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JOÃO MIGUEL NOGUEIRA

Abstract: We show the existence of infinitely many prime knots each of which
having in its complement meridional essential surfaces with two boundary compo-
nents and arbitrarily high genus.

Keywords: Essential surface, meridional surface.
AMS Subject Classification (2010): 57M25, 57N10.

1. Introduction
Let K be a knot in S3 with complement E(K) = S3−N(K), where N(K)

is a regular neighborhood of K, and let F be a properly embedded compact
surface in E(K). We say that F is meridional if the boundary components
of F are meridians of the torus ∂N(K). The surface F is said incompressible
if for each disk D embedded in E(K) with ∂D = F ∩D then ∂D bounds a
disk in F . We also say that F is boundary incompressible if for each disk D
embedded in E(K) with D∩F an arc a, D∩E(K) an arc a and ∂D = a∪ b,
then a co-bounds a disk in F . If F is incompressible and boundary incom-
pressible, and not boundary-parallel, we say that F is essential.
Essential surfaces have a very important role in knot theory (and 3-manifold
topology). In particular, it has been a subject of active research studying
the existence of closed essential surfaces or meridional essential surfaces in
knot complements. This existence question has been approached for several
classes of knots, for instance: 2-bridge knots [5] and [7]; Montesinos knots
[14]; fibered knots [11]; links with a certain 2n-plat projection [4] and [10];
tunnel number one knots [6], [1] and [2]; closed 3-braids [3] and [9].
A particularly interesting phenomena is the existence of knots with the prop-
erty that their complements have closed essential surfaces of arbitrarily high
genus. The first examples of knots with this property were given by Lyon
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(CMUC), funded by the European Regional Development Fund through the program COMPETE
and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia
under the project PEst-C/MAT/UI0324/2011.

1
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[11]∗ using fibered knots. Later Oertel [14] and recently Li [8] also give ex-
amples of knots having closed essential surfaces of arbitrarily high genus in
their complements.
Considering meridional surfaces instead, we show in this paper that there
are also no general bounds for the genus of meridional essential surfaces in
the complements of (prime) knots by proving the following theorem and its
corollary.

Theorem 1. There are infinitely many prime knots each of which having the
property that its complement has a meridional essential surface of genus g
and two boundary components for all positive g.

Corollary 1.1. There are infinitely many knots each of which having the
property that its complement has a meridional essential surface of genus g
and two boundary components for all g ≥ 0.

A composite knot is a knot with a meridional essential annulus in its com-
plement. Then, in particular, Theorem 1 states that some prime knots have
the property that they can be decomposed by surfaces of all positive genus
as composite knots are decomposed by spheres.
The proof of Theorem 1 follows a similar approach as for the examples given
by Lion in [11] and by Li in [8]. However, instead of using composite knots
we use a decomposition of prime knots along certain essential tori separating
the knot into two arcs. The main techniques for the proof are classical in
3-manifold topology and the reference used for standard definitions and no-
tation in knot theory is Rolfsen’s book [15]. Throughout this paper we work
in the piecewise linear category.

2. Construction of the knots
Let H be a solid torus and γ an embedded graph in H, as in Figure 1.
The graph γ is topologically a circle connected to two segments, a1 and a2,

at a boundary point of each. The other two boundary points of a1 ∪ a2 are
in ∂H. There is a separating disk DH in H intersecting γ transversely at a
point of each segment a1 and a2, and decomposing H into a solid torus and a
3-ball BH where (BH , BH ∩ γ) is a 2-string essential free tangle† with BH ∩ γ
∗In this paper [11] Lyon also presents an example of a knot with essential spanning surfaces of

arbitrarily high genus.
†See the Appendix, section 4, for a definition of n-string essential free tangle and an example of

a 2-string essential free tangle with both strings knotted.
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Figure 1: The graph γ, in (a), and its embedding into the solid torus H, in (b).

two knotted arcs in BH . (See Figure 1(b).)

Denote by T a regular neighborhood of γ in H and suppose there is a
properly embedded arc s in T , as in Figure 2(a), with the boundary of s in
N(γ)∩ ∂H. There is a separating disk DT in T , intersecting s at two points

(a)

Q
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DT

BTs

(b)
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DT

BTsi

Figure 2: The solid torus T with the string s, in (a), and the solid torus Ti
with the string si in Ti, in (b).

and decomposing T into a 3-ball BT and a solid torus, where s ∩ ∂T is in
∂BT , the two arcs BT ∩ s in BT are knotted, and the tangle (BT , BT ∩ s) is
essential and free.
We say that an arc properly embedded in a solid torus is essential if it isn’t
boundary parallel, that is the arc doesn’t co-bound an embedded disk in the
solid torus with a segment in the boundary of the solid torus, and if the
boundary of the solid torus is incompressible in the complement of the arc.
In Lemma 1 we prove that s is essential in T .
Consider a ball Q in T − BT intersecting s at two parallel trivial arcs, as in
Figure 2(a), and an infinite collection of knots Li, i ∈ N. We replace the
two parallel trivial arcs by two parallel arcs with the pattern‡ of a knot Li,
as in Figure 2(b). After this tangle replacement, we denote by si the string
obtained from s, by Ti the solid torus T containing si, by γi the graph γ
whose regular neighborhood is Ti, and by Hi the solid torus H containing Ti.

‡By a properly embedded arc in a ball B having the pattern of a knot K we mean that when we
cap off the arc with a string in ∂B we get the knot K.
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Let EH(T ) be the exterior of T in H, that is the closure of H − T , and
ET (s) be the exterior of N(s) in T , that is the closure of T − N(s). The
following lemmas are relevant for the next section, and they are also valid if
we replace s by si, T by Ti and H by Hi in their statements.

Lemma 1.
(a) The surfaces ∂H and ∂T are incompressible in EH(T ).
(b) The arc s is essential in T .

Proof :
(a) First we prove that ∂H is incompressible in EH(T ). As T is a regular
neighborhood of γ this is equivalent to prove that ∂H is incompressible in
H − γ. The graph γ in H is defined by a circle c and two segments a1 and
a2, each with an end in the circle and the other in ∂H, and H is a regular
neighborhood of c. Hence, the boundary of a properly embedded disk D in
H disjoint from c bounds a disk O in ∂H. Furthermore, as D is disjoint
from γ and each segment a1 and a2 intersects ∂H at a single point, the disk
O is disjoint from γ. Then, the boundary of every embedded disk in EH(T )
with boundary in ∂H bounds a disk in ∂H − ∂H ∩ ∂T , which means ∂H is
incompressible in EH(T ).
We prove similarly that ∂T is incompressible in EH(T ). Let D be a properly
embedded disk in EH(T ) with boundary in ∂T . We have T = N(c)∪N(a1)∪
N(a2). As a1 and a2 have each an end in ∂H and in c, we can isotope the
boundary of D to N(c). As H is a regular neighborhood of c we have that
∂D bounds a disk O in ∂N(c). As l1 and l2 only have an end in c, we have
that O is a disk in ∂T . Hence, ∂T is incompressible in EH(T ).

(b) To prove that s is essential T we have to prove that ∂T is incompressible
in ET (s) and that s isn’t boundary parallel. We start by showing that ∂T is
incompressible in ET (s). As the tangle (BT , BT∩s) is essential, the boundary
of a properly embedded disk in BT−BT ∩s bounds a disk in ∂BT−(∂BT ∩s).
Let RT be the solid torus separated from T by DT . Then, from construction
RT ∩ s is a string in the solid torus RT that when capped off by an arc in
DT we get the (2, 3)-torus knot boundary parallel in RT . Hence, every disk
in RT − RT ∩ s with boundary in ∂T has boundary bounding a disk in ∂T .
Also, if a disk in RT −RT ∩ s has boundary in DT then its boundary bounds
a disk in DT disjoint from s ∩DT . Suppose D is a disk properly embedded
in ET (s) with boundary in ∂T . From the previous observations, the disk
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D isn’t disjoint from DT . We assume that D intersects DT transversely in
a collection of arcs and simple closed curves, with |D ∩ DT | minimal. If D
intersects DT in simple closed curves then consider an innermost one in D
and the respective innermost disk O. From the previous observations, we
have that ∂O bounds a disk in DT . Therefore, by an isotopy of D along
the ball bounded by D ∪DT we can reduce |D ∩DT |, which contradicts its
minimality. Hence, D ∩ DT is a collection of arcs. Consider an outermost
arc α between the arcs D ∩ DT in D and the respective outermost disk,
that we also denote by O. If O is in BT then ∂O bounds a disk O′ in ∂BT

intersecting DT − s at a disk. Suppose O is in RT . If O is essential in RT

then O intersects at least twice the (2, 3)-torus knot obtained from RT ∩ s
by capping off the ends of this string in DT . However, ∂O intersects at most
once this knot, wether α separates the components of DT ∩ s in DT or not.
This implies that O intersects RT ∩ s, which is contradiction with O being
disjoint from s. Therefore, O is inessential in RT and ∂O bounds a disk
O′ in ∂RT intersecting DT − s at a disk. In both cases, ∂O bounds a disk
O′ intersecting DT − s at a disk. If we isotope D along the ball bounded
by O ∪ O′ we reduce |D ∩ DT | and contradict its minimality. Hence, ∂T is
incompressible in ET (s).
Now we prove that s isn’t boundary parallel in T . Suppose now that D
is embedded in T co-bounded by s and an arc b in ∂T . Following a similar
argument as before we can prove that D doesn’t intersect DT at simple closed
curves and arcs with both ends in b. Hence, D∩DT is a collection of two arcs,
each with an end in s and the other end in a. However, the disk components
these arcs separate from D imply that the strings of the tangle (BT , BT ∩ s)
are trivial, which contradicts this tangle being essential. Hence, s is not
boundary parallel in T and, together with ∂T being incompressible in the
exterior of s in T , we have that s is essential in T .

Lemma 2. There is no properly embedded disk in EH(T )

(a) intersecting one of the disks of T ∩ ∂H at a single point; or
(b) with boundary the union of an arc in ∂T and an arc in ∂H, and not

bounding a disk in ∂EH(T ).

Proof : Let D be a properly embedded disk in EH(T ). Following an argument
as in Lemma 1 we can assume that |D ∩DH | is minimal and that D ∩DH is
a collection of essential arcs in DH −DH ∩T with ends in DH ∪T and ∂DH .
Consider also BH ∩ T , which is a collection of two cylinders C1 and C2, and
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assume that |D∩ (BH ∩T )| is minimal. If some arcs of ∂D∩Ci have ends in
the same boundary component of the annlus ∂Ci − Ci ∩ ∂BH , i = 1, 2, then
by using an innermost curve argument we can reduce |D ∩ (BH ∩ T )| and
contradict its minimality. Therefore, D ∩ Ci is a collection of essential arcs
in the annulus ∂Ci − Ci ∩ ∂BH , i = 1, 2.

(a) Assume C1∩∂H is the disk of T ∩∂H that D intersects exactly once. The
components of D∩BH are a collection of disks. Consequently, one component
of D ∩BH is a disk in BH −BH ∩ T intersecting C1 ∩ ∂H once. This means
that C1 ∩ ∂H is primitive with respect to the complement of BH ∩ T in BH .
Hence, as the complement of C1∪C2 is a handlebody (because (BH , BH ∩ γ)
is a free tangle), the complement of C2 in BH is a solid torus. Then the core
of C2 is unknotted, which is a contradiction to the assumprion that BH ∩ γ
is a collection of two knotted arcs in BH .

(b) Suppose there is a disk D as in the statement with ∂D = a ∪ b, where a
is an arc in ∂T and b and arc in ∂H.
The intersection of D with ∂T ∩∂H is the boundary of α (and β), and notice
that C1 ∪ C2 intersect ∂H at ∂T ∩ ∂H. If a is disjoint from DH then a
co-bounds a disk in the boundary of BH ∩ T with an arc in ∂T ∩ ∂H. Using
this disk, we can isotope a to ∂H to get the resulting disk D with ∂D in ∂H.
Consequently, from Lemma 1(a), ∂D bounds a disk in ∂EH(T ). Therefore,
a intersects DH in at least two points. As observed at the beggining o the
proof, the arcs ∂D∩Ci have ends in the distinct boundary component of the
annlus ∂Ci − Ci ∩ ∂BH , i = 1, 2. As ∂D ∩ Ci ⊂ a and are essential arcs of
the annlus ∂Ci−Ci∩ ∂BH , i = 1, 2, we have that a intersects DH in at most
two points. Therefore, a intersects DH at two points.

(a) a

D
b

(b) a

D
b

Figure 3: The arcs D ∩DH in D when a single arc intersects a, in (a), and
when two arcs intersect a, in (b).

Hence, D∩DH is a collection of arcs with at least an end in a∩DH . If a∩DH

is the boundary of a single arc component of D∩DH , as in Figure 3(a), then
the strings of the tangle (BH , BH ∩ γ) are parallel, which contradicts this
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tangle being a 2-string essential free tangle (see Lemma 2.1 in [13]). If each
point of a ∩ DH cobounds an arc of D ∩ DH with the other end in b, as
in Figure 3(b), then the two strings of (BH , BH ∩ γ) are trivial, which also
contradicts this tangle being essential.

To construct the knots that are the main study of this paper we identify
the solid tori H and Hi along their boundaries, defining an Heegaard decom-
position H ∪Hi of S3, such that ∂s is identified with ∂si. From construction,
Ki = s ∪ si is a knot in S3, for i ∈ N, and in the next proposition we prove
these knots are prime.

Proposition 1. The knots Ki, i ∈ N, are an infinite collection of distinct
prime knots.

To prove that the knots Ki are prime we use the following technical result.
Let K and L be non-trivial knots. Take a ball B intersecting K in two
parallel trivial arcs with the tangle (Bc, Bc ∩ K) being locally unknotted.
Replace the arcs of B ∩K in B by two parallel arcs with the pattern of L,
and denote this new knot by KL.

Lemma 3. The knot KL is prime.

Proof : If the knot KL is trivial then it bounds a disk D in S3. Then, ∂D
intersects ∂B at four points. Suppose that |D ∩ ∂B| is minimal. By an
innermost curve argument, as used before, we can show that D ∩ ∂B is a
collection of two arcs. The strings of B ∩ KL are knotted and each can’t
co-bound an outermost disk of D −D ∩ ∂B with an arc in ∂B. Hence, the
arcs of D ∩ ∂B have an end on each string of B ∩KL and co-bound together
with the strings a disk in B. Each arc of D ∩ ∂B also co-bounds a disk
with a string of KL ∩ Bc. Therefore, if we replace the tangle (B,B ∩ KL)
with the tangle (B,B ∩K) we obtain a disk in S3 bounded by K, which is a
contradiction because K is knotted. Hence, the knot KL is also non-trivial.
Now we prove that KL is prime. Suppose there is a decomposing sphere S
for KL. As (B,B ∩ KL) is defined by two parallel strings in B, using the
disk co-bounded by the two strings B ∩ KL in B we can show that S can
be assumed disjoint from B. However, this means that S is in Bc, which
contradicts (Bc, Bc ∩KL) being locally unknotted.

As for the construction of the knots Ki, we construct a knot K by iden-
tifying two copies of H, say H and H ′, along their boundaries, defining an
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Heegaard decomposition of S3, and such that the two copies of s, say s and
s′ resp., are also identified along their boundaries. As s is essential in H we
have that ∂H defines a meridional incompressible surface in the exterior of
K, which means that K is not trivial. We also denote the copy of the solid
torus T of H in H ′ by T ′.
We will use this knot K, the knots Li and the construction of Lemma 3 to
characterize the knots Ki, but first we need the following lemma. Let Q be
the ball as in Figure 2 and Qc its complement.

Lemma 4. The tangle (Qc, Qc ∩K) is locally unknotted.

Proof : Suppose (Qc, Qc ∩ K) is locally knotted. Then there is a sphere S
bounding a ball P intersecting Qc ∩K at a single knotted arc. We have that
K is in T ∪ T ′ then S intersects T or T ′.
Consider the intersection of S with T and T ′, and suppose it has a minimal
number of components. From the construction of the knot K the cores of
the solid tori T and T ′ define a two component link with each component
being unknotted.
As the tangle (BT , BT ∩ s) is free and essential we can assume that S is
disjoint from BT (and similarly, S is disjoint from BT ′).
The intersections of S with the boudaries of T and T ′ is a collection of simple
closed curves. As S is disjoint from BT and BT ′ the curves of intersection
are either in ∂T − BT or in ∂T ′ − BT ′. Consider E a disk component of S
separated by ∂T and ∂T ′ from S. If E is not in T ∪ T ′ and its boundary is
in ∂T (or similarly ∂T ′) we have that ∂E is a longitude of T , as S3 doesn’t
have a S2 × S1 or a Lens space summand. Therefore, the core of T bounds
a disk disjoint from T ′, which is a contradiction as the core of T and T ′ are
linked from construction. Hence, E is in T or T ′. If E is in T (or similarly in
T ′) and is disjoint from s then as s is essential in T we have that ∂E bounds
a disk in ∂T − s. In this case we can reduce the number of components of S
intersection with ∂T ∪ ∂T ′, which is a contradiction to its minimality. Then,
we can assume that all disks E intersect s or s′. If some disk E intersects
either s or s′ at two points then some other disk component of S separated
by ∂T ∪ ∂T ′ is disjoint from s and s′, which is a contradiction to all disks E
intersecting s or s′. Then, there is an essential disk E in T (or similarly, in
T ′) that intersects s at a single point. As before, let RT be the solid torus
separated by DT from T . From the construction of s in T , if we cap off
RT ∩ s with an arc in DT we get a torus knot. Then any essential disk in



KNOTS WITH MERIDIONAL ESSENTIAL SURFACES OF ARBITRARILY HIGH GENUS 9

RT intersects the knot in more than one point. As E is disjoint from BT it
is a non-separating disk in RT intersecting the torus knot at a single point,
which is a contradiction. Hence, (Qc, Qc ∩K) is locally unknotted.

Proof of Proposition 1: The knots Ki are the knots KLi
obtained from the

knots K and Li with a construction as in Lemma 3. From Lemmas 3 and 4
the knots Ki are prime.
Each knot Ki is also sattelite with companion knot Li and pattern knot K.
Then, from the JSJ-decomposition for compact 3-manifolds we have that the
knots Ki, i ∈ N, are an infinite collection of prime knots.

3. Knots with meridional essential surfaces for all genus
In this section we prove Theorem 1, and its corollary, by showing the knots

Ki, i ∈ N, have meridional essential surfaces of all positive genus and two
boundary components. We start by constructing these surfaces, denoted by
F1, . . . Fg, . . . where Fg has genus g, in the complement of an arbitrary knot
Ki, and afterwards we prove they are essential in E(Ki). In this construc-
tion we denote the boundaries of s and si by ∂1s (= ∂1si) and ∂2s (= ∂2si).
Denote by X (resp., Y ) the punctured torus ∂T (resp., ∂Ti). We also denote
by ∂iX (resp., ∂iY ) the boundary component of X (resp., Y ) related to ∂is,
i = 1, 2.

The surface F1 is defined as X. The surface F2 is obtained from X and Y
by identifying the boundary components ∂2X and ∂2Y . In Figure 4 we have
a schematic representation of F1 and F2.

(a)

F1

X

Ki

∂H (b)

F2

X Y

Ki

∂H

Figure 4: A schematic diagram of surface F1, in (a), and surface F2, in (b).

To construct the surfaces Fg, for g ≥ 3, we follow a general procedure as
explained next. In Hi consider a copy of Y and an annulus A, around si,
defined by ∂N(si) − (∂N(si) ∩ ∂Hi). We denote by Z the surface obtained
by identifying Y and A along the boundaries ∂1Y and ∂1A. Let n = g − 1
and A1, . . . , An−2 be disjoint copies of A disjoint from Z. Consider also n
disjoint copies of X in H, denoted by X1, . . . , Xn. Denote ∂1Xj (resp., ∂2Xj)
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the boundary component of Xj around ∂1s (resp., ∂2s). Similarly, we la-
bel the boundary components of Aj by ∂1Aj and ∂2Aj. To construct Fg we
start by attaching ∂Xn and ∂Xn−1 to the two boundary components of Z
respecting the order from ∂2s. If g ≥ 4 we also attach ∂2Xn−2, . . . , ∂2X1 to
∂2An−2, . . . , ∂2A1, respectively, and ∂1Xn, . . . , ∂1X3 to ∂1An−2, . . . , ∂1A1, re-
spectively. The surface Fg has two boundary components (∂1X1 and ∂1X2)
and Euler characteristic −2g, which means the genus of Fg is g. In Figure
5 we have a schematic representation of F3 and F4, and in Figure 6 a repre-
sentation of the general construction of Fg.

(a)

F3 Z

X2

X1

Ki

∂H (b)

F4 Z

X3

X2

X1

A1

Ki

∂H

Figure 5: A schematic diagram of surface F3, in (a), and surface F4, in (b).

Fn Z

Xn

Xn−1
Xn−2

X3

X2

X1 A1

An−2

Ki

∂H

Figure 6: A schematic general representation of the surface Fn, for n ≥ 3.

Proof of Theorem 1. To prove Theorem 1 we consider the knots Ki, i ∈ N,
and show the surfaces Fg, g ∈ N, to be essential in their complements.
We assume that Fg is not essential in E(Ki) and prove this leads to a contra-
diction to the knots Ki properties. Let D be a compressing or a boundary
compressing disk for Fg in E(Ki). In case D is a boundary compressing disk
then ∂D = a ∪ b where a is an arc in ∂E(Ki) − Fg, with one end in each
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compoenent of ∂Fg, and b is an arc in Fg. We also assume |D ∩ ∂H| to be
minimal. Consequently, using an innermost curve argument, as in Lemma 1,
we have that D doesn’t intersect ∂H in simple closed curves.

Suppose g = 1. By a small isotopy of a neighborhood of ∂F1 into H if
necessary, we can assume that F1 is in H. If D is a compressing disk for F1

in E(Ki) then D ⊂ H, as D cannot intersect ∂H in simple closed curves
and ∂D is disjoint from ∂H. This is a contradiction to Lemma 1, which says
∂T is incompressible in ET (s) and in EH(T ). Assume now D is a boundary
compressing disk of F1 in E(Ki). If D is in T then we have a contradiction
to Lemma 1(b) for s being essential in T . If D is not in T then, by using an
innermost curve argument, we can assume that a intersects ∂H at two points
and that D ∩ ∂H is an arc separating from D a disk O in H with boundary
an arc in ∂H and an arc that we can assume in ∂T having ends in ∂H ∩ ∂T .
Hence, O contradicts Lemma 2(b). Therefore, we have that F1 is essential in
E(Ki).

Suppose g = 2. By a small isotopy of a neighborhood of ∂F2 we can
assume that the compoenent of ∂F2 ∩X is in H and that ∂F2 ∩ Y is in Hi.
Suppose D is a compressing disk of F2 in E(Ki). If D is disjoint from ∂H
then D is a compressing disk for X or Y in E(Ki), which is a contradiction to
Lemma 1. Then D intersects ∂H at a minimal collection of arcs. Consider an
outermost arc α of D∩ ∂H in D and let O be the respective outermost disk,
with O ∩ F2 = β an arc in X or in Y . Without loss of generality, suppose
β is in X. If α or β doesn’t co-bound a disk in ∂H or X, respectively, with
∂2X we have a contradiction to Lemma 1(b) Lemma 2(b). Otherwise, ∂O
bounds a disk O′ in ∂H ∪ ∂T and using the ball bounded by O ∪O′ we can
isotope D reducing |D ∩ ∂H| which is a contradiction to its minimality.
Suppose now that D is a boundary compressing disk for F2 in E(Ki). As the
two components of ∂F2 are in opposite sides of ∂H by an innermost curve
argument we can prove that a intersects ∂H at a single point. Hence, D∩∂H
is an arc with one end in a and one end in b and, possibly, arcs with both
ends in b, as in Figure 7.

If D is in T ∪ Ti then the arcs of D ∩ ∂H with both ends in b are in the
annulus E separated by F2 ∩ ∂H (that is ∂2X) from ∂H − N(Ki) ∩ ∂H.
Hence, each arc of D ∩ ∂H with ends in b co-bounds a disk in E with ∂2X.
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a

D

b

Figure 7: Arcs of D ∩ ∂H when D is a boundary compressing disk of F2.

Consider an outermost of such arcs in E, and the respective outermost disk
O. By cutting and pasting D along O we contradict Lemma 1(b) or we
can reduce |D ∩ ∂H| contradicting its minimality. Therefore, in this case,
D∩ ∂H is the arc with an end in a. This arc cuts D into two disks, one in T
and the other in Ti, contradicting Lemma 1(b). If D is in EH(T ) ∪ EHi

(Ti)
we consider an outermost arc α between the arcs of D ∩ ∂H in D and the
respective outermost disk, also denoted by O. If the arc β, that is ∂O ∩ F2,
co-bounds a disk in F2 with F2 ∩ ∂H, using an argument as before, we can
reduce |D ∩ ∂H| contradicting its minimality. Otherwise, the disk O is in
contradiction to Lemma 2(b). Hence, D ∩ ∂H is only the arc with an end in
a, and the disk separated by this arc in D are also in contradiction to Lemma
2(b). Consequently, F2 is essential in E(Ki).

Supose now g ≥ 3. As in the other cases, we start by isotoping the bound-
ary components of Fg such that ∂2X1 is in H and ∂2X2 is in Hi. Hence, as
in the case for g = 2, if D is a boundary compressing disk we can assume
that a intersects ∂H at a single point. This means that D intersects ∂H
at an arc with one end in a and the other in b and, possibly, in arcs with
both ends in b. If D intersects the interior of T1, we can proceed as in the
case g = 2 and get a contradiction to Lemma 1(b). Otherwise, the disk D
intersects the region of H between X1 and X2 in at least a disk component.
As the only intersection of D with ∂E(Ki) is a, and b intersects X1 and X2,
that are disjoint, we have necessarily that D intersects ∂H in arcs with both
ends in b. Suppose now that D is a compressing disk. If D is disjoint from
∂H then ∂D is in one surface Xj, in Z or in one annlus Aj. If ∂D is in Aj,
as Aj is boundary parallel to N(Ki) we have that ∂D bounds a disk in Aj,
which contradicts D being a compressing disk of Fg. If ∂D is in Z, as Z is
the union of ∂Ti with an annulus boundary parallel to N(Ki) we can assume
that ∂D is in ∂Ti and D is in Ti or EHi

Ti, which is a contradiction to Lemma
1. If ∂D is in some surface Xj, as D is disjoint from ∂H, we have the same
contradiction. Hence, D intersects ∂H in a collection of arcs. Consequently,
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if D is a compressing or a boundary compressing disk there are arcs of D∩∂H
with both ends in Fg. In Figure 8 we have a representation of the arcs of
D ∩ ∂H in D.

(a) a

D

b
αO

β

(b)

αO

D

β

Figure 8: The disk D together with the arcs D∩ ∂H when D is a boundary
compressing disk, in (a), or a compressing disk, in (b), of Fg.

Consider an outermost arc in D between the arcs of D ∩ ∂H with both ends
in Fg and denote it by α. In case D is a boundary compressing disk, α is an
outermost arc of D ∩ ∂H in D between the arcs with both ends in b. Let O
be the outermost disk cut from D by α, and let ∂O = α ∪ β where β is an
arc in Fg. The surfaces Xj and Xj+1 are disjoint, j = 1, . . . , n− 1, and each
two of Aj, Aj+1 and Z, j = 1, . . . , n− 3, are also disjoint. Then, there is no
outermost arc α with an end in ∂1Xj and an end in ∂1Xj+1, or an end in ∂2Xj

and an end in ∂2Xj+1, j = 1, . . . , n− 1, unless α is in the annulus separated
by ∂1Xn−1 ∪ ∂1Xn from ∂H and O is in the manifold cut by Z from Hi. In
this case, we would be in contradiction to Lemma 1(b). Therefore, α is not
essential in an annulus separated by ∂1Xj ∪ ∂1Xj+1 or by ∂2Xj ∪ ∂2Xj+1,
j = 1, . . . , n− 1, from ∂H. If α has ends in distinct components of Fg ∩ ∂H,
then it has one end in ∂1Xn and the other in ∂2Xn, with O between H and
Xn in H. In this situation, we have a contradiction to Lemma 2(b). Suppose
now that α has both ends in the same component of F ∩ ∂H, say in ∂1Xj

or in ∂2Xj. If β is in some annulus Aj then it co-bounds a disk in Aj with
∂1Xj (or with ∂2Xj). By an isotopy of β along this disk, through ∂H, we
can reduce |D ∩ ∂H| contradicting its minimality. If β is in some Xj or Z
and co-bounds a disk with ∂1Xj (or with ∂2Xj), following a similar argument
as before, we get a contradiction to the minimality of |D ∩ ∂H|. Then, β
doesn’t co-bound a disk in Xj or Z with ∂1Xj (or with ∂2Xj). Suppose,
without loss of generality, that α is in the annulus separated from ∂H by
∂1Xj ∪ ∂1Xj+1, and let O′ be the disk that α co-bounds with ∂1Xj in the
annulus. Then O∪O′ is a compressing disk for Xj (or Y ) in H (or Hi, resp.),
which contradicts Lemma 1. In a similar way, if β has both ends in ∂1X1

(∂2X1) and α is in the annulus separated from ∂H by ∂1X1 (or ∂2X1, resp.)
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and a component of ∂H∩N(Ki) we obtain a contradiction to the minimality
of |D∩ ∂H| or to the incompressibility of X1 in H. We are left with the case
when α has both ends in ∂1Xn, ∂2Xn or Z and O is between Xn and ∂H in
H, or between Z and ∂Hi in Hi, which gives us a contradiction to Lemma 1.
Hence, D cannot be a compressing or a boundary compressing disk.
Altogether we have that the surfaces Fg are essential in E(Ki).

The proof Corollary 1.1 now follows naturally.

Proof of Corollary 1.1: In Theorem 1 we proved that the knots Ki, i ∈ N,
are an infinite collection of prime knots with meridional essential surfaces in
their complements for each positive genus and two boundary components.
Hence, considering the knots Ki connected sum with some other knot, we
have infinitely many knots with meridional essential surfaces of genus g and
two boundary components for all g ≥ 0, as in the statement.

4. Appendix
In this appendix we define n-string essential free tangles and give an ex-

ample of a 2-string essential free tangle with both strings knotted.
A n-string tangle is a pair (B, σ) where B is a 3-ball and σ is a collection
of n properly embedded disjoint arcs in B. We say that (B, σ) is essential
if for every disk D properly embedded in B − σ then ∂D bounds a disk in
∂B − ∂σ. The tangle is said to be free if the fundamental group of B − σ is
free, or, equivalently, if B −N(σ) is a handlebody.
For a string s in a ball B we can consider the knot obtained by capping off s
along ∂B, that is by gluing to s an arc in ∂B along the respective boundaries.
We denote this knot by K(s).
Let s1 be an arc in a ball B such that K(s1) is a trefoil, and consider also an
unknotting tunnel t for K(s1), as in Figure 9.
If we slide ∂t along s1 into ∂B, as illustrated in Figure 10(a), we get a new
string that we denote by s2, as in Figure 10(b).
The knot K(s2) is the (3,−4)-torus knot, and hence knotted. The tangle
(B, s1 ∪ s2) is free by construction. In fact, as t is an unknotting tunnel of
K(s1), the complement of N(s1)∪N(t) in B is a handlebody. Henceforth, by
an ambient isotopy, the complement of N(s1) ∪N(s2) is also a handlebody.
As the tangle (B, s1 ∪ s2) is free and both strings are knotted then it is
necessarily essential. Otherwise, the complement of N(s1)∪N(s2) in B isn’t
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(a)

s1 B

(b)

s1

t

B

Figure 9: The string s1 when capped off along ∂B is a trefoil knot with an
unknotting tunnel t.

(a)

s1

t

B

(b)

s1

s2

B

Figure 10: Construction of a 2-string essential free tangle with both strings
knotted from s1 and the unknotting tunnel t.

a handlebody as it is obtained by gluing two non-trivial knot complements
along a disk in their boundaries, which is a contradiction to the tangle (B, s1∪
s2) being free.
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