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Introduction

An action of a monoid B on a monoid X can be defined as a monoid homo-
morphism B — End(X), where End(X) is the monoid of endomorphisms of X.
These actions were studied in [I5], where it is shown that they are equivalent to
a certain class of split epimorphisms, called Schreier split epimorphisms in the
recent paper [13]. Some properties of Schreier split epimorphisms, as well as
the closely related notions of special Schreier surjection and Schreier reflexive
relation, were then studied in [2] and [3], where the foundations for a coho-
mology theory of monoids are laid. Many typical properties of the category
of groups, such as the Split Short Five Lemma or the fact that any internal
reflexive relation is transitive, remain valid in the category of monoids when,
in the spirit of relative homological algebra, those properties are restricted to
Schreier split epimorphisms and Schreier reflexive relations. When an action
B — End(X) factors through the group Aut(X) of automorphisms of X, the
corresponding split epimorphism is called homogeneous [2]. Some properties
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of homogeneous split epimorphisms and of the related notions of special homo-
geneous surjection and homogeneous reflexive relation were also studied in [2]
and [3].

The aim of the present paper is to approach the concept of homogeneous split
epimorphism from the point of view of categorical Galois theory [6, [7]. Recall
that the classical Grothendieck group or group completion construction [10,
11, 12] gives an adjunction between the categories Mon of monoids and Gp
of groups, which is relevant for instance in K-theory, where it is used in the
definition of K. We prove that this adjunction is admissible in the sense of
categorical Galois theory, when it is considered with respect to the class of
surjective homomorphisms both in Mon and in Gp. We further show that the
central extensions with respect to this adjunction are the special homogeneous
surjections. This gives a positive answer to the question whether homogeneous
split epimorphisms can be characterised in a way which does not refer to the
underlying split epimorphism of sets.

The paper is organised as follows. In Section [Il we recall some basic notions
of categorical Galois theory. In Section 2 we prove that the Grothendieck group
adjunction is part of an admissible Galois structure (Theorem 2.2)). In Section[3
we recall the definitions of Schreier split epimorphism and homogeneous split
epimorphism, special Schreier surjection and special homogeneous surjection
together with some of their properties. In Section 4 we show that the central
extensions with respect to the Galois structure under consideration are exactly
the special homogeneous surjections (Theorem [.3)).

1. Galois structures

We recall the definition of Galois structure and the concepts of trivial, normal
and central extension arising from it, as introduced in [0, [, 8]. For the sake of
simplicity we restrict ourselves to the context of Barr-exact categories [I].

Definition 1.1. A Galois structure I' = (¢, 2", H,I,n,¢,&,.%) consists of
an adjunction

I
—
A A
H
with unit n7: 1¢ = HI and counit e: TH = 14 between Barr-exact categories
¢ and 2, as well as classes of morphisms & in € and .% in 2 such that:

(1) & and .# contain all isomorphisms;
(2) & and Z are pullback-stable;
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(3) & and .# are closed under composition;
(4) H(.Z) < &,
(5) I(&) c Z.
We will follow [7] and call the morphisms in & and .# fibrations.
Definition 1.2. A trivial extension is a fibration f: A — B in % such that
the square
A - HI(A)
|
fl |10
B ﬂ? H](B)
is a pullback. A central extension is a fibration f whose pullback p*(f) along

some fibration p is a trivial extension. A normal extension is a fibration such
that its kernel pair projections are trivial extensions.

It is well known and easy to see that trivial extensions are always central
extensions and that any normal extension is automatically central.
Given an object B in € we consider the induced adjunction

(VBT (7 LI(B).

where we write (& | B) for the full subcategory of the slice category (¢ | B)
determined by morphisms in &; similarly for (% | I(B)). Here I? is the
restriction of I, and HP sends a fibration g: X — I(B) to the pullback
A— H(X
- H(X)
HE (g)l lH (9)
B 777 H[(B)

of H(g) along np.

Definition 1.3. A Galois structure I' = (¢, 2", H, I, n,¢, &, F) is said to be
admissible when all functors H? are full and faithful.

Proposition 1.4. [9, Proposition 2.4| If T is admissible, then [: € — %
preserves pullbacks along trivial extensions. In particular, the trivial extensions
are pullback-stable, so that every trivial extension is a normal extension.
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2. The Grothendieck group of a monoid

The Grothendieck group (or group completion) of a monoid (M, -, 1) is
given by a group Gp(M) together with a monoid homomorphism M — Gp(M)
which is universal with respect to monoid homomorphisms from M to groups
[10, 11, 12]. More precisely, we have

_ GpF(M)
- NW)

where GpF (M) denotes the free group on M and N(M) is the normal sub-
group generated by elements of the form [my][mz][m1 - m2]™! (from now on,
we simply write mymes instead of my - mso). This gives us an equivalence rela-
tion = on GpF (M) generated by [my][ms] = [m1ms] with equivalence classes
[mq][m2] = [mimsg]. Thus, an arbitrary element in Gp(M)—an equivalence
class of words—can be represented by a word of the form

[ ][me] ™ ][] ™ - [ ™) or - [ ] ™ ma][ma] ™ fma] - - [,

where t(n) = +1, n € N, my, ..., m, € M and no further cancellation is
possible.

Let Mon and Gp represent the categories of monoids and of groups, respecti-
vely. The group completion of a monoid determines an adjunction

Gp(M)

Gp

Mon _L_ Gp, (A)
Mon

where Mon is the forgetful functor. To simplify notation, we write Gp(M)
instead of MonGp(M) when referring to the monoid structure of Gp(M). The
counit is € = 1gp and the unit is defined, for any monoid M, by

v M — Gp(M): m — [m].

Remark 2.1. It is well known that in general 7, is neither surjective nor
injective. For example:

- The additive monoid of natural numbers is such that ny: N — Z is
an injection. In fact, my; is injective whenever M is a monoid with
cancellation.

- The monoid M = ({0,1},-,1) has a trivial Grothendieck group and
therefore n, is surjective.
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- The product N x M, for M as above, is such that Gp(N x M) = Z (in
fact, it is not difficult to see that the group completion functor preserves
products) and nyxar: N x M — Z is neither surjective nor injective.

By choosing the classes of morphisms & and .% to be the surjections in Mon
and Gp, respectively, we obtain a Galois structure

I'Mon = (Mon, Gp, Mon, Gp, n, €, &, F).

Since this is the only Galois structure we shall consider in detail, without further
mention we take all normal, central and trivial extensions in this paper with
respect to I'vion.

Theorem 2.2. The Galois structure I'yon s admassible.
Proof: For any monoid M, we must prove that the functor
Mon™: (F | Gp(M)) — (& | M)

is fully faithful. Given a morphism a: (A, f) — (B,g) in (% | Gp(M)), its
image through Mon? is defined by the universal property of the front pullback
below:

M X Gp(M) A A A
.._.._____MonM(Oz) a
Ty o
M XGp(M) B B
Mon™ (f) ; (B)

Mon (g) !

\ s

M o Gp(M).

First we prove that Mon? is faithful. Consider a, 8: (A, f) — (B, g) such
that Mon™(a) = Mon™ (). For any a € A, we prove that a(a) = B(a) by
induction on the length n (supposing that no cancellations are possible) of the
word that represents the class f(a).

If f(a) = [m], then (m,a) € M xqpar A and

Mon™ (a)(m, a) = Mon™ (8)(m, a)

implies that a(a) = B(a). If f(a) = [m]L, then f(a™') =
a(a™t) = B(a™!) as in the previous case; hence ala) = B(a).

[m] and we find



6 ANDREA MONTOLI, DIANA RODELO AND TIM VAN DER LINDEN

Suppose that a(a’) = f(a’) for those @’ € A which have f(a') represented by
a word of length n — 1 or smaller. Suppose that f(a) is represented by a word
of length n, n > 2. It can be written as the product (= concatenation) of a
word of length one and a word of length n — 1. By the surjectivity of f, their
corresponding classes can be written as f(a;) and f(a;'a), for some a; € A.
Then

a(a) = a(a)a(ay 'a) = Ba1)B(ay 'a) = B(a)
by the induction hypothesis.
Now we have to show that Mon™ is full. The proof goes in two steps:

first a proof by induction in the case when M is a free monoid (Lemma 23]
below), then an extension from the free case to the general case (the subsequent

Lemma 2.4). m
Lemma 2.3. The functor Mon™ s full for all free monoids M.

Proof: Let M be a free monoid. To simplify notation, we identify the classes
in Gp(M) with their representatives. Consider group surjections f and g as in
Diagram (BI]) and a monoid homomorphism

i (M xapan A, Mon™ () — (M xgpar) B, Mon™(g)).

We define a group homomorphism a: (A, f) — (B,g) as follows. For any
a € A, we define a(a) by decomposing a into a product of elements in the
image of m4. The main difficulty lies in proving that the result is independent
of the chosen decomposition.

If f(a) = [m] for some m € M, then (m,a) € M xgpar) A and we define

a(a) = mp((m, ).
If f(a) = [m]™!, then f(a™!) = [m] and we define

o(a) = mp(y(m,a))"".

Suppose that a = ajay* - -ai™ such that f(a;) = [m;], with m; € M, and n
is the smallest number for which such a decomposition in Gp(M) exists. Then
we must put

a(a) = mp(y(m, ar))mp(y(ma, a2)) ™ - wp(Y (M, an))""; (C)

the case a = al_laQ . -a%(n) can be treated similarly.
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To prove that « is a homomorphism, it now suffices to show that it is well
defined. That is to say, if a = z25" - - -wz(k) such that f(x;) = [l;], with [; € M,

then ([C)) must agree with

mp(v(l, 1)) (vl 22)) - wp(y (e, 2)) .

Since M is free, and hence the group Gp(M) is free, if the words
[ra]lma] ™ [ma ™ and - (W] ]

are both of minimal length, then £ = n and [; = m;. Thus we only have to
prove the result for decompositions of equal length mapping down to the same
word in Gp(M). We do this by induction on n.

Case n = 1. Suppose that a; = a = x7 and f(a;) = [m1] = f(x;) for some
my € M. Then obviously a(a;) = a(x;). The same happens if a; = a = x;
and f(a1) = [m1]™! = f(x1) for some m; € M.

More generally, let a, z € A be such that f(a) = [m] = f(x) for some
m € M. Then f(z7ta) = [1], so

o(a) = mp(y(m, a)) = mp(y(m, 2))7p(7(1, 27 a)) = a(z)a(z"a)
which implies that
alz™la) = a(z)ta(a).
This formula will be useful in the sequel of the proof.

Case n = 2. Now consider @ € A such that aja,’ = a = zy2;" and
f(a;) = [mi] = f(z;) with m; € M. Then a(z;'a;) = «
formula above. Hence :cl_lal = :C2_1a2 implies (1) ta(ay
so that

alay)alas)™ = a(z))a(z)
The case in which a;'ay = a = 27 x5 and f(a;) = [m;] = f(z;) is similar.

Case n = 3. Suppose aja; ‘a3 = a = 125 3 such that f(a;) = [m;] =
f(x;), with m; € M. Then

xflalaglag = 372_156'3

gives
alaza; ) talas) = a(zy) a(xs)
because they both map to the same word [ms]~1[m3]. Similarly,
a1a2_1 = :clxglxgagl
gives
alay)a(ay) ™ = a(z))a(azzy ') ™
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because they both map to [m][ms]™!. As a consequence, the equality
agxglm = agal_lm
above the word [ms] of length one gives
alazryzs) = alaza; x)
so that a(z1)ta(ar)a(as)™ = a(zs) ta(xs)alaz)™" and thus
alay)a(as) talas) = alor)a(xs) a(zs).

Again, the case al_lagagl =aq= xl_lxgscg_l can be treated analogously.

Case n = 4. Suppose that the result holds for all decompositions which map
down to words of minimal length n — 1 or shorter in Gp(M). Suppose that

aja; tag - cal” = a = 1175 Ty .24 such that fla;) = [mi] = f(x;), with
m; € M. Then

-1 -1 tn) _ -1 t(n)
(x] aray )ag---an = x5 w3 Xk

both map to [ma]™" - [m,]™, so by the induction hypothesis we find

alasar e Falas) - aan)™ = a(x) Faas) - - - azy,) M.
Furthermore, a(asa;'z1) = alas)a(a;) ta(z;) as shown above (case n = 3)
so that

afar)a(as) alas) - - - oan)' ™ = () o) La(ws) - - - aan ) ™.
The case a; agagl . -afz(n) =q = :cl_lschg_l . -:C%(n) being similar, this conclu-
des the proof. n

1

Lemma 2.4. The functor Mon™ is full for all monoids M.

Proof: As in the previous lemma, we simplify notation by identifying the classes
in Gp(M) with their representatives.

Consider group surjections f and g as in Diagram (Bl) as well as a group
homomorphism

v (M X Gp(M) A,MonM(f)) — (M X Gp(M) B,MonM(g)).

We cover the monoid M with the free monoid F(M) on M, then apply the
Grothendieck group functor to obtain the following commutative diagram with
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exact columns:

We pull back Mon® (f), Mon™(g) and the morphism ~ between them along
the surjection r3;. We thus obtain a diagram

M Xap(m)la

F(M) xapan) A M xgpary A — A

M X Gl B
F(M) X Gp(M) B M7 Gp(M) B M X Gp(M) B B

" (MonM ) Mon™ (f)

14 £

Gp(M).

F(M) M

M v

Since nyry = qunrr), the left hand side triangle of this diagram can also be
obtained by taking the pullbacks of f and g along qymran:

NR(M) X Gp(M) 14
F(M) X Goan) A Ie(a1) X Gp(ar) LA GpF(M) X Gp(aty A pa . A
N X nle A ,
F(M) « Gp(]\j) B IF(M) X Gp(M) GpF(M) x Gp(]\f) B PB N B
rir(Mon™ (£)) ay(f) f
ri (Mon™ (g)) a3 (9) 9
£ V£ £
F(M) GpF(M) _ - Gp(M).

e (M)

Since the functor Mon" ™) is full by Lemma 24, we find a morphism £ given
by the dotted arrow above. It suffices to show that S keeps the elements of the
kernel N(M) (of g, thus also) of p4 and pp fixed, because then it induces the
needed a: (A, f) — (B, g) by the universal property of p4 as a cokernel of its
kernel.
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The group N(M) is generated by words [my]|[msa][mims]~" as a normal sub-
group of GpF(M). Hence it suffices to prove for elements of the type

([ma][ma][mamy] ", 1)
n GpF(M) XGp(M) A that
B(Im][ma][mams] ™", 1) = ([mu][me][mime] =, 1) € GpF(M) x gpar) B-
Since f is a surjection, there exists an element a € A such that
(rar Xapary La)([ma][me], a) = (mima, a) = (ru xapar 1a)([mima], a).

For some b € B we have y(myms, a) = (myma, b), so using the commutativity
of the second diagram, we see that

rau(7)([mallmal, a) = ([ma][ma], b)

and
ru(V)([mame], a) = ([mime], ).
On the other hand, using the commutativity of the third diagram we find
B(lmullma], a) = B(nrr) X apar) La)([ma][me], )
= (py Xapar) 1) (rar(7)([ma][mo], )
([ma]lm2], b)

and, similarly, 5([mims],a) = ([mims], b), for some b € B as above. Since
is a group homomorphism, we obtain

B([ma][ma][mims] ™", 1) = B([mi][mo], a)3([mims], a)™
= ([ma][ma], b)([mama] ™", b7")
= ([ma][ma][mims] ", 1)

which concludes the proof. u

Remark 2.5. We can restrict the group completion to commutative monoids:
it is easily seen that then I'yjo, restricts to an admissible Galois structure

Tcmon = (CMon, Ab, CMon, Gp|cmon, 75 €, &, F')
induced by the (co)restriction

G'p|CMon

CMon _L_ Ab,
CMon

of the adjunction ([Al) to commutative monoids and abelian groups.
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We end this section with an example showing that the adjunction (Al) is not
semi-left-exact [5]: it is not admissible with respect to all morphisms, instead
of just the surjections [4].

Example 2.6. Consider my2: N> — 72 with morphisms f and ¢ as in Dia-
gram (B]), where A is the subgroup of Z? generated by (1, —1), f is determined
by F(1,—1) = (1,1) and

g: 2° - 7%: (k,1,m) — (k,1).

Then N2 xz2 A = 0 while N2 x22 Z3 = N2 x Z, so that the functor Mon™ is
not faithful: it maps, for instance, both a: A — B: (1,—1) — (1,—1,0) and
B:A— B:(1,-1)+~ (1,—1,1) to the zero morphism 0 — N? x Z.

3. Schreier split epimorphisms and homogeneous split epi-
morphisms

In this section we recall some definitions and results from [2] and [3]. We
work in the category Mon of monoids.

Definition 3.1. Consider a split epimorphism (f, s) with its kernel:

f
N+ XY (D)

It is called a Schreier split epimorphism when, for any z € X, there exists
a unique n € N such that x = n sf(x).

Note that when we say “split epimorphism” we consider the chosen splitting as
part of the structure; and for the sake of simplicity, we take canonical kernels—
so N is a subset of X.

Definition 3.2. The split epimorphism (D)) is said to be right homogene-
ous when, for every element y € Y, the function p,: N — f~!(y) defined
through multiplication on the right by s(y), so p,(n) = ns(y), is bijective.
Similarly, by duality, we can define a left homogeneous split epimorphism:
now the function N — f~(y): n — s(y)n must be a bijection for all y € Y.
A split epimorphism is said to be homogeneous when it is both right and left
homogeneous.
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Proposition 3.3. |2, Propositions 2.3 and 2.4| Consider a split epimorphism
(f,s) as in (D). The following statements are equivalent:
(i) (f,s) is a Schreier split epimorphism;
(ii) there exists a unique function q: X — N such that q(z)sf(x) = z, for
all v e X;
(iii) there exists a function q: X — N such that q(x)sf(x) = = and
q(n s(y)) =n, forallne N,z e X andyeY;
(iv) (f,s) is right homogeneous.

Definition 3.4. Given monoids Y and NN, an action of Y on NN is a mo-
noid homomorphism ¢: Y — End(NN), where End(/N) is the monoid of endo-
morphisms of V.

Actions correspond to Schreier split epimorphisms via a semidirect product

construction:

3.5. Semidirect products. It is shown in [I3] that any Schreier split epi-
morphism (D) corresponds to an action ¢ of Y on N defined by
p(y)(n) ="n=q(s(y) n)
for y € Y and n € N. Thus (f,s) is isomorphic, as a split epimorphism, to
my
N x,Y —Y,
Nag 7 n
where IV %, Y is the semidirect product of N and Y with respect to ¢: the
cartesian product of sets N x Y equipped with the operation
(1, 91) - (T2, 92) = (21 .y, (2), Y172),
where ¢,, = ¢(y1) € Aut(N). See [13], [2] or Chapter 5 in [3] for more details.

Proposition 3.6. [2, Proposition 3.8] A Schreier split epimorphism (Dl) is
homogeneous if and only if the corresponding action ¢: Y — End(N) factors
through the group Aut(N) of automorphisms of N.

Lemma 3.7. [2] Lemma 4.1| Consider the morphism of Schreier split epi-
morphisms
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and their kernels, and the restriction u of w to N. Then the left hand side
square consisting of the functions q and ¢’ also commutes: ¢'u = uq.

This lemma has the following useful consequence.

Corollary 3.8. Gwen a morphism between Schreier split epimorphisms as in

Lemma [371, the homomorphism U preserves the action of the object Y on N:
forallyeY andn e N,
U(¥n) = "Wa(n).

Proof: We have
u("n) = q(s(y) n) = q'u(s(y) n) = ¢'(us(y) u(n))
= ¢(s'0(y) @(n)) = "Wa(n). u

We now extend these concepts to surjections which are not necessarily split.

Definition 3.9. Given a surjective homomorphism ¢ of monoids and its kernel
pair

Uyt

Eq(g)=a=X—>Y, (E)

o
g is called a special Schreier surjection when (7, A) is a Schreier split
epimorphism. It is called a special homogeneous surjection when (71, A)
is a homogeneous split epimorphism.

As a consequence of Theorem 5.5 in [2], if ¢ is a special Schreier surjection,
then its kernel is necessarily a group.

Remark 3.10. The name Schreier extension was used in [16, 14] to describe
a different, but closely related concept.

Remark 3.11. A special Schreier (resp. homogeneous) surjection which is a
split epimorphism is always a Schreier (resp. homogeneous) split epimorphism.
However, a Schreier (resp. homogeneous) split epimorphism is not necessarily
a special Schreier (resp. homogeneous) surjection. Indeed, according to Prop-
osition 3.1.12 in [3], a Schreier (resp. homogeneous) split epimorphism is a
special Schreier (resp. homogeneous) surjection if and only if its kernel is a
group. In fact, by Proposition 2.3.4 in [3], taking the kernel pair of a Schreier
split epimorphism (f, s) as in (D), we do obtain a Schreier split epimorphism
(m1,{sf,1x)). Nevertheless, the split epimorphism (7, A) need not be Sch-
reier.
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As a consequence of Theorem 5.5 in [2] and of the remark above we have:

Corollary 3.12. A surjective homomorphism g as in ([El) is a special Schreier
(resp. special homogeneous) surjection if and only if the kernel pair projec-
tion 71 is a special Schreier (resp. special homogeneous) surjection.

Proposition 3.13. [3, Proposition 7.1.4| Special Schreier and special homoge-
neous surjections are stable under products and pullbacks.

Proposition 3.14. [3, Proposition 7.1.5| Given any pullback

X i> X!
B b

Y?> Y’

with g and h surjective homomorphisms, if f is a special Schreier (resp. special
homogeneous) surjection, then so is f'.

Proposition 3.15. [2, Proposition 3.4 Any split epimorphism (Dl) such that Y
1S a group is a homogeneous split epimorphism.

Remark 3.16. According to the proposition above and to Remark B.11], a split
epimorphism (D)) such that Y is a group is a special homogeneous surjection if
and only if its kernel N is a group. Moreover, every surjective homomorphism
between groups is a special homogeneous surjection.

4. Normal extensions and central extensions

In this section we characterise the trivial split extensions, the central and the
normal extensions in the Galois structure I'y,,. The central extensions turn out
to be precisely the special homogeneous surjections, while a split epimorphism
of monoids is a trivial extension if and only if it is a special homogeneous
surjection. This gives a characterisation which does not refer to the underlying
split epimorphism of sets: Definition in terms of elements, Proposition [3.3
where the splitting ¢ is a function rather than a morphism of monoids.
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Lemma 4.1. Any morphism of homogeneous split epimorphisms and their
kernels

l l fls |
N'+—> X' == Gp(Y)

s’

factors into the composite

| =l
]\7[> >X”%>Gp )

: S”
VoS

NIHX/ —_— Gp )

of morphisms of homogeneous split epimorphisms and theiwr kernels, where ¢
is as in Proposition[3.8 and X" = N x5z Gp(Y') for p: Gp(Y) — Aut(N), the
unique group homomorphism satisfying © = ©ny .

Proof: As mentioned above, we have X =~ Nx,Y for ¢: Y — Aut(V). By ad-

jointness, this monoid morphism ¢ gives rise to a unique group homomorphism
?: Gp(Y) — Aut(N) for which @ny = ¢. Note that @ is necessarily given by

Plyidly2l ™t [yl ™) = @0, - € Aut(N) (F)

and

P[] wel - [l ™) = @, 0y, - ™ € Aut(N). (G)

Via the functoriality of the semidirect product construction this already yields
the upper part of the diagram, where ny = 1x xny. This leaves us with finding
— X// N X/

The needed morphism %: N x5 Gp(Y) — N’ x,, Gp(Y), where 9 is the ac-
tion for which X' = N’ %, Gp( ), is induced once we prove that ¥ is a
morphism of Gp(Y')-actions. More precisely, we have to show that

u(.(n)) = ¢.(u(n))
for all z € Gp(Y) and n € N. Corollary B.8 and the fact that ¢ = pny tell
us precisely that this equality holds for generators z = ny(y) of Gp(Y), so
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it suffices to check that it extends to all elements of Gp(Y). This needs a
straightforward verification based on () and (GI). u

Proposition 4.2. Consider a split epimorphism (f,s) as in (D). The fol-
lowing statements are equivalent:

(i) f is a trivial extension;
(i) f is a special homogeneous surjection.

Proof: (i) = (ii) If f is a trivial extension, then by definition the diagram

f
X—Y

nx Ny H
l Gp(f) l ( )
Gp(X) = Gp(Y)

Gp(s)

is a pullback. By Remark B.I6, the group homomorphism Gp(f) is a special
homogeneous surjection; hence so is f by Proposition [3.13]

(ii) = (i) Given a split epimorphism (f, s) which is a special homogeneous
surjection, we have to show that the square (HJ) is a pullback. Taking kernels
we obtain the morphism of special homogeneous surjections and their kernels

No— X ————>

where, in particular, the kernel N of f is a group. By Theorem 2.3.7 in [3], the
square (H)) is a pullback precisely when 7 is an isomorphism.
Lemma [A.1] gives us the diagram of solid arrows

NHX:>Y

S
W
f”

N[: S XII %ﬂ> Gp

A s
S
- Gp(f)
K> Gp(X) == Gp(Y).
p(s

Gp(s)
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On the other hand, since X" is a group (thanks to Remark B.I6]), the uni-
versal property of Gp(X) makes 7y induce a unique group homomorphism
g: Gp(X) — X" such that gnx = 7jy. Note that this ¢ is actually a morphism
of split epimorphisms:

f'anx = fy =0y f = Gp(f)nx
so that f”g = Gp(f) by the universal property of 7x, while

gGp(s)ny = gnxs =Tys = s"ny

and thus gGp(s) = s".

Finally, we have Txg = lgy(x) since xgnx = Tx7Ny = nx. On the other
hand, using Lemma 2.1.6 in [3]—which says that Schreier split epimorphisms
are strongly split epimorphisms, that is, the kernel and the section are jointly
strongly epimorphic—from

gixk" = gixivk = gnxk =Tyk =k and  gixs” = gGp(s) = "
we conclude that ¢gnxy = 1x». In particular, the arrow nx is an isomorphism,
hence the square (H) is a pullback. |

Theorem 4.3. For a surjective homomorphism of monoids g, the following
statements are equivalent:

(i) g is a central extension;
(i) g is a normal extension;
(iii) g is a special homogeneous surjection.

Proof: Consider a surjective homomorphism and its kernel pair (El). Then ¢ is
a normal extension

< 18 a trivial extension
< 7 is a special homogeneous surjection

< g is a special homogeneous surjection.

A normal extension is always a central extension by definition. To prove that
(i) implies (iii), let us suppose that g is a central extension. Then there exists a
fibration p such that p*(g) is a trivial extension, which makes it a normal exten-
sion by Proposition [[L4] hence a special homogeneous surjection by (ii) = (iii).
Since p is a surjective homomorphism, we can apply Proposition [3.14] to con-
clude that ¢ is a special homogeneous surjection, too. u
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4.4. What about special Schreier surjections? A natural question that
arises is, whether the special Schreier surjections admit a similar characteri-
sation. More precisely, does the reflection ([Al) factorise in such a way that
the special Schreier surjections become the central extensions with respect to
this new adjunction? As explained in the proof of Proposition 4.2l any split
epimorphism of groups is necessarily special homogeneous, which implies that
so are the central extensions. Hence we would need a reflective subcategory 2
of Mon in which all spit epimorphisms are Schreier split epimorphisms. By
Corollary 3.1.7 in [3] though, this would mean that 2" is contained in the
category of groups, which defeats the purpose.
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