g
��

Y ′
f

//

t′
OO

Y
soo

t

OO

where the split epimorphism (g, t) is in S, the induced factorization to the
pullback of (g, t) along f is an extremal epimorphism.

Proof : Consider the following diagram:

X ′
θ
  B

BB
B

g′

��

f ′
// X

AA
AA

AA
AA

g

��

s′oo

X̄
ḡ

��











 f̄

// X
g

����
��
��
��
�

s̄oo

Y ′

f
//

t′

OO

t̄

DD








Y

t

OO

t

EE���������soo

where the square fḡ = gf̄ is a pullback. Since S is stable under pullbacks,
(ḡ, t̄) belongs to S. Moreover, since the category PtYC is SPtYC-unital (by
Theorem 3.2) and the pullback considered above is actually the product of

the two split epimorphisms Y ′
f

// Y
soo and X

g
// Y

too in the category PtYC,

the pair (t̄, s̄) is jointly strongly epimorphic. Now let θ be the factorization
in question. Suppose j : Ū � X̄ is a monomorphism such that θ factors
through it by a map θ′: jθ′ = θ. Consider the following diagram:

K[ḡj]
K(j)

$$JJ
JJJ

��

// Ū �� j

��>
>>

>>

ḡj

��

K[ḡ]

����
��

��
��

��

// X̄
ḡ

����
��

��
��

0 //

OO

??����������
Y ′

θ′t′

OO

t̄

EE��������

We have that (ḡj, θ′t′) is a split epimorphism, because

ḡjθ′t′ = ḡθt′ = ḡt̄ = 1.
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K(j) is an isomorphism, because, being j a monomorphism, K[ḡj] ≃ K[ḡ].
Using the same argument as in the proof point 3 of Theorem 3.2, we can
conclude that j is a strong epimorphism, and hence an isomorphism.

4. Schreier split epimorphisms in monoids with opera-
tions
The aim of this section is to introduce an important class of examples of

the situation described in the previous one. We start by recalling from [12]
the following definition, which was inspired by the analogous one of groups
with operations introduced by Porter in [14].

Definition 4.1. Let Ω be a set of finitary operations such that the following
conditions hold: if Ωi is the set of i-ary operations in Ω, then:

(1) Ω = Ω0 ∪ Ω1 ∪ Ω2;
(2) There is a binary operation + ∈ Ω2 (not necessarily commutative) and

a constant 0 ∈ Ω0 satisfying the usual axioms for monoids;
(3) Ω0 = {0};
(4) Let Ω′

2 = Ω2\{+}; if ∗ ∈ Ω′
2, then ∗◦ defined by x ∗◦ y = y ∗ x is also

in Ω′
2;

(5) Any ∗ ∈ Ω′
2 is left distributive w.r.t. +, i.e.:

a ∗ (b+ c) = a ∗ b+ a ∗ c;

(6) For any ∗ ∈ Ω′
2 we have b ∗ 0 = 0;

(7) Any ω ∈ Ω1 satisfies the following conditions:
- ω(x+ y) = ω(x) + ω(y);
- for any ∗ ∈ Ω′

2, ω(a ∗ b) = ω(a) ∗ b.
Let moreover E be a set of axioms including the ones above. We will denote
by C the category of (Ω, E)-algebras. We call the objects of C monoids with
operations.

Remark. The definition above does not include the case of groups, or more
generally, the one of groups with operations. Indeed, the unary operation
given by the group inverses, denoted by −, does not satisfy Condition 7.
However, in order to recover all these structures, it suffices to add another
condition: if the base monoid structure (given by the operations + and 0) is
a group, then the operation − should be distinguished from the other unary
operations. In other terms, Condition 7 should be satisfied only by operations
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in Ω′
1 = Ω1\{−}. In this way, our definition becomes a generalization of the

concept of groups with operations.

Example 4.2. Apart from the known structures covered by Porter’s defi-
nition, such as groups, rings, associative algebras, Lie algebras and many
others, our definition includes the cases of monoids, commutative monoids,
semirings (i.e. rings where the additive structure is not necessarily a group,
but just a commutative monoid), join-semilattices with a bottom element,
distributive lattices with a bottom element (or a top one).

Let us observe that, if C is a category of monoids with operations, then it
is pointed, complete and unital.

We now introduce the split epimorphisms that will form the desired class
S. For the rest of the section, C will denote a category of monoids with
operations.

Definition 4.3 ([12]). A split epimorphism A
f

// B
soo in C is said to be a

Schreier split epimorphism when, for any a ∈ A, there exists a unique α in
the kernel K[f ] of f such that a = α+ sf(a).

As it is shown in [12], in the category Mon of monoids Schreier split epi-
morphisms are equivalent to monoid actions, where an action of a monoid B
on a monoid X is a monoid homomorphism B → End(X), being End(X)
the monoid of endomorphisms of X.

Proposition 4.4. A split epimorphism A
f

// B
soo is a Schreier split epi-

morphism if and only if there exists a set-theoretical map q : A 99K K[f ] such
that:

q(a) + sf(a) = a

q(α + s(b)) = α

for every a ∈ A, α ∈ K[f ] and b ∈ B.

Proof : Suppose that for every a ∈ A, there exists a unique α ∈ K[f ] such that
a = α+ sf(a). This property defines a map q : A → K[f ], by q(a) = α such
that a = q(a)+sf(a), for every a ∈ A. In order to prove that q(α+s(b)) = α
for any α ∈ K[f ], it suffices to observe that sf(α + s(b)) = s(b).
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Conversely, given a set-theoretical map q : A → B satisfying the asserted
identities, we can choose α = q(a) for every a ∈ A by the first identity;
suppose now that a = α′ + sf(a), then we get:

q(a) = q(α′ + sf(a)) = α′

by the second identity.

We shall call the following diagram:

K[f ] //
k

// A
q
oo

f
// B,oosoo

the canonical Schreier split sequence associated with the Schreier split epi-
morphism and q the associated Schreier retraction. The following properties
of the retraction q will be useful later. For the sake of simplicity, we consider
k just as an inclusion.

Proposition 4.5. Given a Schreier split epimorphism (A,B, f, s), we have:

(a) qk = 1K[f ];
(b) qs = 0;
(c) q(0) = 0;
(d) if b ∈ B and α ∈ K[f ], then q(s(b) + α) + s(b) = s(b) + α;
(e) for every a, a′ ∈ A q(a+ a′) = q(a) + q(sf(a) + q(a′)).

Proof : (a) is a straightforward consequence of the second identity in Propo-
sition 4.4.

(b) for b ∈ B we have that s(b) = 0 + sf(s(b)), and the uniqueness of q
gives that qs(b) = 0 for every b ∈ B.

(c) obviously we have 0 = 0 + sf(0).
(d) for any b ∈ B and any α ∈ K[f ] we have:

s(b) + α = q(s(b) + α) + sf(s(b) + α) =

= q(s(b) + α) + sfs(b) + sf(α) = q(s(b) + α) + s(b).

(e) q(a+ a′) is the unique element of K[f ] such that

a+ a′ = q(a+ a′) + sf(a+ a′) = q(a+ a′) + sf(a) + sf(a′),

so it suffices to prove that

q(a) + q(sf(a) + q(a′)) + sf(a) + sf(a′) = a+ a′.

By point (d), we have that

q(sf(a) + q(a′)) + sf(a) = sf(a) + q(a′)
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and hence

q(a)+q(sf(a)+q(a′))+sf(a)+sf(a′) = q(a)+sf(a)+q(a′)+sf(a′) = a+a′.

We are now going to show that any category C of monoids with operations
is S-protomodular, where S is the class of Schreier split epimorphisms. The
results below were already proved in [7] for the particular cases of monoids
and semirings.

Proposition 4.6. Schreier split epimorphisms are stable under pullbacks
along any morphism.

Proof : Consider the following diagram, where the lower row is a Schreier
split sequence and the right hand side square is a pullback:

K[πY ]

≃
��

⟨k,0⟩
// A×B Y

πA

��

πY

// //
q′

oo Y
⟨sh,1Y ⟩oo

h
��

K[f ]
k

// A
q

oo

f
// // B.

soo

The map q′ defined by q′(a, y) = (q(a), 0) satisfies the conditions of Proposi-
tion 4.4 since:

(a, y) = (q(a), 0) + (sf(a), y) = (q(a), 0) + (sh(y), y)

for any (a, y) ∈ A ×B Y . Moreover, the elements of K[πY ] are of the form
(α, 0), with α ∈ K[f ], and then:

q′((α, 0) + (sh(y), y)) = q′(α+ sh(y), y) = (q(α + sh(y)), 0) = (α, 0)

Accordingly the upper row is a Schreier split epimorphism.

Lemma 4.7. A Schreier split epimorphism is a strongly split epimorphism.

Proof : Given a Schreier split epimorphism A
f

// B
soo , the formula a = q(a)+

sf(a) proves that the pair (k, s) is jointly strongly epimorphic.

Proposition 4.8. Given any direct product diagram

X
⟨1X ,0⟩

// X ×B
πXoo

πB // B,
⟨0,1B⟩
oo



MONOIDS AND POINTED S-PROTOMODULAR CATEGORIES 13

the canonical split epimorphism (X × B,B, πB, ⟨0, 1B⟩) is a Schreier split
epimorphism.

Proof : It suffices to observe that (x, 0) + (0, b) = (x, b) for any x ∈ X and
any b ∈ B. Here the Schreier retraction πX is a monoid homomorphism.

Corollary 4.9. For any X ∈ C, the identity split epimorphism X
1X

// X,
1Xoo

and more generally any isomorphism, is a Schreier split epimorphism.

Example 4.10. We denote by Z∗ the monoid of non-zero integers with the
usual multiplication, and by N∗ its submonoid whose elements are the num-
bers greater than 0. Then the split epimorphism

Z∗
abs

// N∗,
ioo

where i is the inclusion and abs associates with any integer its absolute
value, is a Schreier split epimorphism. In fact K[abs] = {±1}, and it is
immediate to see that any non-zero integer z can be written in a unique way
as z = ±1 · |z| = |z| · ±1.

Proposition 4.11. Schreier split epimorphisms are closed under products,
i.e. the product of two Schreier split epimorphisms is a Schreier one.

Proof : Consider the two Schreier split exact sequences

K[f ]
k

// A
q

oo

f
// // B

soo

and

K[f ′]
k′

// A′
q′

oo

f ′
// // B′,

s′oo

Their term by term product

K[f ]×K[f ′]
k×k′

// A× A′
q×q′
oo

f×f ′
// // B ×B′,

s×s′oo

clearly satisfies the conditions of Proposition 4.4.



14 D. BOURN, N. MARTINS-FERREIRA, A. MONTOLI AND M. SOBRAL

Lemma 4.12. Consider a (vertical) map (h, l) in PtC:

X

l
��

f
// // Y

soo

h
��

X ′
f ′

// // Y ′.
s′oo

Suppose that the two rows are Schreier split epimorphisms, then the Schreier
retractions are compatible, i.e. the following leftward left hand side diagram
commutes (in the category Set of sets):

K[f ]

K(l)
��

k
// X

l
��

f
// //

q
oo Y

soo

h
��

K[f ′]
k′

// X ′
q′

oo

f ′
// // Y ′.

s′oo

Proof : We have to show that q′l(x) = lq(x) for any x in X. It is true since
we have:

lq(x) + s′f ′l(x) = lq(x) + lsf(x) = l(q(x) + sf(x)) = l(x) = q′l(x) + s′f ′l(x).

Proposition 4.13. Schreier split epimorphisms are closed also under equal-
izers, i.e. the equalizer of two parallel morphisms between Schreier split epi-
morphisms is a Schreier one. Hence Schreier split epimorphisms are closed
under finite limits.

Proof : Given two parallel morphisms of Schreier split epimorphisms:

A
h //
g

//

f
��

A′

f ′

��

B

s

OO

h′
//

g′
// B′,

s′

OO



MONOIDS AND POINTED S-PROTOMODULAR CATEGORIES 15

consider the following diagram:

K[ϕ] //
K(j)

//

kϕ

��

K[f ]
K(h)

//

K(g)
//

kf

��

K[f ′]
kf ′

��

E //
j

//

ϕ
��

q
OO

A

f
��

h //
g

//

qf

OO

A′

f ′

��

qf ′
OO

E ′

σ

OO

//
j′

// B

s

OO

h′
//

g′
// B′,

s′

OO

where j is an equalizer of h and g and j′ is an equalizer of h′ and g′ in C.
Then the lower part of the diagram is an equalizer diagram in PtC. Since
the kernel functor preserves equalizers, K(j) is an equalizer of K(h) and
K(g) in C, and hence in the category Set of sets. By the previous lemma,
the set-theoretical Schreier retractions qf and qf ′ make the upward right
hand side square commute; hence we get a factorization q which satisfies the
conditions of a Schreier retraction for the split epimorphism (ϕ, σ) and makes
it a Schreier split epimorphism.

5. Internal S-reflexive relations and S-categories
We recall that an internal reflexive graph in a category C is a diagram of

the form

X1
d1

//

d0 //
X0s0oo

such that d0s0 = 1X0
= d1s0. A reflexive relation is a reflexive graph such

that the pair (d0, d1) is jointly monomorphic.

Definition 5.1. An internal reflexive graph (resp. category, groupoid) in a
S-protomodular category C

X1
d1

//

d0 //
X0s0oo

is said to be a S-reflexive graph (resp. S-category, S-groupoid) if the split
epimorphism (d0, s0) is in S.

As a consequence of condition 2 of the definition of an S-protomodular cat-
egory, S-reflexive graphs are closed under finite limits inside the category of
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internal reflexive graphs. The same is true for S-categories and S-groupoids.
Let us recall that an internal category X1 in C is a reflexive graph:

X1
d1

//

d0 //
X0s0oo

such that the following pullback of split epimorphisms, which defines X2 as
the internal object of the composable pairs

X2
d2

//

d0
��

X1

s1oo

d0
��

X1
d1

//

s0

OO

X0,
s0oo

s0

OO
(4)

is endowed with a composition map d1 : X2 → X1 satisfying the remaining
simplicial identities:
(1) d0d1 = d0d0, d1d1 = d1d2 (incidence axioms)
(2) d1s0 = 1X1

, d1s1 = 1X1
(composition with identities)

This composition must satisfy the associativity axiom; for that consider the
following pullback of split epimorphisms (where X3 is the object of compos-
able triples):

X3
d3

//

d0
��

X2

s2oo

d0
��

X2
d2

//

s0

OO

X1

s1oo

s0

OO
(5)

The composition map d1 induces a couple of maps (d1, d2) : X3 ⇒ X2 such
that d0d1 = d0d0, d2d1 = d1d3 and d0d2 = d1d0, d2d2 = d2d3. The associativity
is given by the remaining simplicial axiom:
(3) d1d1 = d1d2.

Proposition 5.2. Let C be a S-protomodular category. On a S-reflexive
graph there is at most one structure of internal category. It is sufficient to
have the composition map d1 : X2 → X1 with axiom (2), the axioms (1) and
(3) come for free.
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Proof : Let us consider the following S-reflexive graph:

X1
d1

//

d0 //
X0s0oo

Consider now the diagram (4):

X2
d2

//

d0
��

X1

s1oo

d0
��

X1
d1

//

s0

OO

X0

s0oo

s0

OO

Since the rightward horizontal square is a pullback, and the right hand side
split epimorphism is in S, the left hand side one is in S, too. Moreover, since
the category PtX0

C is SPtX0
C-unital (by Theorem 3.2) and the pullback

above is actually the product of the two split epimorphisms X1
d0

// X0

s0oo

and X1
d1

// X0

s0oo in the category PtX0
C, the pair (s0, s1) is jointly strongly

epimorphic. Hence there is at most one map d1 satisfying axiom (2). Axiom
(1) can be also verified by composition with the pair (s0, s1). Axiom (3)
comes by composition with the pair (s0, s2) of diagram (5), which is jointly
strongly epimorphic as well.

Let a reflexive graph be given:

X1
d1

//

d0 //
X0s0oo

Let us recall that its simplicial kernel is the upper part of the universal
2-simplicial object associated with it:

K[d0, d1]

p0

��

p1
//

p2

HH
X1

d0 //

d1

//

s1
oo

s0oo

X0
s0oo (6)
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In a finitely complete category C, it is obtained by the following pullback of
reflexive graphs:

K[d0, d1] (p0,p1)

((RRRRRRRRR

p0

��

p1

��

p2 // X1 (d0,d1)

((QQQQQQQQQ

d0

��

d1

��

R[d0]
d0

yysssssssssssss

d1
yysssssssssssss

(d1,d1) // X0 ×X0
p0

zzuuuuuuuuuuuuu

p1
zzuuuuuuuuuuuuu

X1
d1

//

OO

99sssssssssssss
X0

OO

::uuuuuuuuuuuuu

In set-theoretical terms, K[d0, d1] is the set of triples (x0, x1, x2) ∈ X1 whose
incidence conditions are given by the following drawing:

• x2 // •
• x1

>>~~~x0

``@@@

Proposition 5.3. Let C be a S-protomodular category. Any S-reflexive re-
lation is transitive.

Proof : Let us consider the following S-reflexive relation:

X1
d1

//

d0 //
X0s0oo

The square d1p0 = d0p2 in the diagram above determines a factorization
(p0, p2) : K[d0, d1] → X2 to the following vertical pullback:

K[d0, d1]
p2

))SSSSSSSSSSSSSSSSS

p0

��8
88

88
88

88
88

88
88

88
8 $$

$$JJJJJJJJJJ

X2
d2

//

d0
��

X1

s1oo

d0
��

s1uu

X1
d1

//

s0

OOs0

QQ

X0

s0oo

s0

OO

Since (d0, d1) : X1 � X0 ×X0 is a relation, and hence d0 and d1 are jointly
monomorphic, the factorization (p0, p2) is a monomorphism. In order to
prove this fact, it suffices to observe that it is true in set-teoretical terms,
and that it is invariant under the Yoneda embedding. The left hand side split
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epimorphism (d0, s0) is in S, because X1
d1

//

d0 //
X0s0oo is a S-reflexive relation and

the rightward horizontal square is a pullback. According to Proposition 3.4,
the factorization (p0, p2) : K[d0, d1] � X2 is an extremal epimorphism, and

hence an isomorphism; accordingly the morphism X2

(p0,p2)
−1

// K[d0, d1]
p2 // X1

produces the desired transitivity map.

A S-reflexive relation doesn’t need to be an equivalence relation, because
symmetry can fail. The following is a concrete counterexample in the cate-
gory Mon of monoids, equipped with the class of Schreier split epimorphisms
described in section 4.

Example 5.4 ([6], Example 5.3). The internal order in Mon given by the
usual order between natural numbers:

ON
p1

//

p0 // N,s0oo

where

ON = {(x, y) ∈ N× N | x ≤ y},

is a Schreier order relation.

6. S-special morphims and internal S-groupoids
Definition 6.1. Let C be a S-protomodular category. A morphism
f : X → Y in C will be called S-special when the kernel equivalence rela-
tion R[f ] is a S-equivalence relation. An object X will be called S-special
when the terminal morphism τX : X → 1 is S-special.

In a S-protomodular category, the S-special morphisms are stable under
pullbacks (because the class S is stable under pullbacks). Moreover, the full
subcategory S♯C ⊆ C of S-special objects is closed under finite limits in C
(this comes from Condition 2 of Definition 3.1).

Proposition 6.2. Let C be a S-protomodular category. Any split epimor-
phism between S-special objects is in S and, consequently, is a S-special mor-
phism. The subcategory S♯C of S-special objects is protomodular.
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Proof : Let us recall that any split epimorphism (f, s : X � Y ) produces a
kernel diagram in the fibre PtYC:

X //
(f,1)

//

f

��:
::

::
::

::
::

::
Y ×X

pY

��

1×f
// //
Y × Yoo

1×s
oo

p0

~~}}
}}

}}
}}

}}
}}

}}
}

Y

(1,s)

OO

s

]]:::::::::::::
s0

>>}}}}}}}}}}}}}}}

When Y is in S♯C, the right hand side split epimorphism is in S. The
following pullback:

Y ×X
s×1 //

pY
��

X ×X

p0
��

Y s
//

(1,s)

OO

X

s0

OO

shows that, whenX is in S♯C, the middle split epimorphism is in S. Since the
fibre SPtYC is closed under finite limits, the kernel (f, s) is in S. So, accord-
ing to Theorem 3.2, the change-of-base functor with respect to the fibration
Pt(S♯C) is conservative, and consequently S♯C is protomodular. On the
other hand, since Pt(S♯C) is stable under finite limits, the kernel equivalence
relation of f lies in Pt(S♯C), and the split epimorphism (p0, s0) : R[f ] � X
is in S. Accordingly R[f ] is a S-equivalence relation, and f is a S-special
morphism.

Definition 6.3. Given a S-protomodular category C, we will call the subcat-
egory S♯C the protomodular core of C relatively to S.

We are now going to describe the protomodular core when C is a category
of monoids with operations and S is the class of Schreier split epimorphisms.

Proposition 6.4. Let C be a category of monoids with operations and S the
class of Schreier split epimorphisms. Given an object X ∈ C, it is S-special
if and only if (X,+) is a group.

Proof : Suppose that X is S-special. Consider the following diagram:

X
⟨0,1⟩

// X ×X
q

oo
p0 //

p1
// X,s0oo
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where q is the Schreier retraction associated with the Schreier split epimor-
phism (p0, s0). Let x ∈ X; according to the Schreier condition, the pair
(x, 0) ∈ X ×X can be written as

(x, 0) = q(x, 0) + s0p0(x, 0) = q(x, 0) + (x, x).

Since q(x, 0) is an element of Ker(p0), it is an element of the form (0, y), for
some y ∈ X. Hence we have

(x, 0) = (0, y) + (x, x) = (x, y + x),

and from this equality we get y + x = 0. So y is a left inverse for x. Doing
the same thing for all x ∈ X we prove that (X,+) is a group.

Conversely, suppose that (X,+) is a group. The needed Schreier retraction
is simply given by

q(x1, x2) = (0, x2 − x1).

As a consequence, we have that, if C is the category Mon of monoids, its
protomodular core is the category Gp of groups. If C is the category SRng
of semirings, the protomodular core is the category Rng of (not necessar-
ily unitary) rings. More generally, given any category C of monoids with
operation, the protomodular core is the corresponding category of groups
with operations, obtained from C by adding the condition that + is a group
operation.

Proposition 6.5. Let C be a S-protomodular category. Any split epimor-
phism f : X → Y which is a S-special morphism belongs to S and its kernel
is a S-special object.

Proof : Let s be the splitting of f . Consider the following diagram:

K[f ]

��

kf
// X

f
��

s1 // R[f ]

p0
��

1 αY

// Y s
//

s

OO

X,

s0
OO

where s1 is the morphism (1, sf) : X → R[f ]. The right hand side square
is a pullback. If the morphism f is S-special then, by definition, the split
epimorphism (p0, s0) is in S. By stability under pullbacks, the split epimor-
phism (f, s) is in S, too. The left hand side square is a pullback as well, so
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the terminal morphism K[f ] → 1 is S-special as so is f , and then K[f ] is a
S-special object.

An internal category X1 in a finitely complete category C is a groupoid
when, moreover, the following square determined by the composition map d1
is a pullback:

X2
d1 //

d0
��

X1

d0
��

X1
d0

// X0,

(7)

or, in other words, when the following vertical comparison morphism j is an
isomorphism:

X2

j
��

d0

''OOOOOOOOOOOOO

d1
''OOOOOOOOOOOOO

R[d0]
p0 //

p1
// X1

d0 //s0oo

s0OOOOOO

ggOOOOOO

X0

In this case we have a discrete fibration between groupoids:

R[d0]

d0
��

d1
��

d2 // X1

d0
��

d1
��

X1
d1

//

OO

X0

OO

Proposition 6.6. Let C be a S-protomodular category. A S-category

X1
d1

//

d0 //
X0s0oo

is a S-groupoid if and only if the morphism d0 : X1 → X0 is S-special.

Proof : Let X1 be a S-groupoid. Then the split epimorphism
(d0, s0) : X1 � X0 is in S. By the pullbacks of the previous fibration di-
agram, the split epimorphism (d0, s0) : R[d0] � X1 is in S and consequently
the morphism d0 : X1 → X0 is S-special. Conversely, suppose that the map
d0 : X1 → X0 of the S-category X1 is S-special. Consider the following
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diagram:

X1

BB
BB

BB
BB

d0

��

s1 // X2 j
##GG

GGG

d0

��

X1

d0

��		
		

		
		

	

s1 // R[d0]

d0

����
��

��
��

�

X0 s0
//

s0

OO

s0

DD									
X1

s0

OO

s0

BB���������

The two right hand side split epimorphisms are in S. The two commutative
squares are pullbacks along s0 : X0 � X1. The diagram means that the
image of the map j by the change-of-base functor along s0 is the isomorphism
1X1

. According to Theorem 3.2, the map j is an isomorphism, and X1 is a
groupoid.

The previous proposition, according to Proposition 5.3, gives the following

Corollary 6.7. Let C be a S-protomodular category. A S-reflexive relation

X1
d1

//

d0 //
X0s0oo

is a S-equivalence relation if and only if the morphism d0 : X1 → X0 is S-
special.

When C is a category of monoids with operations, and S is the class of
Schreier split epimorphisms, the converse of Proposition 6.5 holds:

Proposition 6.8. Let C be a category of monoids with operations, and let S
be the class of Schreier split epimorphisms. Given a Schreier split epimor-
phism

K[f ]
kf

// X
qf

oo

f
// Y,

soo

if K[f ] is a S-special object (or, in other terms, if (K[f ],+) is a group), then
f is a S-special morphism.

Proof : We have to show that the split epimorphism R[f ]
p0

// X
s0oo is a Schreier

split epimorphism. Let us define qp0(x, x
′) = (0, qf(x

′)−qf(x)). We can check
that

qp0(x, x
′)+ s0p0(x, x

′) = (0, qf(x
′)− qf(x))+ (x, x) = (x, qf(x

′)− qf(x)+x) =
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= (x, qf(x
′) + sf(x)) = (x, qf(x

′) + sf(x′)) = (x, x′),

and, thanks to Proposition 4.5,

qp0((0, k)+s0(x)) = qp0((0, k)+(x, x)) = qp0(x, k+x) = (0, qf(k+x)−qf(x)) =

= (0, qf(k) + qf(sf(k) + qf(x))− qf(x)) = (0, qf(k) + qf(x)− qf(x)) = (0, k).

The thesis follows then from Proposition 4.4.

Example 6.9. The previous proposition implies that the morphism
abs : Z∗ → N∗ of example 4.10 is a special S-morphism.

Corollary 6.10. Let C be a category of monoids with operations, and let S
be the class of Schreier split epimorphisms. A S-category

X1
d1

//

d0 //
X0s0oo

is a S-groupoid if and only if K[d0] is a S-special object. A S-reflexive relation
is a S-equivalence relation if and only if the kernel K[d0] of the first projection
is a S-special object, which is equivalent to say that (K[d0],+) is a group.

Proof : Thanks to the previous proposition, this is an immediate consequence
of Proposition 6.6 and Corollary 6.7.

7.Mal’tsev aspects of S-protomodular categories
7.1. Mal’tsev categories. We recall that a category C is a Mal’tsev cat-
egory [8, 9] when any internal reflexive relation is an equivalence relation;
this is equivalent to the property that any fiber PtYC of the fibration ¶C is
unital (see [2]). The category Gp of groups is a Mal’tsev one. The natural
order ON of natural numbers (Example 5.4) shows that the category Mon of
monoids is not a Mal’tsev one.
On the other hand, in the context of S-protomodular categories, any fiber

PtYC is SPtYC-unital and, consequently, any fiber SPtYC is unital. In
this section, we shall be interested in what is remaining of the properties of
Mal’tsev categories in this new structural context.

7.2. Elementary observations. We already observed that, in a S-protomo-
dular category, any S-reflexive relation (d0, d1) : R ⇒ X is only necessarily
transitive. The natural order on N gives an example of S-reflexive relation (in
the category of monoids) which is not an equivalence relation. A S-reflexive
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relation R is an equivalence relation if and only if d0 is S-special (Corollary
6.7 above).
In a Mal’tsev category, on a reflexive graph, there is at most one structure

of internal category, which is necessarily an internal groupoid. In Section 5
we showed that, on a S-reflexive graph, there is again at most one structure
of internal category, but there are S-categories which are not groupoids.
An internal S-category is a groupoid if and only if, again, d0 is S-special
(Proposition 6.6).
In a Mal’tsev category we have also the following useful result (see [2]):

given any split epimorphism of reflexive graphs,

X1

g1

��

d0 //

d1

// X0

g0

��

s0oo

X ′
1

d′0 //

d′1

//

t1

OO

X ′
0s′0oo

t0

OO

the commutative square g0d1 = d′1g1 is a pullback as soon as so is the square
g0d0 = d′0g1. Here we have:

Proposition 7.1. Let C be a S-protomodular category. Given a split epi-
morphism of reflexive graphs in C as in the diagram above, where the split
epimorphism (g0, t0) is in S, the commutative square g0d1 = d′1g1 is a pullback
as soon as so is the square g0d0 = d′0g1.

Proof : If the square g0d0 = d′0g1 is a pullback and the split epimorphism
(g0, t0) is in S, so are the split epimorphism (g1, t1) and the pullback (ḡ1, t̄1)
of (g0, t0) along d′1 in the following diagram:

X1
θ
!!C

CC
C

g1

��

d1

// X0

CC
CC

CC
CC

g0

��

s0oo

X̄1

ḡ1

��		
		

		
		 d̄1

// X0

g0

��		
		

		
		

	

s̄0oo

X ′
1

d′1

//

t1

OO

t̄1

DD								
X ′

0

t0

OO

t0

DD									s′0oo

Let θ be the induced factorization. The two leftward commutative squares
are pullbacks; this means that the image of θ by the change-of-base functor
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along s0 is the isomorphism 1X0
. According to Theorem 3.2, the map θ is

itself an isomorphism.

7.3. Centrality with respect to S-reflexive relations. More impor-
tantly, the Mal’tsev context fits very well to the notion of centrality between
equivalence relations. The equivalence relations R on an object X, coincid-
ing with the reflexive relations on X, are just the subobjects of the object
(p0, s0) : X ×X � X in the fibre PtXC:

R //
(d0,d1) //

d0 ##H
HH

HH
HH

HH
HH

H
X ×X

p0

��

X

s0
ccHHHHHHHHHHHH

s0

OO

Two equivalence relations R and W on X centralize each other in a Mal’tsev
category C when the subobjects (dR1 , d

R
0 ) : R � X × X and

(dW0 , dW1 ) : W � X×X commute in the unital fiber PtXC. In set-theoretical
terms, the cooperator R×XW → X×X in the fiber is necessarily of the form
ϕ(xRyWz) = (x, p(xRyWz)), with the two equations p(xRxWy) = y and
p(xRyWy) = x. The morphism p : R×X W → X satisfying these two equa-
tions, which is characteristic of the fact that R and W centralize each other
(see [5]), is called the connector between the relations R and W . It is well
known that, in the category Gp of groups, two equivalence relations R and
W on a group G centralize each other if and only if the normal subgroups 1R
and 1W given by the equivalence classes of the unit element commute inside
the group G.

In a S-protomodular category C, since any fiber PtYC is SPtYC-unital,
we can keep the same definition provided, now, that, one of the domains, let
us choose W , is a S-reflexive relation:

Definition 7.2. Given a reflexive relation R and a S-reflexive relation W on
the same object X in a S-protomodular category C, we say that R and W cen-
tralize each other when there is a (necessarily unique) morphism
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p : R×X W → X, where R×X W is defined by the following pullback:

R×X W

pW0

��

pR1 //
W

dW0

��

σR
0

oo

R
dR1 //

σW
0

OO

X

sW0

OO

sR0

oo

such that pσR
0 = dW1 and pσW

0 = dR0 . In set-theoretical terms, this means that
we have both p(xRxWy) = y and p(xRyWy) = x. The morphisms σR

0 and
σW
0 , defined by the universal property of the pullback, are explicitly given by

σR
0 (yWz) = yRyWz and σW

0 (xRy) = xRyWy. We denote this situation by
[R,W ] = 0.

Since W is a S-reflexive relation, the split epimorphism (dW0 , sW0 ) is in
S, and consequently the pair (σR

0 , σ
W
0 ) is jointly strongly epimorphic. This

implies that the connector p is unique.

Example 7.3. Given the order ON on N in Mon, with the class S of Schreier
split epimorphisms, we have that [ON,ON] = 0; in this case, the connector is
the morphism p defined by p(x ≤ y ≤ z) = z − y + x.

When we have [R,W ] = 0, we recover a well-known result in Mal’tsev
categories:

Proposition 7.4. Let C be a S-protomodular category. Suppose the reflexive
relation R and the S-reflexive relation W on X centralize each other in C.
We have necessarily xWp(xRyWz) and p(xRyWz)Rz.

Proof : Let us consider the following pullback:

U // //

j ��

W
(dW0 , dW1 )��

R×X W //
(dR0 p

W
0 , p)

// X ×X

It defines U as the subobject of those xRyWz ∈ R ×X W such that we
have xWp(xRyWz). For any yWz ∈ W , the element yRyWz ∈ R ×X W
belongs to U , since we have y = p(yRyWz) (as we observed in Definition
7.2). This means that σR

0 factors through U . In the same way, for any
xRy ∈ R, the element xRyWy ∈ R ×X W belongs to U , since we have
x = p(xRyWy). This means that σW

0 factors through U . Since the pair
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(σR
0 , σ

W
0 ) is jointly strongly epimorphic, the morphism j is an isomorphism,

and for every xRyWz ∈ R×X W we have xWp(xRyWz).
We have a similar result concerning the suboject V � R×X W defined by

the following pullback:

V //
j

//

��

R×X W
(p, dW1 pR1 )��

R //
(dR0 , d

R
1 )

// X ×X

This give us p(xRyWz)Rz for any xRyWz ∈ R×X W .

In set-theoretical terms, the previous proposition says that, with any triple
xRyWz, we can associate a square of related elements:

x
W //

R ��

p(x, y, z)
R��

y
W

// z.

This says that any connected pair of reflexive relations (R,W ) on the object
X, where W is a S-reflexive relation, produces the following diagram of
reflexive relations in C:

R×X W

p0

��

(p,dW1 p1)

��

(dR0 p0,p)

//

p1 //
W

dW0

��

dW1

��

oo

R
dR0

//

dR1 //

OO

X

OO

oo

It is called the centralizing double relation associated with the connector.
When R and W are equivalence relations, all the reflexive relations in this
diagram are equivalence relations, and, moreover, any commutative square
is a pullback (thanks to Proposition 7.1).

As in the case of Mal’tsev categories (see [5]), in the context of S-protomodu-
lar categories the existence of a double centralizing relation between a re-
flexive relation R and a S-reflexive relation W characterizes the fact that
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[R,W ] = 0. Indeed, given a double centralizing relation

C

p0

��

p1

��

p0
//

p1 //
W

dW0
��

dW1
��

oo

R
dR0

//

dR1 //

OO

X

OO

oo

i.e. a reflexive relation C both on R andW such that the square dR1 p0 = dW0 p1
is a pullback, the morphism dR1 p0 : C → X is the (necessarily unique) con-
nector.

We can now prove the following

Proposition 7.5. Consider a reflexive graph such that d0 is S-special:

X1
d1

//

d0 //
X0s0oo

The following conditions are equivalent:

(1) the graph is underlying a S-category;
(2) the graph is underlying a S-groupoid;
(3) the kernel equivalence relations R[d0] and R[d1] centralize each other.

Proof : Since d0 is S-special, the graph is a S-reflexive graph. Moreover R[d0]
is a S-equivalence relation, and we can talk about centralization of it with
any reflexive relation on X1.
The equivalence between conditions 1 and 2 was already proved (see Propo-

sition 6.6).
To prove the implication 2 ⇒ 3 consider the following diagram:

R[d2]

R(d0)
��

p0
//

p1 //
R[d0]

d0
��

oo
d2 // X1

d0
��

R[d1]
p0

//

p1 //

OO

X1

OO

oo
d1

// X0

s0

OO

As we observed in Section 6, the right hand side square is a pullback, and
hence the left hand side part of the diagram gives a double centralizing
relation, which says that [R[d0], R[d1]] = 0.
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To prove the implication 3 ⇒ 1, suppose that we have [R[d0], R[d1]] = 0.
As we observed in Section 5, in order to equip our S-reflexive graph with
a structure of internal category, we only need to give the composition map
d1 : X2 → X1 satisfying the equalities d1s0 = d1s1 = 1X1

. The map d1 can
be defined as in the case of Mal’tsev categories (Theorem 3.6 in [9]). In
set-theoretical terms, d1 is given by:

d1(α, β) = p(βR[d0]1d1(α)R[d1]α).

It is easy to verify that it satisfies the desired equalities.
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