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Introduction

An action of a monoid B on a monoid X can be defined as a monoid homo-
morphism B Ñ EndpXq, where EndpXq is the monoid of endomorphisms ofX.
These actions were studied in [15], where it is shown that they are equivalent to
a certain class of split epimorphisms, called Schreier split epimorphisms in the
recent paper [13]. Some properties of Schreier split epimorphisms, as well as
the closely related notions of special Schreier surjection and Schreier reflexive
relation, were then studied in [2] and [3], where the foundations for a coho-
mology theory of monoids are laid. Many typical properties of the category
of groups, such as the Split Short Five Lemma or the fact that any internal
reflexive relation is transitive, remain valid in the category of monoids when,
in the spirit of relative homological algebra, those properties are restricted to
Schreier split epimorphisms and Schreier reflexive relations. When an action
B Ñ EndpXq factors through the group AutpXq of automorphisms of X, the
corresponding split epimorphism is called homogeneous [2]. Some properties
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of homogeneous split epimorphisms and of the related notions of special homo-
geneous surjection and homogeneous reflexive relation were also studied in [2]
and [3].

The aim of the present paper is to approach the concept of homogeneous split
epimorphism from the point of view of categorical Galois theory [6, 7]. Recall
that the classical Grothendieck group or group completion construction [10,
11, 12] gives an adjunction between the categories Mon of monoids and Gp

of groups, which is relevant for instance in K-theory, where it is used in the
definition of K0. We prove that this adjunction is admissible in the sense of
categorical Galois theory, when it is considered with respect to the class of
surjective homomorphisms both in Mon and in Gp. We further show that the
central extensions with respect to this adjunction are the special homogeneous
surjections. This gives a positive answer to the question whether homogeneous
split epimorphisms can be characterised in a way which does not refer to the
underlying split epimorphism of sets.

The paper is organised as follows. In Section 1 we recall some basic notions
of categorical Galois theory. In Section 2 we prove that the Grothendieck group
adjunction is part of an admissible Galois structure (Theorem 2.2). In Section 3
we recall the definitions of Schreier split epimorphism and homogeneous split
epimorphism, special Schreier surjection and special homogeneous surjection
together with some of their properties. In Section 4 we show that the central
extensions with respect to the Galois structure under consideration are exactly
the special homogeneous surjections (Theorem 4.3).

1. Galois structures

We recall the definition of Galois structure and the concepts of trivial, normal
and central extension arising from it, as introduced in [6, 7, 8]. For the sake of
simplicity we restrict ourselves to the context of Barr-exact categories [1].

Definition 1.1. A Galois structure Γ � pC ,X , H, I, η, ǫ, E ,F q consists of
an adjunction

C

I ,2K X

H
lr

with unit η : 1C ñ HI and counit ǫ : IH ñ 1X between Barr-exact categories
C and X , as well as classes of morphisms E in C and F in X such that:

(1) E and F contain all isomorphisms;
(2) E and F are pullback-stable;
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(3) E and F are closed under composition;
(4) HpF q � E ;
(5) IpE q � F .

We will follow [7] and call the morphisms in E and F fibrations.

Definition 1.2. A trivial extension is a fibration f : AÑ B in C such that
the square

A
ηA ,2

f

��

HIpAq
HIpfq

��

B ηB
,2 HIpBq

is a pullback. A central extension is a fibration f whose pullback p�pfq along
some fibration p is a trivial extension. A normal extension is a fibration such
that its kernel pair projections are trivial extensions.

It is well known and easy to see that trivial extensions are always central
extensions and that any normal extension is automatically central.

Given an object B in C we consider the induced adjunctionpE Ó Bq IB ,2K pF Ó IpBqq,
HB

lr

where we write pE Ó Bq for the full subcategory of the slice category pC Ó Bq
determined by morphisms in E ; similarly for pF Ó IpBqq. Here IB is the
restriction of I , and HB sends a fibration g : X Ñ IpBq to the pullback

A ,2

HBpgq
��

HpXq
Hpgq

��

B ηB
,2 HIpBq

of Hpgq along ηB.

Definition 1.3. A Galois structure Γ � pC ,X , H, I, η, ǫ, E ,F q is said to be
admissible when all functors HB are full and faithful.

Proposition 1.4. [9, Proposition 2.4] If Γ is admissible, then I : C Ñ X

preserves pullbacks along trivial extensions. In particular, the trivial extensions
are pullback-stable, so that every trivial extension is a normal extension.
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2. The Grothendieck group of a monoid

The Grothendieck group (or group completion) of a monoid pM, �, 1q is
given by a group GppMq together with a monoid homomorphismM Ñ GppMq
which is universal with respect to monoid homomorphisms from M to groups
[10, 11, 12]. More precisely, we have

GppMq � GpFpMq
NpMq ,

where GpFpMq denotes the free group on M and NpMq is the normal sub-
group generated by elements of the form rm1srm2srm1 �m2s�1 (from now on,
we simply write m1m2 instead of m1 �m2). This gives us an equivalence rela-
tion � on GpFpMq generated by rm1srm2s � rm1m2s with equivalence classesrm1srm2s � rm1m2s. Thus, an arbitrary element in GppMq—an equivalence
class of words—can be represented by a word of the formrm1srm2s�1rm3srm4s�1 � � � rmnsιpnq or rm1s�1rm2srm3s�1rm4s � � � rmnsιpnq,
where ιpnq � �1, n P N, m1, . . . , mn P M and no further cancellation is
possible.

Let Mon and Gp represent the categories of monoids and of groups, respecti-
vely. The group completion of a monoid determines an adjunction

Mon

Gp
,2K Gp,

Mon
lr (A)

where Mon is the forgetful functor. To simplify notation, we write GppMq
instead of MonGppMq when referring to the monoid structure of GppMq. The
counit is ǫ � 1Gp and the unit is defined, for any monoid M , by

ηM : M Ñ GppMq : m ÞÑ rms.
Remark 2.1. It is well known that in general ηM is neither surjective nor
injective. For example:� The additive monoid of natural numbers is such that ηN : NÑ Z is

an injection. In fact, ηM is injective whenever M is a monoid with
cancellation.� The monoid M � pt0, 1u, �, 1q has a trivial Grothendieck group and
therefore ηM is surjective.



A GALOIS THEORY FOR MONOIDS 5� The product N�M , for M as above, is such that GppN�Mq � Z (in
fact, it is not difficult to see that the group completion functor preserves
products) and ηN�M : N�M Ñ Z is neither surjective nor injective.

By choosing the classes of morphisms E and F to be the surjections in Mon

and Gp, respectively, we obtain a Galois structure

ΓMon � pMon,Gp,Mon,Gp, η, ǫ, E ,F q.
Since this is the only Galois structure we shall consider in detail, without further
mention we take all normal, central and trivial extensions in this paper with
respect to ΓMon.

Theorem 2.2. The Galois structure ΓMon is admissible.

Proof : For any monoid M , we must prove that the functor

MonM : pF Ó GppMqq Ñ pE ÓMq
is fully faithful. Given a morphism α : pA, fq Ñ pB, gq in pF Ó GppMqq, its
image through MonM is defined by the universal property of the front pullback
below:

M �GppMq A πA ,2

MonM pfq
����

MonM pαq
!)

A

f

����

α

!)LLLLLLLLLLLLLLL

M �GppMq B
MonM pgq

|� |��
��

��
��

��
��

��
��

��
��

πB ,2 B

g

|� |��
��

��
��

��
��

��
��

��
��

�

M ηM
,2 GppMq.

(B)

First we prove that MonM is faithful. Consider α, β : pA, fq Ñ pB, gq such
that MonMpαq � MonMpβq. For any a P A, we prove that αpaq � βpaq by
induction on the length n (supposing that no cancellations are possible) of the
word that represents the class fpaq.

If fpaq � rms, then pm, aq PM �GppMq A and

MonMpαqpm, aq � MonMpβqpm, aq
implies that αpaq � βpaq. If fpaq � rms�1, then fpa�1q � rms and we find
αpa�1q � βpa�1q as in the previous case; hence αpaq � βpaq.
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Suppose that αpa1q � βpa1q for those a1 P A which have fpa1q represented by
a word of length n� 1 or smaller. Suppose that fpaq is represented by a word
of length n, n ¥ 2. It can be written as the product (= concatenation) of a
word of length one and a word of length n� 1. By the surjectivity of f , their
corresponding classes can be written as fpa1q and fpa�1

1 aq, for some a1 P A.
Then

αpaq � αpa1qαpa�1
1 aq � βpa1qβpa�1

1 aq � βpaq
by the induction hypothesis.

Now we have to show that MonM is full. The proof goes in two steps:
first a proof by induction in the case when M is a free monoid (Lemma 2.3
below), then an extension from the free case to the general case (the subsequent
Lemma 2.4).

Lemma 2.3. The functor MonM is full for all free monoids M .

Proof : Let M be a free monoid. To simplify notation, we identify the classes
in GppMq with their representatives. Consider group surjections f and g as in
Diagram (B) and a monoid homomorphism

γ : pM �GppMq A,MonMpfqq Ñ pM �GppMq B,MonMpgqq.
We define a group homomorphism α : pA, fq Ñ pB, gq as follows. For any
a P A, we define αpaq by decomposing a into a product of elements in the
image of πA. The main difficulty lies in proving that the result is independent
of the chosen decomposition.

If fpaq � rms for some m PM , then pm, aq PM �GppMq A and we define

αpaq� πBpγpm, aqq.
If fpaq � rms�1, then fpa�1q � rms and we define

αpaq� πBpγpm, a�1qq�1.

Suppose that a � a1a
�1
2 � � � aιpnqn such that fpaiq � rmis, with mi PM , and n

is the smallest number for which such a decomposition in GppMq exists. Then
we must put

αpaq � πBpγpm1, a1qqπBpγpm2, a2qq�1 � � �πBpγpmn, anqqιpnq; (C)

the case a � a�1
1 a2 � � �aιpnqn can be treated similarly.
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To prove that α is a homomorphism, it now suffices to show that it is well

defined. That is to say, if a � x1x
�1
2 � � �xιpkqk such that fpxiq � rlis, with li PM ,

then (C) must agree with

πBpγpl1, x1qqπBpγpl2, x2qq�1 � � �πBpγplk, xkqqιpkq.
Since M is free, and hence the group GppMq is free, if the wordsrm1srm2s�1 � � � rmnsιpnq and rl1srl2s�1 � � � rlksιpkq
are both of minimal length, then k � n and li � mi. Thus we only have to
prove the result for decompositions of equal length mapping down to the same
word in GppMq. We do this by induction on n.

Case n � 1. Suppose that a1 � a � x1 and fpa1q � rm1s � fpx1q for some
m1 P M . Then obviously αpa1q � αpx1q. The same happens if a1 � a � x1
and fpa1q � rm1s�1 � fpx1q for some m1 PM .

More generally, let a, x P A be such that fpaq � rms � fpxq for some
m PM . Then fpx�1aq � r1s, so

αpaq � πBpγpm, aqq � πBpγpm, xqqπBpγp1, x�1aqq � αpxqαpx�1aq
which implies that

αpx�1aq � αpxq�1αpaq.
This formula will be useful in the sequel of the proof.

Case n � 2. Now consider a P A such that a1a
�1
2 � a � x1x

�1
2 and

fpaiq � rmis � fpxiq with mi P M . Then αpx�1
i aiq � αpxiq�1αpaiq by the

formula above. Hence x�1
1 a1 � x�1

2 a2 implies αpx1q�1αpa1q � αpx2q�1αpa2q,
so that

αpa1qαpa2q�1 � αpx1qαpx2q�1.

The case in which a�1
1 a2 � a � x�1

1 x2 and fpaiq � rmis � fpxiq is similar.
Case n � 3. Suppose a1a

�1
2 a3 � a � x1x

�1
2 x3 such that fpaiq � rmis �

fpxiq, with mi PM . Then

x�1
1 a1a

�1
2 a3 � x�1

2 x3

gives
αpa2a�1

1 x1q�1αpa3q � αpx2q�1αpx3q
because they both map to the same word rm2s�1rm3s. Similarly,

a1a
�1
2 � x1x

�1
2 x3a

�1
3

gives
αpa1qαpa2q�1 � αpx1qαpa3x�1

3 x2q�1
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because they both map to rm1srm2s�1. As a consequence, the equality

a3x
�1
3 x2 � a2a

�1
1 x1

above the word rm2s of length one gives

αpa3x�1
3 x2q � αpa2a�1

1 x1q
so that αpx1q�1αpa1qαpa2q�1 � αpx2q�1αpx3qαpa3q�1 and thus

αpa1qαpa2q�1αpa3q � αpx1qαpx2q�1αpx3q.
Again, the case a�1

1 a2a
�1
3 � a � x�1

1 x2x
�1
3 can be treated analogously.

Case n ¥ 4. Suppose that the result holds for all decompositions which map
down to words of minimal length n � 1 or shorter in GppMq. Suppose that

a1a
�1
2 a3 � � � aιpnqn � a � x1x

�1
2 x3 � � �xιpnqn such that fpaiq � rmis � fpxiq, with

mi PM . Then px�1
1 a1a

�1
2 qa3 � � �aιpnqn � x�1

2 x3 � � �xιpnqn

both map to rm2s�1 � � � rmnsιpnq, so by the induction hypothesis we find

αpa2a�1
1 x1q�1αpa3q � � �αpanqιpnq � αpx2q�1αpx3q � � �αpxnqιpnq.

Furthermore, αpa2a�1
1 x1q � αpa2qαpa1q�1αpx1q as shown above (case n � 3)

so that

αpa1qαpa2q�1αpa3q � � �αpanqιpnq � αpx1qαpx2q�1αpx3q � � �αpxnqιpnq.
The case a�1

1 a2a
�1
3 � � �aιpnqn � a � x�1

1 x2x
�1
3 � � �xιpnqn being similar, this conclu-

des the proof.

Lemma 2.4. The functor MonM is full for all monoids M .

Proof : As in the previous lemma, we simplify notation by identifying the classes
in GppMq with their representatives.

Consider group surjections f and g as in Diagram (B) as well as a group
homomorphism

γ : pM �GppMq A,MonMpfqq Ñ pM �GppMq B,MonMpgqq.
We cover the monoid M with the free monoid FpMq on M , then apply the
Grothendieck group functor to obtain the following commutative diagram with
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exact columns:

KerprMq
_��

��

,2 NpMq
_��

��

FpMq ,2
ηFpMq

,2

rM
����

GpFpMq
qM

_��

M ηM
,2 GppMq.

We pull back MonMpfq, MonMpgq and the morphism γ between them along
the surjection rM . We thus obtain a diagram

FpMq �GppMq A
r�
M
pMonM pfqq

����

rM�GppMq1A
,2,2

r�
M
pγq

$,QQQQQQQQQQQQ
M �GppMq A πA ,2

MonM pfq
����

γ

$,QQQQQQQQQQQQQ
A

f

����

FpMq �GppMq B
r�
M
pMonM pgqq

x� x�{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{

rM�GppMq1B
,2,2 M �GppMq B

MonM pgq
x� x�{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{

πB ,2 B

g

x� x�{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

FpMq
rM

,2,2 M ηM
,2 GppMq.

Since ηMrM � qMηF pMq, the left hand side triangle of this diagram can also be
obtained by taking the pullbacks of f and g along qMηF pMq:

FpMq �GppMq A
r�
M
pMonM pfqq

����

,2
ηFpMq�GppMq1A

,2

r�
M
pγq

$,QQQQQQQQQQQQ
GpFpMq �GppMq A pA � ,2

q�
M
pfq

����

β

$,

A

f

����

FpMq �GppMq B
r�
M
pMonM pgqq

x� x�{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{

,2
ηFpMq�GppMq1B

,2 GpFpMq �GppMq B
q�
M
pgq

x� x�{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{

pB � ,2 B

g

x� x�{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

FpMq ,2
ηFpMq ,2 GpFpMq

qM

� ,2 GppMq.
Since the functor MonFpMq is full by Lemma 2.4, we find a morphism β given
by the dotted arrow above. It suffices to show that β keeps the elements of the
kernel NpMq (of qM , thus also) of pA and pB fixed, because then it induces the
needed α : pA, fq Ñ pB, gq by the universal property of pA as a cokernel of its
kernel.
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The group NpMq is generated by words rm1srm2srm1m2s�1 as a normal sub-
group of GpFpMq. Hence it suffices to prove for elements of the typeprm1srm2srm1m2s�1, 1q
in GpFpMq �GppMq A that

βprm1srm2srm1m2s�1, 1q � prm1srm2srm1m2s�1, 1q P GpFpMq �GppMq B.
Since f is a surjection, there exists an element a P A such thatprM �GppMq 1Aqprm1srm2s, aq � pm1m2, aq � prM �GppMq 1Aqprm1m2s, aq.

For some b P B we have γpm1m2, aq � pm1m2, bq, so using the commutativity
of the second diagram, we see that

r�Mpγqprm1srm2s, aq � prm1srm2s, bq
and

r�Mpγqprm1m2s, aq � prm1m2s, bq.
On the other hand, using the commutativity of the third diagram we find

βprm1srm2s, aq � βpηFpMq �GppMq 1Aqprm1srm2s, aq� pηFpMq �GppMq 1Bqpr�Mpγqprm1srm2s, aqq� prm1srm2s, bq
and, similarly, βprm1m2s, aq � prm1m2s, bq, for some b P B as above. Since β
is a group homomorphism, we obtain

βprm1srm2srm1m2s�1, 1q � βprm1srm2s, aqβprm1m2s, aq�1� prm1srm2s, bqprm1m2s�1, b�1q� prm1srm2srm1m2s�1, 1q
which concludes the proof.

Remark 2.5. We can restrict the group completion to commutative monoids:
it is easily seen that then ΓMon restricts to an admissible Galois structure

ΓCMon � pCMon,Ab,CMon,Gp|CMon, η
1, ǫ1, E 1,F 1q

induced by the (co)restriction

CMon

Gp|CMon
,2K Ab,

CMon
lr

of the adjunction (A) to commutative monoids and abelian groups.
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We end this section with an example showing that the adjunction (A) is not
semi-left-exact [5]: it is not admissible with respect to all morphisms, instead
of just the surjections [4].

Example 2.6. Consider ηN2 : N2 Ñ Z2 with morphisms f and g as in Dia-
gram (B), where A is the subgroup of Z2 generated by p1,�1q, f is determined
by fp1,�1q � p1,�1q and

g : Z3 Ñ Z2 : pk, l,mq ÞÑ pk, lq.
Then N2 �Z2 A � 0 while N2 �Z2 Z3 � N2 � Z, so that the functor MonM is
not faithful: it maps, for instance, both α : AÑ B : p1,�1q ÞÑ p1,�1, 0q and
β : AÑ B : p1,�1q ÞÑ p1,�1, 1q to the zero morphism 0 Ñ N2 � Z.

3. Schreier split epimorphisms and homogeneous split epi-

morphisms

In this section we recall some definitions and results from [2] and [3]. We
work in the category Mon of monoids.

Definition 3.1. Consider a split epimorphism pf, sq with its kernel:

N
� ,2
k

,2 X
f

,2,2
Y.

s
lr (D)

It is called a Schreier split epimorphism when, for any x P X, there exists
a unique n P N such that x � n sfpxq.

Note that when we say “split epimorphism” we consider the chosen splitting as
part of the structure; and for the sake of simplicity, we take canonical kernels—
so N is a subset of X.

Definition 3.2. The split epimorphism (D) is said to be right homogene-

ous when, for every element y P Y , the function µy : N Ñ f�1pyq defined
through multiplication on the right by spyq, so µypnq � n spyq, is bijective.
Similarly, by duality, we can define a left homogeneous split epimorphism:
now the function N Ñ f�1pyq : n ÞÑ spyqn must be a bijection for all y P Y .
A split epimorphism is said to be homogeneous when it is both right and left
homogeneous.
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Proposition 3.3. [2, Propositions 2.3 and 2.4] Consider a split epimorphismpf, sq as in (D). The following statements are equivalent:

(i) pf, sq is a Schreier split epimorphism;
(ii) there exists a unique function q : X Ñ N such that qpxqsfpxq � x, for

all x P X;
(iii) there exists a function q : X Ñ N such that qpxqsfpxq � x and

qpn spyqq � n, for all n P N , x P X and y P Y ;
(iv) pf, sq is right homogeneous.

Definition 3.4. Given monoids Y and N , an action of Y on N is a mo-
noid homomorphism ϕ : Y Ñ EndpNq, where EndpNq is the monoid of endo-
morphisms of N .

Actions correspond to Schreier split epimorphisms via a semidirect product
construction:

3.5. Semidirect products. It is shown in [13] that any Schreier split epi-
morphism (D) corresponds to an action ϕ of Y on N defined by

ϕpyqpnq � yn � qpspyq nq
for y P Y and n P N . Thus pf, sq is isomorphic, as a split epimorphism, to

N x1,0y ,2 N �ϕ Y
πY ,2 Y,x0,1ylr

where N �ϕ Y is the semidirect product of N and Y with respect to ϕ: the
cartesian product of sets N � Y equipped with the operationpx1, y1q � px2, y2q � px1 ϕy1px2q, y1y2q,
where ϕy1 � ϕpy1q P AutpNq. See [13], [2] or Chapter 5 in [3] for more details.

Proposition 3.6. [2, Proposition 3.8] A Schreier split epimorphism (D) is
homogeneous if and only if the corresponding action ϕ : Y Ñ EndpNq factors
through the group AutpNq of automorphisms of N .

Lemma 3.7. [2, Lemma 4.1] Consider the morphism of Schreier split epi-
morphisms

Nru
��

� ,2
k

,2 X

u
��

f
,2,2

q
lr_ _ _

Y
s

lr

v
��

N 1 � ,2
k1 ,2 X 1q1

lr_ _ _
f 1

,2,2
Y 1

s1lr
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and their kernels, and the restriction ru of u to N . Then the left hand side
square consisting of the functions q and q1 also commutes: q1u � ruq.

This lemma has the following useful consequence.

Corollary 3.8. Given a morphism between Schreier split epimorphisms as in
Lemma 3.7, the homomorphism ru preserves the action of the object Y on N :
for all y P Y and n P N , rupynq � vpyqrupnq.
Proof : We haverupynq � ruqpspyq nq � q1upspyq nq � q1puspyq upnqq� q1ps1vpyq rupnqq � vpyqrupnq.

We now extend these concepts to surjections which are not necessarily split.

Definition 3.9. Given a surjective homomorphism g of monoids and its kernel
pair

Eqpgq π1 ,2

π2
,2X∆lr

g
,2,2 Y, (E)

g is called a special Schreier surjection when pπ1,∆q is a Schreier split
epimorphism. It is called a special homogeneous surjection when pπ1,∆q
is a homogeneous split epimorphism.

As a consequence of Theorem 5.5 in [2], if g is a special Schreier surjection,
then its kernel is necessarily a group.

Remark 3.10. The name Schreier extension was used in [16, 14] to describe
a different, but closely related concept.

Remark 3.11. A special Schreier (resp. homogeneous) surjection which is a
split epimorphism is always a Schreier (resp. homogeneous) split epimorphism.
However, a Schreier (resp. homogeneous) split epimorphism is not necessarily
a special Schreier (resp. homogeneous) surjection. Indeed, according to Prop-
osition 3.1.12 in [3], a Schreier (resp. homogeneous) split epimorphism is a
special Schreier (resp. homogeneous) surjection if and only if its kernel is a
group. In fact, by Proposition 2.3.4 in [3], taking the kernel pair of a Schreier
split epimorphism pf, sq as in (D), we do obtain a Schreier split epimorphismpπ1, xsf, 1Xyq. Nevertheless, the split epimorphism pπ1,∆q need not be Sch-
reier.
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As a consequence of Theorem 5.5 in [2] and of the remark above we have:

Corollary 3.12. A surjective homomorphism g as in (E) is a special Schreier
(resp. special homogeneous) surjection if and only if the kernel pair projec-
tion π1 is a special Schreier (resp. special homogeneous) surjection.

Proposition 3.13. [3, Proposition 7.1.4] Special Schreier and special homoge-
neous surjections are stable under products and pullbacks.

Proposition 3.14. [3, Proposition 7.1.5] Given any pullback

X

f
����

g
,2,2 X 1

f 1
����

Y
h

,2,2 Y 1
with g and h surjective homomorphisms, if f is a special Schreier (resp. special
homogeneous) surjection, then so is f 1.
Proposition 3.15. [2, Proposition 3.4] Any split epimorphism (D) such that Y
is a group is a homogeneous split epimorphism.

Remark 3.16. According to the proposition above and to Remark 3.11, a split
epimorphism (D) such that Y is a group is a special homogeneous surjection if
and only if its kernel N is a group. Moreover, every surjective homomorphism
between groups is a special homogeneous surjection.

4. Normal extensions and central extensions

In this section we characterise the trivial split extensions, the central and the
normal extensions in the Galois structure ΓMon. The central extensions turn out
to be precisely the special homogeneous surjections, while a split epimorphism
of monoids is a trivial extension if and only if it is a special homogeneous
surjection. This gives a characterisation which does not refer to the underlying
split epimorphism of sets: Definition 3.2 in terms of elements, Proposition 3.3
where the splitting q is a function rather than a morphism of monoids.
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Lemma 4.1. Any morphism of homogeneous split epimorphisms and their
kernels

Nru
��

� ,2 k ,2 X

u
��

f
,2,2
Y

s
lr

ηY
��

N 1 � ,2
k1 ,2 X 1 f 1

,2,2
GppY q

s1lr

factors into the composite

N
� ,2 k ,2 X

ηY
��

f
,2,2
Y

s
lr

ηY
��

Nru
��

� ,2
k2 ,2 X2 f2

,2,2

u
��

GppY q
s2lr

N 1 � ,2
k1 ,2 X 1 f 1

,2,2
GppY q

s1lr

of morphisms of homogeneous split epimorphisms and their kernels, where ϕ
is as in Proposition 3.6 and X2 � N �ϕGppY q for ϕ : GppY q Ñ AutpNq, the
unique group homomorphism satisfying ϕ � ϕηY .

Proof : As mentioned above, we haveX � N�ϕY for ϕ : Y Ñ AutpNq. By ad-
jointness, this monoid morphism ϕ gives rise to a unique group homomorphism
ϕ : GppY q Ñ AutpNq for which ϕηY � ϕ. Note that ϕ is necessarily given by

ϕpry1sry2s�1 � � � rynsιpnqq � ϕy1ϕ
�1
y2
� � �ϕιpnqyn

P AutpNq (F)

and

ϕpry1s�1ry2s � � � rynsιpnqq � ϕ�1
y1
ϕy2 � � �ϕιpnqyn

P AutpNq. (G)

Via the functoriality of the semidirect product construction this already yields
the upper part of the diagram, where ηY � 1N�ηY . This leaves us with finding
u : X2 Ñ X 1.

The needed morphism u : N �ϕ GppY q Ñ N 1 �ψ GppY q, where ψ is the ac-
tion for which X 1 � N 1 �ψ GppY q, is induced once we prove that ru is a
morphism of GppY q-actions. More precisely, we have to show thatrupϕzpnqq � ψzprupnqq
for all z P GppY q and n P N . Corollary 3.8 and the fact that ϕ � ϕηY tell
us precisely that this equality holds for generators z � ηY pyq of GppY q, so
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it suffices to check that it extends to all elements of GppY q. This needs a
straightforward verification based on (F) and (G).

Proposition 4.2. Consider a split epimorphism pf, sq as in (D). The fol-
lowing statements are equivalent:

(i) f is a trivial extension;
(ii) f is a special homogeneous surjection.

Proof : (i) ñ (ii) If f is a trivial extension, then by definition the diagram

X
f

,2,2

ηX
��

Y
s

lr

ηY
��

GppXq Gppfq
,2,2
GppY q

Gppsqlr

(H)

is a pullback. By Remark 3.16, the group homomorphism Gppfq is a special
homogeneous surjection; hence so is f by Proposition 3.13.

(ii) ñ (i) Given a split epimorphism pf, sq which is a special homogeneous
surjection, we have to show that the square (H) is a pullback. Taking kernels
we obtain the morphism of special homogeneous surjections and their kernels

N�ηX
��

� ,2 k ,2 X

ηX
��

f
,2,2
Y

s
lr

ηY
��

K
� ,2
k1 ,2 GppXq Gppfq

,2,2
GppY q

Gppsqlr

where, in particular, the kernel N of f is a group. By Theorem 2.3.7 in [3], the
square (H) is a pullback precisely when �ηX is an isomorphism.

Lemma 4.1 gives us the diagram of solid arrows

N
� ,2 k ,2 X

ηY
��

f
,2,2
Y

s
lr

ηY
��

N�ηX
��

� ,2 k2 ,2 X2 f2
,2,2

ηX
��

GppY q
s2lr

K
� ,2
k1 ,2 GppXqgLR Gppfq

,2,2
GppY q.

Gppsqlr
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On the other hand, since X2 is a group (thanks to Remark 3.16), the uni-
versal property of GppXq makes ηY induce a unique group homomorphism
g : GppXq Ñ X2 such that gηX � ηY . Note that this g is actually a morphism
of split epimorphisms:

f 2gηX � f 2ηY � ηY f � GppfqηX
so that f 2g � Gppfq by the universal property of ηX , while

gGppsqηY � gηXs � ηY s � s2ηY
and thus gGppsq � s2.

Finally, we have ηXg � 1GppXq since ηXgηX � ηXηY � ηX . On the other
hand, using Lemma 2.1.6 in [3]—which says that Schreier split epimorphisms
are strongly split epimorphisms, that is, the kernel and the section are jointly
strongly epimorphic—from

gηXk
2 � gηXηY k � gηXk � ηY k � k2 and gηXs

2 � gGppsq � s2
we conclude that gηX � 1X2. In particular, the arrow �ηX is an isomorphism,
hence the square (H) is a pullback.

Theorem 4.3. For a surjective homomorphism of monoids g, the following
statements are equivalent:

(i) g is a central extension;
(ii) g is a normal extension;
(iii) g is a special homogeneous surjection.

Proof : Consider a surjective homomorphism and its kernel pair (E). Then g is
a normal extension

(1.2)� π1 is a trivial extension

(4.2)� π1 is a special homogeneous surjection

(3.12)� g is a special homogeneous surjection.

A normal extension is always a central extension by definition. To prove that
(i) implies (iii), let us suppose that g is a central extension. Then there exists a
fibration p such that p�pgq is a trivial extension, which makes it a normal exten-
sion by Proposition 1.4, hence a special homogeneous surjection by (ii) ñ (iii).
Since p is a surjective homomorphism, we can apply Proposition 3.14 to con-
clude that g is a special homogeneous surjection, too.
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4.4. What about special Schreier surjections? A natural question that
arises is, whether the special Schreier surjections admit a similar characteri-
sation. More precisely, does the reflection (A) factorise in such a way that
the special Schreier surjections become the central extensions with respect to
this new adjunction? As explained in the proof of Proposition 4.2, any split
epimorphism of groups is necessarily special homogeneous, which implies that
so are the central extensions. Hence we would need a reflective subcategory X

of Mon in which all spit epimorphisms are Schreier split epimorphisms. By
Corollary 3.1.7 in [3] though, this would mean that X is contained in the
category of groups, which defeats the purpose.

References
[1] M. Barr, Exact categories, Exact categories and categories of sheaves, Lecture Notes in Math.,

vol. 236, Springer, 1971, pp. 1–120.
[2] D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral, Schreier split epimorphisms between

monoids, Semigroup Forum, accepted for publication, 2014.
[3] D. Bourn, N. Martins-Ferreira, A. Montoli, and M. Sobral, Schreier split epimorphisms in mo-

noids and in semirings, Textos de Matemática (Série B), vol. 45, Departamento de Matemática
da Universidade de Coimbra, 2014.

[4] A. Carboni, G. Janelidze, G. M. Kelly, and R. Paré, On localization and stabilization for

factorization systems, Appl. Categ. Struct. 5 (1997), 1–58.
[5] C. Cassidy, M. Hébert, and G. M. Kelly, Reflective subcategories, localizations and factorizati-

ons systems, J. Austral. Math. Soc. 38 (1985), 287–329.
[6] G. Janelidze, Pure Galois theory in categories, J. Algebra 132 (1990), no. 2, 270–286.
[7] G. Janelidze, Categorical Galois theory: revision and some recent developments, Galois con-

nections and applications, Math. Appl., vol. 565, Kluwer Acad. Publ., 2004, pp. 139–171.
[8] G. Janelidze and G. M. Kelly, Galois theory and a general notion of central extension, J. Pure

Appl. Algebra 97 (1994), no. 2, 135–161.
[9] G. Janelidze and G. M. Kelly, The reflectiveness of covering morphisms in algebra and geome-

try, Theory Appl. Categ. 3 (1997), no. 6, 132–159.
[10] A. I. Mal’cev, On the immersion of an algebraic ring into a field, Math. Ann. 113 (1937),

686–691.
[11] A. I. Mal’cev, On the immersion of associative systems into groups, I, Mat. Sbornik N. S. 6

(1939), 331–336.
[12] A. I. Mal’cev, On the immersion of associative systems into groups, II, Mat. Sbornik N. S. 8

(1940), 241–264.
[13] N. Martins-Ferreira, A. Montoli, and M. Sobral, Semidirect products and crossed modules in

monoids with operations, J. Pure Appl. Algebra 217 (2013), 334–347.
[14] A. Patchkoria, On extensions of semimodules, Bull. Acad. Sci. Georgian SSR 84 (1976), no. 3,

545–548.
[15] A. Patchkoria, Crossed semimodules and Schreier internal categories in the category of mo-

noids, Georgian Math. J. 5 (1998), no. 6, 575–581.
[16] L. Rédei, Die Verallgemeinerung der Schreierschen Erweiterungstheorie, Acta Sci. Math. (Sze-

ged) 14 (1952), 252–273.



A GALOIS THEORY FOR MONOIDS 19

Andrea Montoli

CMUC, Universidade de Coimbra, 3001–501 Coimbra, Portugal

E-mail address : montoli@mat.uc.pt

Diana Rodelo

CMUC, Universidade de Coimbra, 3001–501 Coimbra, Portugal

Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade do Al-

garve, Campus de Gambelas, 8005–139 Faro, Portugal

E-mail address : drodelo@ualg.pt

Tim Van der Linden

Institut de Recherche en Mathématique et Physique, Université catholique de Louvain,

chemin du cyclotron 2 bte L7.01.02, B–1348 Louvain-la-Neuve, Belgium

E-mail address : tim.vanderlinden@uclouvain.be


	Introduction
	1. Galois structures
	2. The Grothendieck group of a monoid
	3. Schreier split epimorphisms and homogeneous split epimorphisms
	3.5. Semidirect products

	4. Normal extensions and central extensions
	4.4. What about special Schreier surjections?

	References

