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JAVIER GUTIÉRREZ GARCÍA, IMANOL MOZO CAROLLO AND JORGE PICADO

Abstract: This paper supplements an earlier one by the authors which con-
structed the Dedekind completion of the ring of continuous real functions on an
arbitrary frame L in terms of partial continuous real functions on L. In the present
paper we provide three alternative views of it, in terms of (i) normal semicontinu-
ous real functions on L, (ii) the Booleanization of L (in the case of bounded real
functions) and the Gleason cover of L (in the general case) and (iii) Hausdorff con-
tinuous partial real functions on L. The first is the normal completion and extends
Dilworth’s classical construction to the pointfree setting. The second shows that in
the bounded case the Dedekind completion is isomorphic to the lattice of bounded
continuous real functions on the Booleanization of L and that in the non-bounded
case it is isomorphic to the lattice of continuous real functions on the Gleason cover
of L. Finally, the third is the pointfree version of Anguelov’s approach in terms
of interval-valued functions. Two new classes of frames, cb-frames and weak cb-
frames, emerge naturally in the first two representations. We show that they are
conservative generalizations of their classical counterparts.
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1. Introduction

Let L be a frame and let C(L) resp. C∗(L) denote the lattice-ordered ring
of continuous resp. bounded continuous real functions on L. It is well known
that C(L) and C∗(L) are distributive lattices. In general, however, they are
not Dedekind complete: arbitrary non-void sets of continuous real functions
in C(L) and C∗(L) bounded from above need not have a least upper bound
in the lattices C(L) and C∗(L).
In a recent paper [27], we have constructed the Dedekind order completions

C(L)∨∧ and C∗(L)∨∧ of respectively C(L) and C∗(L) in terms of the frame of
partially defined real numbers and the corresponding classes of continuous
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partial real functions on the given frame L. In the present paper, we establish
an alternative construction of the completion by means of normal subsets of
C(L); we use for this purpose the ring F(L) of all real functions on L (see
[16]) and a special class of lower semicontinuous real functions, called normal

[19], which are characterized by the property

f ◦ ∈ F(L) and (f−)◦ = f,

where f ◦ and f− denote the lower and upper regularizations of f , respectively.
Specifically, it is proved that the completions of C(L) and C∗(L) by normal
subsets are respectively isomorphic with the lattices

C(L)# = {f ∈ F(L) | f is normal lower semicontinuous and

there exist g, h ∈ C(L) such that g 6 f 6 h}

and

C∗(L)# = {f ∈ F(L) | f is normal lower semicontinuous and

there exist g, h ∈ C∗(L) such that g 6 f 6 h}

= {f ∈ F∗(L) | f is normal lower semicontinuous} .

The reader certainly recognizes here the classical description of the com-
pletion of C(X) due to Dilworth [11, Theorem 4.1], and simplified by Horn
[20, Theorem 11] using lower semicontinuous real functions, usually referred
to as the normal completion (cf. [22, 26]). Indeed, our results extend Dil-
worth’s construction to the pointfree setting. But the pointfree situation is
not merely a mimic of the classical one; there are some differences making
the whole picture much more interesting. To put this is perspective, consider
a completely regular topological space (X,OX) and the classes

C(X) = {f : X → R | f is continuous} ,

C∗(X) = {f : X → R | f is continuous and bounded} ,

C(X) =
{

f : X → R | f is continuous
}

(where R denotes the extended real line R ∪ {−∞,+∞}). It is well known
that the following statements are equivalent [31, 28, 12]:

(1) C(X) is Dedekind complete.
(2) C∗(X) is Dedekind complete.
(3) C(X) is Dedekind complete.
(4) X is extremally disconnected.
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The case OX = P(X) (i.e. the discrete topology) being trivially extremally
disconnected yields the well known fact that F(X), F∗(X) and F(X) are
all Dedekind complete. This simple fact is used in the construction of the
Dedekind completion of C(X) (cf. [20]). The idea is that since C(X) is
included in F(X) and the latter is Dedekind complete, one may find the
Dedekind completion of C(X) inside F(X).
In the pointfree setting, however, the situation is somewhat distinct be-

cause the frame of all sublocales of a frame L is not necessarily extremally
disconnected. This means that, contrarily to F(X), F(L) is not necessarily
complete (indeed, given a non-void F ⊆ F(L) bounded above one cannot
ensure the existence of the supremum

∨

F in F(L), see the discussion in [18,
Sections 3.2 and 3.3]). Thus we cannot ensure a priori, as in spaces, that we
can find the completion of C(L) inside F(L).

The representation result for the completion described above, in terms of
normal semicontinuous real functions (studied in Section 4), is presented in
Section 5. As an immediate consequence of it, we get that for a completely
regular frame L, C(L) is Dedekind complete if and only if L is extremally
disconnected, a result originally due to Banaschewski and Hong [6].
Further, in Sections 6 and 7, we provide a second representation for the

completion. In the bounded case (Section 6), it states that for any com-
pletely regular frame L, the normal completion of C∗(L) is isomorphic to the
lattice of all bounded continuous real functions on another naturally deter-
mined frame. This is the pointfree counterpart of Theorem 6.1 of Dilworth
[11]. It states precisely the following: for any completely regular frame L, the
normal completion of C∗(L) is isomorphic to C∗(B(L)), where B(L) denotes
the Booleanization of L [7]. In the general case C(L), treated in Section 7,
the Gleason cover G(L) [2] of L takes the role of the Booleanization but
an assumption on the frame L is required, namely, that it is weakly con-
tinuously bounded. This is the pointfree counterpart of Proposition 4.1 of
Mack-Johnson [26]. It highlights a new class of frames introduced in the pa-
per: the weakly continuously bounded frames. Continuously bounded frames
are introduced and studied in Section 3, and their weak variant in Section 4.
Finally, “pour tripler notre délectation” [10], we present a third representa-

tion for the completion in terms of the so called Hausdorff continuous partial
real functions providing the pointfree setting for Anguelov’s approach [1] in
terms of interval-valued functions (cf. [9]).
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2. Background
For basic notations and facts about pointfree topology and lattice theory

we refer to [24] and [29]. Below, we provide a brief survey of the background
required for this paper.

2.1. Sublocales. A sublocale set (briefly, a sublocale) S of a frame (= locale)
L is a subset S ⊆ L such that

(S1) for every A ⊆ S,
∧

A is in S, and
(S2) for every s ∈ S and every x ∈ L, x→ s is in S.

The system of all sublocales constitutes a co-frame with the order given
by inclusion, meet coinciding with the intersection and the join given by
∨

Si = {
∧

M |M ⊆
⋃

Si}; the top is L and the bottom is the set {1}.
For notational reasons, we make the co-frame of all sublocales of a locale

L into a frame S(L) by considering the dual ordering: S1 ≤ S2 iff S2 ⊆ S1.
Thus, {1} is the top and L is the bottom in S(L) that we simply denote by
1 and 0, respectively.
For any a ∈ L, the sets c(a) = ↑a and o(a) = {a → b | b ∈ L} are

the closed and open sublocales of L, respectively. They are complements of
each other in S(L). Furthermore, the map a 7→ c(a) is a frame embedding
L →֒ S(L) providing an isomorphism c between L and the subframe c(L)
of S(L) consisting of all closed sublocales. On the other hand, denoting by
o(L) the subframe of S(L) generated by all o(a), the correspondence a 7→ o(a)
establishes a dual poset embedding L→ o(L).
Given a sublocale S of L, its closure resp. interior is defined by

S =
∨

{c(a) | c(a) 6 S} = c

(

∧

S
)

resp. S◦ =
∧

{o(a) | S 6 o(a)}.

They satisfy the following properties (where S∗ and a∗ denote the pseudo-
complements of S and a respectively in S(L) and L):

(1) 1 = 1, S 6 S, S = S, and S ∧ T = S ∧ T ,
(2) 0◦ = 0, S◦ ≥ S, S◦◦ = S◦, and (S ∨ T )◦ = S◦ ∨ T ◦,

(3) S◦ =
(

S∗
)∗

= o(
∧

S∗),
(4) c(a)◦ = o(a∗),

(5) o(a) = c(a∗).

A sublocale S is said to be regular closed (resp. regular open) if S◦ = S

(resp. S
◦
= S). It is not hard to see that S is regular closed if and only if
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S = c(a) for some regular element a ∈ L (that is, such that a∗∗ = a), and
dually that S is regular open if and only if S = o(a) for some regular a.

2.2. The frame of (extended) reals. There are various equivalent ways
of introducing the frame of reals L(R) [3]. Here it will be useful to adopt
the description used in [16] given by generators (p,—) and (—, p), p ∈ Q, and
relations

(r1) (p,—) ∧ (—, q) = 0 whenever p ≥ q,
(r2) (p,—) ∨ (—, q) = 1 whenever p < q,
(r3) (p,—) =

∨

q>p(q,—), for every p ∈ Q,
(r4) (—, p) =

∨

q<p(—, q), for every p ∈ Q,
(r5)

∨

p∈Q(p,—) = 1,
(r6)

∨

p∈Q(—, p) = 1.

The meet (p,—) ∧ (—, q) is simply denoted by (p, q).
By dropping relations (r5) and (r6) in the description of L(R) above, we

have the corresponding frame of extended reals L
(

R
)

[4].

Remark. The basic homomorphism ̺ : L
(

R
)

→ L(R) factors as

L
(

R
) νω−→ ↓ω

k
−→ L(R), ω =

∨

{(p, q) | p, q ∈ Q}

where νω = (·) ∧ ω and k is an isomorphism (it is obviously onto and has a
right inverse by the very definition of L(R)).

2.3. (Extended) real functions. For any frame L, a continuous real func-

tion [3] (resp. extended continuous real function [4]) on a frame L is a frame
homomorphism f : L

(

R
)

→ L (resp. f : L
(

R
)

→ L). We denote by C(L)

(resp. C(L)) the collection of all (resp. extended) continuous real functions
on L. The correspondences L 7→ C(L) and L 7→ C(L) are functorial in the
obvious way.

Remark. Using the basic homomorphism ̺ : L
(

R
)

→ L(R) from Remark 2.2,

the f ∈ C(L) are in a one-to-one correspondence with the g ∈ C(L) such
that g(ω) = 1 (just take g = f̺). In what follows we will keep the notation
C(L) to denote also the class inside C(L) of the f ’s such that f(ω) = 1.

C(L) and C(L) are partially ordered by

f 6 g ⇐⇒ f(p,—) 6 g(p,—) for all p ∈ Q

⇐⇒ g(—, q) 6 f(—, q) for all q ∈ Q.
(2.3.1)
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An f ∈ F(L) = C(S(L)) (resp. f ∈ F(L) = C(S(L))) is called an arbitrary

(resp. extended) real function on L.

2.4. Semicontinuous real functions. An f in F(L) or F(L) is

(1) lower semicontinuous if f(p,—) ∈ c(L) for every p ∈ Q;
(2) upper semicontinuous if f(—, q) ∈ c(L) for every q ∈ Q.

We denote by

LSC(L), USC(L), LSC(L) and USC(L)

the classes of lower semicontinuous and upper semicontinuous members of
F(L) and F(L) respectively.

Remarks. (1) There is a dual order-isomorphism −(·) : LSC(L)→ USC(L)
defined by

(−f)(—, r) = f(−r,—) for all r ∈ Q.

When restricted to LSC(L) it becomes a dual isomorphism from LSC(L) onto
USC(L). Its inverse, denoted by the same symbol, maps a g ∈ USC(L) into
−g ∈ LSC(L) defined by (−g)(r,—) = g(—,−r) for all r ∈ Q.

(2) By the isomorphism c : L ≃ c(L), each ϕ ∈ C(L) corresponds uniquely to
an f ∈ F(L) (precisely the f = c · ϕ), and thus C(L) is equivalent to the set
of all f ∈ F(L) such that f(p, q) is closed for every p, q ∈ Q. Throughout,
we keep the notation C(L) to denote also the latter subclass of F(L). Then,
of course, C(L) = LSC(L) ∩ USC(L).
A similar situation holds in the case of extended real functions so that we

also have C(L) = LSC(L) ∩ USC(L).

(3) Lower (resp. upper) semicontinuous mappings ϕ : X → R are in a bi-
jective correspondence with the members of LSC(OX) (resp. USC(OX))
[17, 18]. Specifically, each lower semicontinuous ϕ : X → R corresponds to
the frame homomorphism fϕ : L(R)→ S(OX) given by

fϕ(p,—) = c
(

ϕ−1 ((p,+∞))
)

and fϕ(—, q) =
∨

s<q

o
(

ϕ−1 ((s,+∞))
)

for every p, q ∈ Q, and, dually, each upper semicontinuous ϕ : X → R corre-
sponds to the upper semicontinuous real function fϕ : L(R)→ S(OX) given
by

fϕ(p,—) =
∨

r>p

o
(

ϕ−1 ((−∞, r))
)

and fϕ(—, q) = c
(

ϕ−1 ((−∞, q))
)
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for each p, q ∈ Q. Their restrictions to continuous mappings ϕ : X → R yield
a bijection with the members of C(OX), where the fϕ is just given by

fϕ(p,—) = c
(

ϕ−1 ((p,+∞))
)

and fϕ(—, q) = c
(

ϕ−1 ((−∞, q))
)

.

Moreover, it is easy to check that these bijections are order preserving, i.e.,
given ϕ1, ϕ2 : X → R, then ϕ1 6 ϕ2 if and only if fϕ1

6 fϕ2
.

A similar situation holds in the case of extended real functions (see [4]).

2.5. Scales. There is a useful way of specifying (extended) continuous real
functions on a frame L with the help of the so called (extended) scales ([16,
Section 4]). An extended scale in L is a map σ : Q → L such that σ(p) ∨
σ(q)∗ = 1 whenever p < q. An extended scale is a scale if

∨

p∈Q

σ(p) = 1 =
∨

p∈Q

σ(p)∗.

Remark. An (extended) scale is necessarily an antitone map. Conversely, if
σ is antitone and for each p < q in Q there exists a complemented element
ap,q ∈ L such that σ(q) 6 ap,q 6 σ(p), then σ is an (extended) scale (indeed,
σ(p) ∨ σ(q)∗ ≥ ap,q ∨ ap,q

∗ = 1 whenever p < q). In particular, if all σ(r) are
complemented, then σ is an (extended) scale if and only if it is antitone.

For each extended scale σ in L, the formulas

f(p,—) =
∨

r>p

σ(r) and f(—, q) =
∨

r<q

σ(r)∗, p, q ∈ Q, (2.5.1)

determine an f ∈ C(L); then, f ∈ C(L) if and only if σ is a scale. More-
over, given f, f1, f2 ∈ C(L) determined by extended scales σ, σ1 and σ2,
respectively, we have:

(a) f(p,—) 6 σ(p) 6 f(—, p)∗ for every p ∈ Q.
(b) f1 6 f2 if and only if σ1(p) 6 σ2(q) for every p > q in Q.

Examples. For each r ∈ Q, the scale σr given by σr(p) = 0 if p ≥ r and
σr(p) = 1 if p < r, determines the constant function r ∈ C∗(L), given by

r(p,—) =

{

0 if p ≥ r,

1 if p < r,
and r(—, p) =

{

1 if p > r,

0 if p 6 r.

We recall that an f ∈ F(L) is bounded if there exist p < q in Q such that
p 6 f 6 q (i.e., f(—, p) = 0 = f(q,—)).
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One can similarly define two extended constant functions +∞ and −∞

generated by the extended scales σ+∞ : p 7→ 1 and σ−∞ : p 7→ 0. They are
defined for each p, q ∈ Q by

+∞(p,—) = 1 = −∞(—, q) and +∞ (—, q) = 0 = −∞(p,—),

and they are precisely the top and bottom elements of C(L).

Of course, we can also use scales in S(L) to determine arbitrary real func-
tions on L.

2.6. Complete regularity. Given a frame L and a, b ∈ L, b is really inside

a (written: b≺≺ a) if there exists a family {cr | r ∈ Q∩ [0, 1]} ⊆ L such that
b 6 c0, c1 6 a and c∗r ∨ cs = 1 whenever r < s. A frame L is called completely

regular if a =
∨

{b ∈ L | b≺≺ a} for every a ∈ L. The following result was
proved in [13]:

Proposition. Let L be a frame and a, b ∈ L. Then

(1) b≺≺ a if and only if there exists an f ∈ C(L) satisfying 0 6 f 6 1 such
that c(b) 6 f(—, 1)∗ and f(0,—) 6 c(a).

(2) L is completely regular if and only if for each S ∈ c(L),

S =
∨

{T ∈ c(L) | there exists fT ∈ C(L) satisfying 0 6 fT 6 1,

T 6 fT (—, 1)
∗ and fT (0,—) 6 S}.

3. Bounded real functions and cb-frames
Let us remind the reader that a real function f ∈ F(L) is bounded [16] if

there exist p < q in Q such that f(p,—) = 1 = f(—, q). In this section we
will discuss some variants of boundedness for general real functions that will
play an important role in our results.

Definition 3.1. We say that f is

(1) continuously bounded if there exist h1, h2 ∈ C(L) such that h1 6 f 6 h2;
(2) locally bounded if

∨

r∈Q

f(r,—) = 1 =
∨

r∈Q

f(—, r).

We denote by F∗(L), Fcb(L) and Flb(L) the collections of all bounded,
continuously bounded and locally bounded members of F(L) respectively.
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Similarly we have the classes

LSC∗(L), LSCcb(L), LSClb(L), USC∗(L), USCcb(L) and USClb(L).

Remarks 3.2. (1) It readily follows from the definitions that

F∗(L)⊆ Fcb(L) ⊆Flb(L) ⊆ F(L).

(2) Note that f ∈ LSClb(L) if and only if f ∈ LSC(L) and
∨

r∈Q f(—, r) = 1

and, dually, f ∈ USClb(L) if and only if f ∈ USC(L) and
∨

r∈Q f(r,—) = 1.

(3) Recall that a real function ϕ : X → R on a topological space X is locally
bounded if for every x ∈ X there exists an open neighbourhood Ux such that
ϕ(Ux) is bounded. Consequently, ϕ is locally bounded if and only if

⋃

r∈Q

Int
(

ϕ−1([r,+∞))
)

= X =
⋃

r∈Q

Int
(

ϕ−1((−∞, r])
)

,

as can be easily checked. In particular, a lower semicontinuous ϕ is locally
bounded if and only if

⋃

r∈Q Int
(

ϕ−1((−∞, r))
)

= X and an upper semicon-

tinuous ϕ is locally bounded if and only if
⋃

r∈Q Int
(

ϕ−1((r,+∞))
)

= X.
(4) Given a lower semicontinuous mapping ϕ : X → R and the correspond-
ing lower semicontinuous real function fϕ in F(OX) (introduced in Re-
mark 2.4 (3)) we have that:
(a) ϕ is bounded if and only if fϕ is bounded;
(b) ϕ is continuously bounded if and only if fϕ is continuously bounded;
(c) ϕ is lower semicontinuous and locally bounded if and only if fϕ is lower
semicontinuous and locally bounded. For the latter, we have the following
proof:
For any ϕ ∈ LSC(X), the condition of ϕ being locally bounded means

precisely that, in S(OX),

1 =
∨

r∈Q

c
(

ϕ−1 ((r,+∞))∗
)

=
∨

r∈Q

o (ϕ−1 ((r,+∞))), that is,

1 =
∨

q∈Q

∨

r<q

o (ϕ−1 ((r,+∞))) =
∨

q∈Q

fϕ(—, q)

(notice that for each r ∈ Q,

o (ϕ−1 ((r,+∞))) 6
∨

r<r+1

o (ϕ−1 ((r,+∞))) 6
∨

q∈Q

∨

r<q

o (ϕ−1 ((r,+∞))),
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and
∨

r<q

o (ϕ−1 ((r,+∞))) 6 o (ϕ−1 ((q,+∞))) 6
∨

r∈Q

o (ϕ−1 ((r,+∞)))

for each q ∈ Q). The last identity means that fϕ ∈ LSClb(OX).
Dually, we have similar results for upper semicontinuous real functions.

The lower and upper regularizations of a real function on L were introduced
and studied in [14, 16]. The lower regularization f ◦ of an f ∈ F(L) is the

extended real function generated by the extended scale σf◦ : r 7→ f(r,—), i.e.,

f ◦(p,—) =
∨

r>p

f(r,—) and f ◦(—, q) =
∨

s<q

(

f(s,—)
)∗
. (3.2.1)

Dually, the upper regularization f− of f is defined by f− = −(−f)◦. Equiv-
alently, f− is the extended real function generated by the extended scale
σf− : r 7→

(

f(—, r)
)∗
, i.e.,

f−(p,—) =
∨

r>p

(

f(—, r)
)∗

and f−(—, q) =
∨

s<q

f(—, s). (3.2.2)

The following basic properties (cf. [14, 16]) of the operators

(·)◦ : F(L)→ LSC(L) and (·)− : F(L)→ USC(L)

will be useful in the sequel.

Proposition 3.3. [16, Propositions 7.3 and 7.4] The following hold for any

f, g ∈ F(L):

(1) (+∞)◦ = +∞ and (−∞)− = −∞.

(2) f ◦ 6 f 6 f−.

(3) f ◦◦ = f ◦ and f−− = f−.

(4) (f ∧ g)◦ = f ◦ ∧ g◦ and (f ∨ g)− = f− ∨ g−.

(Hence f 6 g implies that f ◦ 6 g◦ and f− 6 g−).
(5) Both (·)◦− and (·)−◦ are idempotent, i.e. f ◦−◦− = f ◦− and f−◦−◦ = f−◦.

As a corollary of Proposition 3.3 we have:

Corollary 3.4. Let f ∈ F(L). Then:

(1) LSC(L) =
{

f ∈ F(L) | f = f ◦
}

, USC(L) =
{

f ∈ F(L) | f− = f
}

and

C(L) =
{

f ∈ F(L) | f−◦ = f = f−◦
}

.

(2) f ◦ =
∨

{

g ∈ LSC(L) | g 6 f
}

and f− =
∧
{

g ∈ USC(L) | g ≥ f
}

.
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In general, the regularization of a real function is an extended real function.
However, we have the following:

Proposition 3.5 ([16, Proposition 7.8]). The following hold for any f ∈
F(L):

(1) If
∨

p∈Q f(p,—) = 1 then f ◦ ∈ F(L).

(2) If
∨

q∈Q f(—, q) = 1 then f− ∈ F(L).

Regarding locally bounded real functions, we have the following easy con-
sequence:

Corollary 3.6. The following statements are equivalent for any f ∈ F(L):

(1) f is locally bounded.

(2) f ◦, f− ∈ F(L).
(3) f ◦ and f− are locally bounded.

(4) f ◦, f−, f ◦−, f−◦ ∈ F(L).
(5) f ◦, f−, f ◦− and f−◦ are locally bounded.

(6) f ◦, f−, f ◦−, f−◦, f ◦−◦, f−◦− ∈ F(L).
(7) f ◦, f−, f ◦−, f−◦, f ◦−◦ and f−◦− are locally bounded.

Proof : (1)⇒ (2): This follows immediately from Proposition 3.5.

(2)⇒ (3): Let f ∈ F(L) such that f ◦, f− ∈ F(L). By Proposition 3.3 (2) we
know that f ◦ ≤ f−. Then one has

∨

p∈Q

f ◦(—, p) ≥
∨

p∈Q

f−(—, p) =
∨

p∈Q

f−(—, p) = 1

and, similarly, one has
∨

p∈Q

f−(p,—) ≥
∨

p∈Q

f ◦(p,—) =
∨

p∈Q

f ◦(p,—) = 1.

By Remarks 3.2 (2) we conclude that both f ◦ and f− belong to Flb(L).

(3)⇒ (4)⇒ (5) and (5)⇒ (6)⇒ (7) follow similarly as (1)⇒ (2)⇒ (3).

(7)⇒ (1): This is obvious since

1 =
∨

p∈Q

f ◦(p,—) =
∨

p∈Q

f(p,—) and 1 =
∨

q∈Q

f−(—, q) =
∨

q∈Q

f (—, q).
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Definition 3.7. A frame L is continuously bounded (shortly, a cb-frame) if
every locally bounded real function on L is bounded above by a continuous
real function.

Proposition 3.8. The following are equivalent for a frame L:

(1) L is continuously bounded.

(2) Every upper semicontinuous and locally bounded real function on L is

bounded above by a continuous real function.

(3) Every lower semicontinuous and locally bounded real function on L is

bounded below by a continuous real function.

(4) Fcb(L) = Flb(L).

Proof : (1)⇒ (2) and (4)⇔ (1) are obvious and (2)⇔ (3) is also clear since
f ∈ LSC(L) if and only if −f ∈ USC(L).

(3)⇒ (4): Let f ∈ Flb(L). We can immediately derive from Corollary 3.6 that
f ◦,−f− ∈ LSClb(L). Our hypothesis implies that we may find g1, g2 ∈ C(L)
such that g1 6 f ◦ and g2 6 −f−. Hence g1 6 f ◦ 6 f 6 f− 6 −g2 and
f ∈ Fcb(L).

Remark 3.9. Since the bijections in Remarks 2.4 (3) and 3.2 (4) are order
preserving, it follows from Proposition 3.8 that continuous boundedness is a
conservative extension of the classical notion (originally due to Horne [21],
see also [25, 26]), that is, a topological space X is a cb-space if and only if
OX is a cb-frame.

It also follows from the above result (using [15, Proposition 5.4]) that any
normal and countable paracompact frame (in particular, any perfectly normal
frame [15, Proposition 5.3]) is a cb-frame.

4. Normal semicontinuous real functions

One can say more about f ◦ and f− in case L is completely regular, as the
following result shows. In its proof we use the formulas for the operations in
the algebra F(L) obtained in [18] (cf. [3]).

Lemma 4.1. Let L be a completely regular frame and f ∈ F(L).

(1) If there exists g0 ∈ C(L) such that g0 6 f , then

f ◦ =
∨

{g ∈ C(L) | g 6 f} .
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(2) If there exists g0 ∈ C(L) such that f 6 g0, then

f− =
∧

{g ∈ C(L) | f 6 g} .

Proof : The proof follows the lines of [27, Lemma 3.1]. First note that by [18,
Corollary 3.5],

∨

{g ∈ C(L) | g 6 f} ∈ LSC(L) and
∧

{g ∈ C(L) | f 6 g} ∈ USC(L).

Then we only need to show that f ◦ 6
∨

{g ∈ C(L) | g 6 f} since the converse
inequality is trivial and (2) follows easily from (1).
We fix p ∈ Q and consider p′ ∈ Q such that p < p′. Since L is completely

regular, then by Proposition 2.6 (2),

f(p′,—) =
∨

{

S ∈ c(L) | exists hS ∈ C(L) satisfying 0 6 hS 6 1,

S 6 hS(—, 1)
∗ and hS(0,—) 6 f(p′,—)

}

.

Let S ∈ c(L) be one of such closed sublocales and let

gS = g0 + (((p′ − g0) ∨ 0) · hS) ∈ C(L).

We also have that gS 6 f ; indeed, for each r ∈ Q,

gS(r,—) =
∨

r′∈Q

g0(r − r′,—) ∧ (((p′ − g0) ∨ 0) · hS) (r
′,—)

=

(

∨

r′<0

g0(r − r′,—)

)

∨

(

∨

r′≥0

g0(r − r′,—) ∧ (((p′ − f) ∨ 0) · hS) (r
′,—)

)

= g0(r,—) ∨

(

∨

r′≥0

∨

r′′>0

g0(r − r′,—) ∧ ((p′ − f) ∨ 0) (r′′,—) ∧ hS

(

r′

r′′
,—

))

= g0(r,—) ∨

(

∨

r′≥0

∨

r′′>0

g0(r − r′, p′ − r′′) ∧ hS

(

r′

r′′
,—

))

= g0(r,—) ∨

(

∨

r′≥0

∨

r′<r′′<p′−r+r′

g0(r − r′, p′ − r′′) ∧ hS

(

r′

r′′
,—

))

.
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Now, if r ≥ p′ then p′ − r + r′ 6 r′ for each r′ ≥ 0 and thus gS(r,—) =
g0(r,—) 6 f(r,—). Otherwise, if r < p′ then

gS(r,—) 6 g0(r,—) ∨

(

∨

r′≥0

∨

r′<r′′<p′−r+r′

g0(r − r′, p′ − r′′) ∧ hS(0,—)

)

= g0(r,—) ∨

(

∨

r′≥0

g0(r − r′, p′ − r′) ∧ hS(0,—)

)

= g0(r,—) ∨ (g0(—, p
′) ∧ hS(0,—)) 6 g0(r,—) ∨ hS(0,—)

6 f(r,—) ∨ f(p′,—) 6 f(r,—) ∨ f(p′,—) = f(r,—).

Therefore gS(r,—) 6 f(r,—) for every r ∈ Q and thus gS 6 f .
Finally, since p < p′ it follows that

gS(p,—) = g0(p,—) ∨

(

∨

r′≥0

∨

r′<r′′<p′−p+r′

g0(p− r′, p′ − r′′) ∧ hS

(

r′

r′′
,—

))

≥ g0(p,—) ∨

(

∨

r′≥0

∨

r′<r′′<p′−p+r′

g0(p− r′, p′ − r′′) ∧ hS(—, 1)
∗

)

= g0(p,—) ∨

(

∨

r′≥0

g0(p− r′, p′ − r′) ∧ S

)

= g0(p,—) ∨ (g0(—, p
′) ∧ S)

= (g0(p,—) ∨ g0(—, p
′)) ∧ (g0(p,—) ∨ S) = g0(p,—) ∨ S ≥ S

and thus S 6 gS(p,—) 6
∨

{g(p,—) | g ∈ C(L) and g 6 f}. Hence

f(p′,—) 6
∨

{g(p,—) | g ∈ C(L) and g 6 f} and

f ◦(p,—) =
∨

p′>p

f(p′,—) 6
∨

{g(p,—) | g ∈ C(L) and g 6 f} .

But from [18, Lemma 3.3] we know that
∨

{g(p,—) | g ∈ C(L) and g 6 f} =
(

∨

{g ∈ C(L) | g 6 f}
)

(p,—).

Hence f ◦ 6
∨

{g ∈ C(L) | g 6 f} .

Corollary 4.2. Let L be a completely regular frame and f ∈ F∗(L). Then:

(1) f ◦ =
∨

{g ∈ C∗(L) | g 6 f}.
(2) f− =

∧

{g ∈ C∗(L) | f 6 g}.



NORMAL SEMICONTINUITY AND COMPLETIONS OF POINTFREE FUNCTION RINGS 15

Proof : (1) Let f ∈ F∗(L) and p, q ∈ Q be such that p 6 f 6 q. Note that
g ∨p ∈ C∗(L) for any g ∈ C(L) such that g ≤ f , since p ≤ g ∨p ≤ q. Then,
by Lemma 4.1 we have that

f ◦ =
∨

{g ∈ C(L) | g 6 f}

6
∨

{g ∨ p | g ∈ C(L) and g 6 f}

6
∨

{g′ ∈ C∗(L) | g′ 6 f} .

The converse inequality is trivial and (2) follows dually.

All this allows to extend the classical notions of lower and upper normal
semicontinuous real functions on a topological space (due to Dilworth [11,
Def. 3.2], see also [26]) into the pointfree setting:

Definition 4.3. (Cf. [19]) An f ∈ F(L) is normal lower semicontinuous if

f− ∈ F(L) and (f−)◦ = f ;

dually, f is normal upper semicontinuous if

f ◦ ∈ F(L) and (f ◦)− = f.

We denote by NLSC(L) and NUSC(L) the classes of normal lower semicon-
tinuous and normal upper semicontinuous members of F(L).

Remarks 4.4. (1) This is a slight refinement of our previous definition in
[19], where we defined an f ∈ F(L) to be normal lower (resp. upper) semi-
continuous just whenever (f−)◦ = f (resp. (f ◦)− = f), certainly inspired by
the original definition of Dilworth in [11] (stating that a lower resp. upper
semicontinuous real function ϕ : X → R is normal if (ϕ∗)∗ = ϕ resp. (ϕ∗)

∗ =
ϕ). But it should be noted that Dilworth [11] was only dealing with bounded
real functions. In the general case (of arbitrary, not necessarily bounded, real
functions), it turns out that there are real functions satisfying (ϕ∗)∗ = ϕ such
that ϕ∗ is not real (take, for instance, ϕ : R→ R given by ϕ(x) = 0 if x 6 0
and ϕ(x) = 1

x
if x > 0). So, when dealing with arbitrary real functions, the

assumption that ϕ∗ and ϕ∗ be real (or, equivalently, ϕ be locally bounded)
is no longer redundant and needs to be added to the definition (as Mack and
Johnson did in [26]).
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(2) Recall that a lower semicontinuous mapping ϕ : X → R is normal if and
only if it is locally bounded and

ϕ−1((p,+∞)) =
⋃

r>p

Int
(

ϕ−1((r,+∞))
)

for each p ∈ Q. Given a lower semicontinuous mapping ϕ : X → R and the
corresponding lower semicontinuous real function fϕ in F(OX) introduced in
Remark 2.4 (3), ϕ is normal lower semicontinuous if and only if fϕ is normal

lower semicontinuous. In fact, ϕ ∈ LSClb(X) if and only if fϕ ∈ LSClb(OX)
and moreover

ϕ = (ϕ∗)∗ ⇐⇒ ∀p ∈ Q ϕ−1((p,+∞)) =
⋃

r>p

Int
(

ϕ−1((r,+∞))
)

⇐⇒ ∀p ∈ Q c
(

ϕ−1((p,+∞))
)

=
∨

r>p

c
(

Int
(

ϕ−1((r,+∞))
))

⇐⇒ ∀p ∈ Q c
(

ϕ−1((p,+∞))
)

=
∨

r>p

c
(

ϕ−1((r,+∞))∗∗
)

⇐⇒ ∀p ∈ Q c
(

ϕ−1((p,+∞))
)

=
∨

r>p

c (ϕ−1((r,+∞)))◦

⇐⇒ ∀p ∈ Q fϕ(p,—) =
∨

r>p

fϕ(r,—)◦ = (fϕ)
−◦ (p,—)

⇐⇒ fϕ = (fϕ)
−◦

.

In conclusion, ϕ is normal lower semicontinuous if and only if fϕ ∈ NLSC(OX).
Evidently, the dual situation for upper semicontinuous real functions also
holds.

In the sequel, we shall be particularly interested in the following subclasses:

NLSCcb(L) = NLSC(L) ∩ Fcb(L), NUSCcb(L) = NUSC(L) ∩ Fcb(L),

NLSC∗(L) = NLSC(L) ∩ F∗(L) and NUSC∗(L) = NUSC(L) ∩ F∗(L).

Remarks 4.5. (1) It follows from Corollary 3.6 that NLSC(L) ⊆ Flb(L) and
NUSC(L) ⊆ Flb(L).

(2) If f ∈ NLSC(L) then f− ∈ NUSC(L); dually, if f ∈ NUSC(L) then
f ◦ ∈ NLSC(L). Clearly, the operators (·)◦ : NUSC(L) → NLSC(L) and
(·)− : NLSC(L) → NUSC(L) are inverse to each other and establish an iso-
morphism between the lattices NUSC(L) and NLSC(L).
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Note that there are also isomorphisms between the lattices NUSCcb(L) and
NLSCcb(L), and NUSC∗(L) and NLSC(L)∗.

Example 4.6. The classical characteristic functions of subsets of a space
have the following pointfree counterpart: for each complemented S ∈ S(L),

σ(p) = 1 if p < 0, σ(p) = S∗ if 0 6 p < 1, σ(p) = 0 if p ≥ 1

is a scale describing a real function χS∈ F∗(L), called the characteristic func-
tion of S. Specifically, χS is defined for each p ∈ Q by

χS(p,—) =











1 if p < 0,

S∗ if 0 6 p < 1,

0 if p ≥ 1,

and χS(—, p) =











0 if p 6 0,

S if 0 < p 6 1,

1 if p > 1.

Remark 4.7. Let S be a complemented sublocale of L and a ∈ L. Then:

(1) χS ∈ LSC∗(L) iff S is open and χS ∈ USC∗(L) iff S is closed.
(2) χS ∈ C∗(L) iff S is clopen.
(3) (χS)

◦ = χS◦ and (χS)
− = χS .

(4) (χo(a))
◦ = χo(a), (χc(a))

◦ = χo(a∗), (χc(a))
− = χc(a) and (χo(a))

− = χc(a∗).
(5) χo(a) ∈ NLSC∗(L) iff a = a∗∗ iff χc(a) ∈ NUSC∗(L).

Next result provides formulas for the double regularization of an arbitrary
real function.

Lemma 4.8. Let f ∈ F(L). Then for every p, q ∈ Q we have:

(1) f−◦(p,—) =
∨

r>p f(r,—)
◦ and f−◦(—, q) =

∨

s<q

(

f(—, s)
)◦
.

(2) f ◦−(p,—) =
∨

r>p

(

f(r,—)
)◦

and f ◦−(—, q) =
∨

s<q f(—, s)
◦.

Proof : (1) By definition, for each p ∈ Q,

f−◦(p,—) =
∨

r>p

f−(r,—) =
∨

r>p

∨

s>r

(

f(—, s)
)∗

Let s > r > p. Then f(—, s) ≥ f(r,—)∗ and thus
(

f(—, s)
)∗

6
(

f(r,—)∗
)∗
. It

follows that
∨

s>r

(

f(—, s)
)∗

6
(

f(r,—)∗
)∗

= f(r,—)◦ and therefore

f−◦(p,—) =
∨

r>p

∨

s>r

(

f(—, s)
)∗

6
∨

r>p

f(r,—)◦.
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In the other direction, let r > r′ > p. Then f(—, r) 6 f(r,—)∗ and so

f(r,—)◦ =
(

f(r,—)∗
)∗

6
(

f(—, r)
)∗

6
∨

s>r′

(

f(—, s)
)∗
.

Hence f(r,—)◦ 6
∨

s>r′

(

f(—, s)
)∗

and therefore

∨

r>p

f(r,—)◦ =
∨

r′>p

∨

r>r′

f(r,—)◦ 6
∨

r′>p

∨

s>r′

(

f(—, s)
)∗

= f−◦(p,—).

On the other hand, again by definition,

f−◦(—, q) =
∨

s<q

(

f−(s,—)
)∗

=
∨

s<q

(

∨

r>s

(

f(—, r)
)∗
)∗

for every q ∈ Q. Let s < t < q. Then
∨

r>s

(

f(—, r)
)∗
≥

(

f(—, t)
)∗

and so
(

∨

r>s

(

f(—, r)
)∗
)∗

6

(

(

f(—, t)
)∗
)∗

=
(

f(—, t)
)◦
.

It then follows that

f−◦(—, q) =
∨

s<q

(

∨

r>s

(

f(—, r)
)∗
)∗

6
∨

t<q

(

f(—, t)
)◦
.

On the other hand, let s < q. Then f(—, s) 6 f(—, r) for all r > s and

thus
(

f(—, s)
)∗
≥

∨

r>s

(

f(—, r)
)∗
. Hence

∨

s<q

(

f(—, s)
)◦

=
∨

s<q

(

(

f(—, s)
)∗
)∗

6
∨

s<q

(

∨

r>s

(

f(—, r)
)∗
)∗

= f−◦(—, q).

(2) This follows immediately since

f ◦−(p,—) = −
(

f ◦−
)

(—,−p) = (−f)−◦ (—,−p)

=
∨

s<−p

(

(−f) (—, s)
)◦

=
∨

s<−p

(

f(−s,—)
)◦

=
∨

r>q

(

f(r,—)
)◦

and

f ◦−(—, q) = −
(

f ◦−
)

(−q,—) = (−f)−◦ (−q,—)

=
∨

r>−q

(−f) (r,—)◦ =
∨

r>−q

f(—,−r)◦ =
∨

s<q

f(—, s)◦.

We shall also need the following result:
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Proposition 4.9. Let ∅ 6= F ⊆ NLSC(L). Then the join
∨

F exists in

F(L).

Proof : Let σ(p) =
∨

f∈F f(p,—) for every p ∈ Q. Since F ⊆ NLSC(L), it
follows from Lemma 4.8 (1) that

σ(p) =
∨

f∈F

f−◦(p,—) =
∨

f∈F

∨

r>p

f(r,—)◦

for each p ∈ Q. The map σ is clearly antitone. Since each σ(p) is a closed
sublocale (hence complemented), it follows from Remark 2.5 that σ is an
extended scale in S(L). Thus it determines a real function g in F(L) given
by

g(p,—) =
∨

r>p

σ(r) and g(—, q) =
∨

r<q

σ(r)∗, p, q ∈ Q.

We claim that g is the join of F in F(L):

• For each f ∈ F , f 6 g, that is, f(p,—) 6 g(p,—) for every p ∈ Q:

g(p,—) =
∨

r>p

σ(r) =
∨

r>p

∨

f∈F

f(r,—) =
∨

f∈F

∨

r>p

f(r,—)

=
∨

f∈F

f(p,—) ≥ f(p,—).

• If f 6 h for every f ∈ F and h ∈ F(L), then g 6 h, that is, g(p,—) 6
h(p,—) for every p ∈ Q:

g(p,—) =
∨

f∈F

f(p,—) 6 h(p,—).

Proposition 4.10. Let f ∈ F(L). The following hold:

(1) If f ∈ Fcb(L) then f−◦ ∈ NLSCcb(L).
(2) If f ∈ F∗(L) then f−◦ ∈ NLSC∗(L).

Proof : (1) Choose f ∈ Fcb(L) and h1, h2 ∈ C(L) such that h1 6 f 6 h2. By
Proposition 3.3 (4) and Corollary 3.4 (1) it follows that

h1 = h−1 6 f− 6 h−2 = h2 and h1 = h−◦1 6 f−◦ 6 h−◦2 = h2,

which, together with Proposition 3.3 (5), imply that f−◦ ∈ NLSCcb(L).

(2) This follows in a similar fashion as (1).

Now, we need to introduce a weak variant of the notion of a cb-frame:
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Definition 4.11. A frame L is a weak cb-frame if each locally bounded,
lower semicontinuous real function on L is bounded above by a continuous
real function.

Proposition 4.12. The following are equivalent for a frame L:

(1) L is weak cb.

(2) Every upper semicontinuous and locally bounded real function on L is

bounded below by a continuous real function.

(3) Every normal upper semicontinuous real function f on L is bounded above

by a continuous real function.

(4) Every normal lower semicontinuous real function f on L is bounded below

by a continuous real function.

(5) LSCcb(L) = LSClb(L).
(6) USCcb(L) = USClb(L).
(7) NUSCcb(L) = NUSC(L).
(8) NLSCcb(L) = NLSC(L).

Proof : (1)⇔ (2) and (3)⇔ (4) are clear since f ∈ LSClb(L) if and only if
−f ∈ USClb(L) and f ∈ NLSC(L) if and only if −f ∈ NUSC(L).

(1)⇒ (3): Let f ∈ NUSC(L). If follows from Corollary 3.6 that f ◦ ∈
LSClb(L). The hypothesis says there is a g ∈ C(L) such that f ◦ 6 g. Hence
f = f ◦− 6 g− = g.

(4)⇒ (1): Let f ∈ LSClb(L). If follows from Corollary 3.6 that f−, f−◦− ∈
F(L). Moreover, f−◦− = f− and so f− ∈ NUSC(L). By the hypothesis there
is a g ∈ C(L) such that f− 6 g. Hence f 6 f− 6 g.

(5)⇒ (1), (6)⇒ (2), (7)⇒ (3) and (8)⇒ (4) are obvious.

(1)⇒ (5): Let f ∈ LSClb(L). Then −f− ∈ LSClb(L). By the hypothesis
there exist g1, g2 ∈ C(L) such that g1 6 f and g2 6 −f−. Hence g1 6 f 6

f− 6 −g2.

(2)⇒ (6) is dual to (1)⇒ (5).

(3)⇒ (7): Let f ∈ NUSC(L). Then, by Remark 4.5(2), −f ◦ ∈ NUSC(L).
The hypothesis says there are g1, g2 ∈ C(L) such that f 6 g1 and −f

◦ 6 g2.
Hence −g2 6 f ◦ 6 f 6 g1.

(4)⇒ (8) is dual to (3)⇒ (7).



NORMAL SEMICONTINUITY AND COMPLETIONS OF POINTFREE FUNCTION RINGS 21

The careful reader will observe readily enough that in view of Proposi-
tion 4.12 and Remarks 2.4 (3), 4.4, a topological space X is a weak cb-space
if and only if the frame OX is weak cb.
It also follows immediately from Proposition 4.12 (now using [19, Corol-

lary 3.7]) that the class of weak cb-frames includes extremally disconnected
frames.

5. The normal completion of C(L) and C∗(L)

We follow [30, Section 1.3] for the terminology on completions of a poset.
Recall from there that a completion of P is a pair (C, ϕ) where C is a complete
lattice and ϕ : P → C is a join- and meet-dense embedding (that is, each
element of C is a join of elements from ϕ[P ], and dually each element of C
is a meet of elements from ϕ[P ]).
Given a poset P = (P,6), we denote by ⊤ and ⊥ (in case they exist) the

top and bottom elements of P , respectively. Given A ⊆ P , let Au resp. Al

denote the set of all upper resp. lower bounds of A:

Au = {x ∈ P | y 6 x for all y ∈ A} and Al = {x ∈ P | x 6 y for all y ∈ A} .

For any A,B ⊆ P , we have:

(1) Au is an upper set and Al is a lower set.
(2) A ⊆ Aul ∩ Alu.
(3) If A ⊆ B then Au ⊇ Bu and Al ⊇ Bl.
(4) Aulu = Au and Alul = Al.

TheMacNeille completion (or normal completion) of P is the complete lattice

M(P ) = {A ⊆ P | Aul = A}

ordered by set inclusion, with ϕ(a) = {a}l for every a ∈ P . The top element
of M(P ) is the whole poset P . On the other hand, the bottom element of
M(P ) is the subset {⊥} in case P has a bottom element ⊥, and ∅ otherwise.
Sometimes a weaker kind of completeness is more useful: a poset (P,6)

is Dedekind (order) complete (or conditionally complete) if every non-void
subset A of P which is bounded from above has a supremum in P (and
then, in particular, every non-void subset B of P which is bounded from
below will have a infimum in P ). Of course, being complete is equivalent
to Dedekind complete plus the existence of top and bottom elements. A
Dedekind completion (or conditional completion) of P is a join- and meet-
dense embedding ϕ : P → D(P ) in a Dedekind complete poset D(P ). The
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Dedekind completion is slightly smaller than the MacNeille completion: it
can be obtained from M(P ), in case P is directed, just by removing its top
and bottom elements. In other words,

D(P ) = {A ⊆ P | Aul = A and {⊥} 6= A 6= P}

in case P has a bottom element ⊥ and

D(P ) = {A ⊆ P | Aul = A and ∅ 6= A 6= P}

if P has no bottom element.

Next we shall prove that the Dedekind completion D(C(L)) of C(L) is
isomorphic with NLSCcb(L) (and consequently, by Remark 4.5 (2), also with
NUSCcb(L)).

In order to describe D(C(L)) there is no loss of generality if we restrict
ourselves to completely regular frames (see the discussion in [6, Section 2]).

Theorem 5.1. Let L be a completely regular frame. The map

Φ: D(C(L))→ NLSCcb(L) defined by Φ(A) =
(

∨

A
)−◦

(where
∨

A denotes the supremum of A in F(L)) is a lattice isomorphism,

with inverse

Ψ: NLSCcb(L)→ D(C(L)) given by Ψ(f) = {g ∈ C(L) | g 6 f} .

Proof : (1) Φ is well defined:
Let A ∈ D(C(L)). We first note that since C(L) has no bottom element,

D(C(L)) =
{

A ⊆ C(L) | Aul = A and ∅ 6= A 6= C(L)
}

and so A 6= ∅. On the other hand, Au 6= ∅ (otherwise A = Aul = C(L)).
Let f ∈ A and g ∈ Au. The join

∨

A exists in F(L) by Proposition 4.9 and
satisfies f 6

∨

A 6 g, hence
∨

A ∈ Fcb(L). Then, by Proposition 4.10 (1),
(
∨

A)−◦ ∈ NLSCcb(L).

(2) Ψ is well defined:
First note that since f ∈ Fcb(L), there exists a g ∈ C(L) such that

g 6 f . Hence {g ∈ C(L) | g 6 f} 6= ∅. Also, {g ∈ C(L) | g 6 f} 6= C(L)
(since C(L) has no top element). Moreover, given h ∈ C(L), we have by
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Lemma 4.1 (1)

h ∈ {g ∈ C(L) | g 6 f}u ⇐⇒ g 6 h for all g ∈ C(L) such that g 6 f

⇐⇒ f = f ◦ =
∨

{g ∈ C(L) | g 6 f} 6 h.

Then, by Lemma 4.1 (2) we have, for each h′ ∈ C(L),

h′ ∈ {g ∈ C(L) | g 6 f}ul ⇐⇒ h′ 6 h for all h ∈ {g ∈ C(L) | g 6 f}u

⇐⇒ h′ 6 h for all h ∈ C(L) such that f 6 h

⇐⇒ h′ 6
∧

{h ∈ C(L) | f 6 h} = f−

⇐⇒ h′ = h′
◦
6 f−◦ = f.

Hence {g ∈ C(L) | g 6 f}ul = {g ∈ C(L) | g 6 f}.

(3) Both Φ and Ψ are order-preserving:
Choose A,B ∈ D(C(L)) such that A ⊆ B. Then

∨

A 6
∨

B and so
(
∨

A
)−◦

6
(
∨

B
)−◦

, i.e. Φ(A) 6 Φ(B). Conversely, let f, g ∈ NLSCcb(L)
satisfying f 6 g. Then

Ψ(f) = {g ∈ C(L) | g 6 f} ⊆ {g ∈ C(L) | g 6 f} = Ψ(f).

(4) Φ is a bijection with inverse Ψ:
Let f ∈ NLSCcb(L). By Lemma 4.1 (1),

Φ(Ψ(f)) = Φ ({g ∈ C(L) | g 6 f}) =
(

∨

{g ∈ C(L) | g 6 f}
)−◦

= (f ◦)−◦ = f−◦ = f.

On the other hand, given A ∈ D(C(L)) and g ∈ C(L), we have (by
Lemma 4.1 (2))

g 6
(

∨

A
)−◦
⇐⇒ g 6

(

∨

A
)−

=
∧

{

h ∈ C(L) |
∨

A 6 h
}

⇐⇒ g 6
∧

{h ∈ C(L) | h ∈ Au} ⇐⇒ g ∈ Aul = A.

Hence

Ψ(Φ(A)) = Ψ
(

(

∨

A
)−◦

)

=
{

g ∈ C(L) | g 6
(

∨

A
)−◦

}

= A.

The preceding theorem (together with Proposition 4.12) leads immediately
to the following:
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Corollary 5.2. For any completely regular, weak cb-frame L, the Dedekind

completion D(C(L)) of C(L) is isomorphic with NLSC(L), as well as with

NUSC(L).

Note that by Remark 4.4 (2) this generalizes a classical result of Horn [20,
Theorem 11].
It also follows from Theorem 5.1 that NLSCcb(L) is Dedekind complete.

For the sake of completeness, we present here a direct proof of this fact.
First we will need the following lemma.

Lemma 5.3. If f ∈ NLSCcb(L) then −f− ∈ NLSCcb(L).

Proof : Since there exist h1, h2 ∈ C(L) such that h1 6 f 6 h2, it follows by
Proposition 3.3 (4) and Corollary 3.4 (1) that

−h2 = (−h2)
−
6 −f− 6 (−h1)

− = −h1,

and so −f− ∈ Fcb(L). On the other hand, (−f−)
−
= −f ◦− = −f ∈ F(L).

Since f− = f−◦−, we also have
(

−f−
)−◦

=
(

−f−◦−
)−◦

= −f−◦−◦− = −f−.

Hence −f− ∈ NLSCcb(L).

Proposition 5.4. NLSCcb(L) is Dedekind complete.

Proof : Let ∅ 6= F ⊆ NLSCcb(L) and f ′ ∈ NLSCcb(L) such that

f 6 f ′ for all f ∈ F .

By Proposition 4.9 we know that the join g =
∨

F exists in F(L). Then f 6

g 6 f ′ for each f ∈ F and so there exist h1, h2 ∈ C(L) such that h1 6 g 6 h2,
i.e. g ∈ Fcb(L). By Proposition 4.10 (1), it follows that g−◦ ∈ NLSCcb(L).
We claim that g−◦ is the join of F in NLSCcb(L):

• f 6 g for every f ∈ F and so it follows by Proposition 3.3 (4) and
Corollary 3.4 (1) that f = f−◦ 6 g−◦ for every f ∈ F .

• If g′ ∈ NLSCcb(L) is such that f 6 g′ for every f ∈ F , then g 6 g′ and
thus (again by Proposition 3.3 (4)) g−◦ 6 (g′)−◦ = g′.

Now let ∅ 6= F ⊆ NLSCcb(L) and f ′ ∈ NLSCcb(L) such that

f ′ 6 f for all f ∈ F .

It follows from Lemma 5.3 that

∅ 6= G = {−f− | f ∈ F} ⊆ NUSCcb(L),
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−f ′− ∈ NLSCcb(L) and

−f− 6 −f ′− for all f ∈ F .

By the result above we have that (
∨

G)−◦ is the join of G in NLSCcb(L). We
claim that − (

∨

G)−◦− is the meet of F in NLSCcb(L):

• − (
∨

G)−◦− ∈ NLSCcb(L) by Lemma 5.3.
• Since −f− 6 (

∨

G)−◦ for each f ∈ F we have

−f = −f−◦ =
(

−f−
)−

6
(

∨

G
)−◦−

and therefore − (
∨

G)−◦− 6 f for every f ∈ F .
• Let g′ ∈ NLSCcb(L) satisfying g′ 6 f for each f ∈ F . It follows that
−f− 6 −g′− for each f ∈ F with−g′− ∈ NLSCcb(L) and consequently
(
∨

G)−◦ 6 −g′−. To finish off the proof observe that

g′ = g′
−◦

6

(

−
(

∨

G
)−◦

)◦

= −
(

∨

G
)−◦−

.

The bounded case. It is a straightforward exercise to adapt the proof of
Theorem 5.1 to the case of bounded real functions. We then conclude the
following:

Theorem 5.5. Let L be a completely regular frame. The normal completion

of C∗(L) is isomorphic with NLSC∗(L).

This generalizes Theorem 4.1 of Dilworth [11] for spaces.

The case of extremally disconnected frames. Recall that a frame L is
said to be extremally disconnected if a∗∨a∗∗ = 1 for every a ∈ L (equivalently,
L is extremally disconnected iff a∗∗ is complemented for every a ∈ L iff the
closure of every open sublocale of L is open iff the interior of every closed
sublocale of L is closed).
We first note the following:

Proposition 5.6. The following statements are equivalent for any frame L:

(1) L is extremally disconnected.

(2) NLSC(L) = C(L).
(3) NUSC(L) = C(L).
(4) NLSC∗(L) = C∗(L).
(5) NUSC∗(L) = C∗(L).
(6) NLSCcb(L) = C(L).



26 J. GUTIÉRREZ GARCÍA, I. MOZO CAROLLO AND J. PICADO

(7) NUSCcb(L) = C(L).

Proof : (1)⇒ (2): Let f ∈ NLSC(L). Then, by Lemma 4.8, for every q ∈ Q

we have that

f(—, q) = f−◦(—, q) =
∨

s<q

(

f(—, s)
)◦
.

Since L is extremally disconnected, it follows that
(

f(—, s)
)◦

is a closed
sublocale for any s ∈ Q and so f(—, q) is closed for each q ∈ Q, i.e. f ∈
USC(L). Hence f ∈ C(L).

(2)⇒ (1): For each a ∈ L, χo(a∗∗) ∈ NLSC(L) = C(L) and so o(a∗∗) is a
clopen sublocale, i.e. a∗∗ is complemented.
The equivalences (1)⇔(3), (1)⇔(4) and (1)⇔(5) follow similarly. Finally,

the implications (2)⇒(6) and (3)⇒(7) are trivial while (6)⇒(1) follows from
the fact that χo(a∗∗) is indeed in NLSC(L)cb = C(L). Similarly for (7)⇒(1).

As an immediate corollary we get the following result from Banaschewski-
Hong [6]:

Corollary 5.7. ([6, Proposition 1]) The following are equivalent for any

completely regular frame L:

(1) L is extremally disconnected.

(2) C(L) is Dedekind complete.

(3) C∗(L) is Dedekind complete.

6. The completion as a function ring: bounded case

In this section we will show that the Dedekind completion of the lattice
of bounded continuous real functions on any completely regular frame is
isomorphic to the lattice of all bounded continuous real functions on an-
other suitably determined frame. The latter is a Boolean frame, namely the
Booleanization B(L) of L [7], that is, the complete Boolean algebra of all
regular elements a = a∗∗.

Notation. Along the next two sections, for each real function f and each
p ∈ Q we shall denote the infima of the sublocales f(p,—) and f(—, p) by fp
and f p, respectively. In other words, c(fp) = f(p,—) and c(f p) = f(—, p).
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Remarks 6.1. (1) Note that

0 = f(p,—) ∧ f(—, p) ≥ f(p,—) ∧ f(—, p) = c(fp) ∧ c(f p) = c(fp ∧ f p)

and thus fp ∧ f p = 0 for every p ∈ Q.

(2) If f is locally bounded, then

1 =
∨

p∈Q

f(p,—) =
∨

p∈Q

c (fp) = c





∨

p∈Q

fp





and so
∨

p∈Q fp = 1; similarly
∨

p∈Q f p = 1.

(3) If f is lower semicontinuous (resp. upper semicontinuous) then
∨

r>p fr =
fp (resp.

∨

r<p f
r = f p) for each p ∈ Q.

(4) If f is normal lower semicontinuous then, by Lemma 4.8 (1), c (fp) =
∨

r>p c ((fr)
∗∗) and therefore

∨

r>p(fr)
∗∗ = fp. Dually, if f is normal upper

semicontinuous then
∨

s<q(f
s)∗∗ = f q.

(5) Note also that in case f is continuous, the frame homomorphism

ϕ : L
(

R
)

→ L

such that f = c · ϕ is given precisely by ϕ(p,—) = fp and ϕ(—, p) = f p for
each p ∈ Q (see Remark 2.4 (2)).

Theorem 6.2. Let L be a completely regular frame. The Dedekind comple-

tion of C∗(L) is isomorphic with C∗(B(L)).

Proof : For each f ∈ NLSC∗(L) define σ : Q → B(L) by σ(r) = (fr)
∗∗ for

every r ∈ Q. The map σ is trivially antitone and hence an extended scale
in B(L) by Remark 2.5. Moreover, since f is bounded, there exist p, q ∈ Q

such that f(p, q) = 1. Then fp = 1 = f q,

∨

r∈Q

σ(r) ≥ fp = 1 and
∨

r∈Q

σ(r)∗ ≥ (fq)
∗ ≥ f q = 1.



28 J. GUTIÉRREZ GARCÍA, I. MOZO CAROLLO AND J. PICADO

Hence σ is a scale in B(L) and it then follows from (2.5.1) that the formulas

Φ(f)(p,—) =

B(L)
∨

r>p

(fr)
∗∗ =

( L
∨

r>p

(fr)
∗∗

)∗∗

=

( L
∨

r>p

fr

)∗∗

= (fp)
∗∗ and

Φ(f)(—, q) =

B(L)
∨

s<q

(fs)
∗ =

( L
∨

s<q

(fs)
∗

)∗∗

determine a bounded continuous real function Φ(f) in B(L). It is straight-
forward to check that the map

Φ: NLSC∗(L)→ C∗(B(L))

is order-preserving.
On the other hand, for each g ∈ C∗(B(L)), let σ : Q → S(L) be given by

σ(r) = c(g(r,—)) for every r ∈ Q. The map σ is trivially antitone and hence,
by Remark 2.5, an extended scale in S(L). Moreover, since g is bounded
there exist p, q ∈ Q such that g(p, q) = 1. Hence
∨

r∈Q

σ(r) ≥ c(g(p,—)) = c(1) = 1 and
∨

r∈Q

σ(r)∗ ≥ o(g(q,—)) = o(0) = 1.

This shows that σ is a scale in S(L) and it follows from (2.5.1) that the
formulas

Ψ(g)(p,—) =
∨

r>p

c (g(r,—)) and Ψ(g)(—, q) =
∨

s<q

o(g(s,—))

determine a bounded lower semicontinuous real function Ψ(g) in L. More-
over,

(Ψ(g))−◦(p,—) =
∨

r>p

Ψ(g)(r,—)◦ =
∨

r>p

c

( L
∨

s>r

g(s,—)

)◦

=
∨

r>p

c

(( L
∨

s>r

g(s,—)

)∗∗)

=
∨

r>p

c

(B(L)
∨

s>r

g(s,—)

)

=
∨

r>p

c (g(r,—)) = Ψ(g)(p,—)
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for each p ∈ Q. Hence Ψ(g) ∈ NLSC∗(L). Here again it is easily seen that
the map

Ψ: C∗(B(L))→ NLSC∗(L)

is order-preserving.
Finally, for each f ∈ NLSC∗(L), g ∈ C∗(B(L)) and p ∈ Q, it follows from

Remark 6.1 (4) that

Ψ (Φ(f)) (p,—) = c

(

∨

r>p

Φ(f)(r,—)

)

= c

(

∨

r>p

(fr)
∗∗

)

= c (fp) = f(p,—) and

Φ (Ψ(g)) (p,—) = (Ψ(g)p)
∗∗ =

( L
∨

r>p

g(r,—)

)∗∗

=

B(L)
∨

r>p

g(r,—) = g(p,—)

and so

Ψ·Φ = 1NLSC∗(L) and Φ·Ψ = 1C∗(B(L)).

7. The completion as a function ring: general case

The preceding theorem has no counterpart for a general C(L) since there
are frames L (even spatial frames) for which the Dedekind completion of
C(L) cannot be isomorphic to some C(M). In order to deal with the general
case we shall need first to review briefly some basic notions and facts about
frame homomorphisms and their right adjoints.
Given a frame homomorphism h : L→M , let

h∗ : M → L

denote its right adjoint, characterized by the condition h(a) 6 b if and only
if a 6 h∗(b) for all a ∈ L and b ∈ M . Obviously, h is injective iff h∗h = idL
iff h∗ is surjective. In particular, if h is injective then h∗(0) = 0. We shall
denote by h∗[−] the image map S(L) → S(M) induced by h∗ (which sends
each sublocale S of L to h∗[S]). This is a localic map [29, 2.2].
Recall that h is said to be

(1) closed if h∗[−] preserves closed sublocales, that is, if h∗ [c(a)] = c(h∗(a))
for every a ∈M ,

(2) proper (also, perfect) if it is closed and h∗ preserves directed joins,
(3) an essential embedding if it is injective and h∗(a) = 0 implies a = 0

for each a ∈M (cf. [5, Lemma 1]).
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Remark 7.1. In case h∗ preserves directed joins, then h∗(a
∗) 6 h∗(a)

∗.
Indeed, h∗(a

∗) = h∗(
∨

{x | x ∧ a = 0}) and the set {x | x ∧ a = 0} is clearly
directed; hence

h∗(a
∗) =

∨

{h∗(x) | x ∧ a = 0} 6
∨

{y | y ∧ h∗(a) = 0} = h∗(a)
∗.

Lemma 7.2. Let h be an essential embedding. Then:

(1) For each a ∈ M , h∗(a
∗) = h∗(a)

∗. Consequently, h∗(a
∗∗) = h∗(a)

∗∗ for

every a ∈M .

(2) For each a ∈ M , h (h∗ (a))
∗ = a∗. Consequently, h (h∗ (a))

∗∗ = a∗∗ for

every a ∈M .

Proof : (1) First note that h∗(a
∗) ∧ h∗(a) = h∗(0) = 0 and thus h∗(a

∗) 6

h∗(a)
∗. On the other hand, fix an a ∈ M . Since h∗ is surjective there exists

xa ∈ M such that h∗(a)
∗ = h∗(xa) and so h∗ (xa ∧ a) = h∗ (xa) ∧ h∗ (a) = 0.

It then follows that xa ∧ a = 0 since h is an essential embedding. Hence
xa 6 a∗ and h∗(a)

∗ = h∗(xa) 6 h∗ (a
∗).

(2) The first inequality is immediate since h (h∗ (a)) 6 a and thus h (h∗ (a))
∗ ≥

a∗ for every a ∈M . On the other hand, from (1) we have that

0 = h∗ (a) ∧ h∗ (a)
∗ = h∗ (a) ∧ h∗ (h (h∗ (a)))

∗ = h∗ (a) ∧ h∗ (h (h∗ (a))
∗)

= h∗ (a ∧ h (h∗ (a))
∗)

and therefore a ∧ h (h∗ (a))
∗ = 0. Hence h (h∗ (a))

∗
6 a∗ and finally observe

that a∗∗ 6 h (h∗ (a))
∗∗.

We shall also make use of the following result, which is the version for com-
pletely regular frames, due to Chen [8], of a original result of Banaschewski
[2] for compact regular frames (cf. [23, 24]):

Theorem 7.3. For every completely regular frame L, there exist a completely

regular and extremally disconnected frame G(L) and a proper essential em-

bedding γL : L→ G(L). Moreover, γL is unique up to isomorphism.

The embedding
γL : L→ G(L)

is usually called the Gleason cover (also Gleason envelope) of L.
Let h : L → M be a closed frame homomorphism and f ∈ LSC(M). For

each t ∈ Q, f(t,—) = c(ft) and so h being closed implies that h∗ [f(t,—)] =
c(h∗(ft)) for every t ∈ Q. First, let us check that the composition

h∗[−] · f : L(R)→ S(L)
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establishes a real function whenever h is a proper essential embedding.

Lemma 7.4. Let h : L → M be a closed frame homomorphism and f ∈
LSC(M). The map σ : Q→ S(L) given by

σ(p) = h∗ [f(p,—)]) = c(h∗(fp))

is an extended scale in S(L).

Proof : Let p < q. Then

σ(p) ∨ σ(q)∗ = c(h∗(fp)) ∨ o(h∗(fq)) ≥ c(h∗(fp)) ∨ o(h∗(fp)) = 1.

It then follows from (2.5.1) that the formulas

h←(f)(p,—) =
∨

r>p

h∗ [f(r,—)]) =
∨

r>p

c(h∗(fr)) and

h←(f)(—, q) =
∨

s<q

(h∗ [f(s,—)])
∗ =

∨

s<q

o(h∗(fs))

determine a real function h←(f) in LSC(L).
Clearly, h←(·) is monotone, that is, f1 6 f2 implies h←(f1) 6 h←(f2).

Proposition 7.5. If h : L → M is a proper essential embedding and f ∈
C(M), then h←(f) ∈ NLSC(L).

Proof : Since h∗ preserves directed joins, we have

h←(f)(p,—) = c

(

h∗

(

∨

r>p

fr

))

= c(h∗ (fp)) = h∗ [c(fp)] (7.5.1)

for each p ∈ Q.
We first prove that h←(f) turns the defining relation (r6) into an identity

in S(L). Indeed, since h∗ preserves directed joins, we have

∨

p∈Q

h←(f)(p,—) =
∨

p∈Q

c(h∗(fp)) = c

(

h∗

(

∨

p∈Q

fp

))

= c (h∗ (1)) = 1.

On the other hand, in order to prove that h←(f) turns the defining relation
(r5) into an identity in S(L), we proceed as follows. Since h∗ preserves meets
we have that

c(h∗(ft)) ∧ c(h∗(f
t)) = c(h∗(ft ∧ f t)) = c(h∗(0)) = c(0) = 0
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and consequently c(h∗(ft)) ∧ c(h∗(f
t)) = 0. Hence c(h∗(f

t)) 6 o(h∗(ft)). Fi-
nally observe that, since h∗ preserves directed joins and f is locally bounded,

∨

q∈Q

h←(f)(—, q) =
∨

q∈Q

∨

s<q

o(h∗(fs)) ≥
∨

q∈Q

∨

s<q

c(h∗(f s)) =
∨

r∈Q

c(h∗(f
s))

= c

(

h∗

(

∨

r∈Q

f s

))

= c (h∗ (1)) = c (1) = 1.

Therefore
∨

q∈Q

h←(f)(—, q) ≥
∨

q∈Q

h←(f)(—, q) = 1

and h←(f) ∈ LSC(L).
Moreover, we have also proved that h←(f) is locally bounded. Conse-

quently, in order to demonstrate that h←(f) is normal we only need to prove
that (h←(f))−◦ = h←(f). By Lemma 4.8, using Lemma 7.2 (1) and Re-
mark 6.1 (4), we get, for each p ∈ Q

(h←(f))−◦(p,—) =
∨

r>p

h←(f)(r,—)◦ =
∨

r>p

c (h∗(fr))
◦ =

∨

r>p

c (h∗(fr)
∗∗)

=
∨

r>p

c (h∗((fr)
∗∗))) = c

(

h∗

(

∨

r>p

(fr)
∗∗

))

= c (h∗ (fp))) = h←(f)(p,—)).

Proposition 7.6. Let h : L → M be a frame homomorphism with M ex-

tremally disconnected. For each g ∈ NLSC(L) and p, q ∈ Q define

h→(g)(p,—) =
∨

r>p

c (h (gr)
∗∗) and h→(g)(—, q) =

∨

s<q

c (h (gs)
∗) . (7.6.1)

Then h→(g) ∈ C(M). Moreover, if g1, g2 ∈ NLSC(L) are such that g1 6 g2
then h→(g1) 6 h→(g2).

Proof : For each g ∈ NLSC(L) define σ : Q→M by σ(r) = h (gr)
∗∗ for every

r ∈ Q. Let p < t < q in Q. Since M is extremally disconnected, we have

σ(p) ∨ σ(q)∗ = h (gp)
∗∗ ∨ h (gq)

∗ ≥ h (gt)
∗∗ ∨ h (gt)

∗ = 1.

Since g is locally bounded, it follows from Remark 6.1 (2) that
∨

p∈Q

σ(p) =
∨

p∈Q

h (gp)
∗∗ ≥

∨

p∈Q

h (gp) = h

(

∨

p∈Q

gp

)

= h(1) = 1.



NORMAL SEMICONTINUITY AND COMPLETIONS OF POINTFREE FUNCTION RINGS 33

On the other hand, since gp ∧ gp = 0, then h (gp) ∧ h (gp) = 0 and thus
h (gp) 6 h (gp)

∗ for every p ∈ Q. Consequently, by Remark 6.1 (2), we also
get

∨

p∈Q

σ(p)∗ =
∨

p∈Q

h(gp)
∗ ≥

∨

p∈Q

h(gp) = h

(

∨

p∈Q

gp
)

= h(1) = 1.

Hence σ is a scale in M .
It then follows from (2.5.1) and Remark 2.4 (2) that the formulas (7.6.1)

determine a continuous real function h→(g) in C(M).
The last statement is easy to check.

It should be remarked that h→ is a right (Galois) adjoint of h←, that is,

h←(f) 6 g ⇐⇒ f 6 h→(g)

for every f ∈ LSC(M) and g ∈ NLSC(L). When we restrict the class of
real functions on the left to C(M) this Galois connection yields an order
isomorphism:

Theorem 7.7. Let h : L → M be a proper essential embedding with L an

extremally disconnected frame. The map

h→ : NLSC(L)→ C(M)

is an order isomorphism, with inverse

h← : C(M)→ NLSC(L).

Proof : As seen above, both h→ and h← are well defined order-preserving
maps. It remains to check that h→ is a bijection with inverse h←.
If f ∈ C(M) then, by Proposition 7.5, h←(f) ∈ NLSC(L) and by Propo-

sition 7.6, h→(h←(f)) ∈ C(M). Applying (7.5.1), Lemma 7.2 (2) and Re-
mark 6.1 (4) we obtain for each p ∈ Q

h→ (h←(f)) (p,—) =
∨

r>p

c (h (h←(f)r)
∗∗) =

∨

r>p

c (h (h∗(fr))
∗∗)

=
∨

r>p

c ((fr)
∗∗) = c

(

∨

r>p

(fr)
∗∗

)

= c (fp) = f(p,—).

Hence h→ (h←(f)) = f .
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On the other hand, starting with a g ∈ NLSC(L), then h→(g) ∈ C(M)
and h←(h→(g)) ∈ NLSC(L). By (7.5.1), Proposition 7.6, Lemma 7.2 (1) and
Remark 6.1 (4), and since h∗ preserves directed joins, it follows that

h← (h→(g)) (p,—) = c(h∗ (h
→(g)p)) = c

(

h∗

(

∨

r>p

h (gr)
∗∗

))

=
∨

r>p

c (h∗ (h (gr)
∗∗)) =

∨

r>p

c (h∗ (h (gr))
∗∗)

=
∨

r>p

c ((gr)
∗∗) = c

(

∨

r>p

(gr)
∗∗

)

= c (gp) = g (p,—)

for every p ∈ Q. Hence h← (h→(g)) = g.

Corollary 7.8. Let L be a completely regular frame and let γL : L → G(L)
be its Gleason cover. The correspondence f 7→ γ←L (f) establishes a lattice

isomorphism between C(G(L)) and NLSC(L).

It now follows immediately from Corollaries 5.2 and 7.8 that for weak cb-
frames L the Dedekind completion of C(L) is indeed isomorphic to C(M) for
some frame M . More specifically:

Corollary 7.9. Let L be a completely regular, weak cb-frame. The Dedekind

completion of C(L) is isomorphic to C(G(L)).

This is the pointfree counterpart of the classical result, originally due to
Mack and Johnson [26], that for any completely regular, weak cb-space X

and its minimal projective extension Y , the Dedekind completion of C(X) is
isomorphic to C(Y ).

8. A third representation: Hausdorff continuous
functions

Dropping the relation (r2) from the definition of the frame of reals (in 2.2)
yields the frame L(IR) of partial real numbers [27]. Frame homomorphisms
L(IR)→ L are called continuous partial real functions [27] on L.
The set

IC(L)

of continuous partial real functions on L is partially ordered by f 6 g iff

f(p,—) 6 g(p,—) and g(—, q) 6 f(—, q)
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for every p, q ∈ Q.
We call any f in

IF(L) = IC(S(L)) = Frm(L(IR),S(L))

an arbitrary partial real function on L. As for total real functions, we say that
f is lower (resp. upper) semicontinuous if f(p,—) ∈ c(L) (resp. f(—, p) ∈
c(L)) for every p ∈ Q. Further, IC(L) can be seen as the subclass of IF(L)
of all lower and upper semicontinuous real functions.

Remark 8.1. The obvious order embedding ι : L(IR) → L(R) defined by
(p, q) 7→ (p, q) induces an embedding I : F(L)→ IF(L) (given by f 7→ f · ι).
So we may look to F(L) as a subset of IF(L), specifically as the subset of
partial real functions such that

f(p,—) ∨ f(—, q) = 1 for every p < q in Q.

Similarly, we can embed C(L), LSC(L) and USC(L) in IF(L):

IF(L)

ILSC(L) F(L) IUSC(L)

LSC(L) IC(L) USC(L)

C(L)

As for real functions (recall Def. 3.1), a partial real function f ∈ IF(L) is

(1) bounded if there exist p < q in Q such that f(p,—) = 1 = f(—, q);
(2) continuously bounded if there exist h1, h2 ∈ C(L) such that h1 6 f 6 h2;
(3) locally bounded if

∨

r∈Q

f(r,—) = 1 =
∨

r∈Q

f(—, r).

We denote the corresponding collections of real functions by IF∗(L), IFcb(L)
and IFlb(L) respectively.
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Remark 8.2. Obviously, bounded partial real functions and continuous func-
tions are continuously bounded and any continuously bounded partial real
function is locally bounded. Thus

IF∗(L) ∪ IC(L) ⊆ IFcb(L) ⊆ IFlb(L).

In order to extend the lower and upper regularizations of a real function
(3.2.1-3.2.2) to partial real functions we need the following result.

Lemma 8.3. Let f ∈ IFlb(L). Then σ : Q→ S(L), defined by σ(r) = f(r,—),
is a scale in S(L).

Proof : Since σ is clearly antitone and each σ(r) is complemented, it follows
from Remark 2.5 that it is an extended scale. On the other hand, since f is
locally bounded and 0 = f(r,—)∧ f(—, r) ≥ f(r,—)∧ f(—, r) for every r ∈ Q

we have
∨

r∈Q

σ(r) =
∨

r∈Q

f(r,—) = 1 and
∨

r∈Q

σ(r)∗ =
∨

r∈Q

(

f(r,—)
)∗
≥

∨

q∈Q

f(—, r) = 1

and thus σ is a scale in S(L).

Note also that Remark 2.4(1) has its counterpart in IF(L) and there is a
dual order-isomorphism −(·) : ILSC(L)→ IUSC(L) defined by

(−f)(—, r) = f(−r,—) for all r ∈ Q.

When restricted to ILSClb(L) it becomes a dual isomorphism from ILSC(L)lb

onto IUSC(L)lb. With the help of the lemma, it is now a straightforward
exercise to check that the lower and upper regularizations defined in Section 3
are immediately extendable to any f ∈ IFlb(L) yielding operators

(·)◦ : IFlb(L)→ LSC(L) and (·)− : IFlb(L)→ USC(L) (8.3.1)

with properties similar to the ones in Proposition 3.3 and Corollary 3.4. In
particular:

Proposition 8.4. The following properties hold for any f, g ∈ IFlb(L):

(1) f ◦ 6 f 6 f−.

(2) f ◦◦ = f ◦ and f−− = f−.

(3) f ◦ 6 g◦ and f− 6 g− whenever f 6 g.

(4) f ◦−◦− = f ◦− and f−◦−◦ = f−◦.
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Definition 8.5. An f ∈ IFlb(L) is Hausdorff continuous if f ∈ IC(L), i.e.,
f(p,—), f(—, q) ∈ c(L) for every p, q ∈ Q, f ◦− = f− and f−◦ = f ◦.
We denote by H(L) the collection of all Hausdorff continuous partial real

functions on L.

Obviously, C(L) ⊆ H(L) ⊆ IC(L) since f is continuous if and only if
f = f ◦ = f−. Moreover, f− ∈ NUSC(L) and f ◦ ∈ NLSC(L) for every
f ∈ H(L).
We conclude the paper with the promised third representation for the

Dedekind completion of C(L).

Theorem 8.6. Let L be a completely regular frame. The Dedekind comple-

tion of C(L) is isomorphic with Hcb(L) = H(L) ∩ IFcb(L).

Proof : For each f ∈ H(L), let Φ(f) = f ◦. By (8.3.1), Φ(f) ∈ LSC(L).
Moreover, Φ(f)− = f ◦− = f− ∈ F(L) and Φ(f)−◦ = f ◦−◦ = f−◦ = f ◦ =
Φ(f). Thus Φ(f) ∈ NLSC(L).
The map

Φ: H(L)→ NLSC(L)

is order-preserving and its restriction to C(L) is the identity map. Hence
Φ(f) ∈ NLSCcb(L) whenever f ∈ Hcb(L), and Φ|Hcb(L) is an order-preserving

map from Hcb(L) into NLSCcb(L).

Conversely, given g ∈ NLSC(L) and p, q ∈ Q define

Ψ(g)(p,—) = g(p,—) and Ψ(g)(—, q) = g−(—, q).

In order to show that Ψ(g) ∈ IF(L) we only need to prove that Ψ(g) turns
the defining relations (r1) and (r3)–(r6) into identities in S(L):

(r1) For each p ≥ q, it follows from Remarks 6.1 that

Ψ(g)(p,—) ∧Ψ(g)(—, q) = g(p,—) ∧ g−(—, q) 6 g(p,—) ∧ g(—, q) = 0.

(r3)–(r6) follow since g ∈ NLSC(L) and g− ∈ NUSC(L). Further,
∨

r∈Q

Ψ(g)(r,—) =
∨

r∈Q

g(r,—) =
∨

r∈Q

g(r,—) = 1 and

∨

r∈Q

Ψ(g)(—, r) =
∨

r∈Q

g−(—, r) =
∨

r∈Q

g−(—, r) = 1,
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which ensures that Ψ(g) ∈ IFlb(L). Moreover,

Ψ(g)◦(p,—) =
∨

r>p

Ψ(g)(r,—) =
∨

r>p

g(r,—) = g(p,—) and

Ψ(g)−(—, q) =
∨

s<q

Ψ(g)(—, s) =
∨

s<q

g−(—, s) = g(—, q)

for every p, q ∈ Q. Hence Ψ(g)◦ = g, Ψ(g)− = g−, Ψ(g)◦− = g− and
Ψ(g)−◦ = g−◦ = g and so Ψ(g) ∈ H(L).
It is also easy to check that

Ψ: NLSC(L)→ H(L)

is order-preserving and its restriction to C(L) is the identity. Therefore,
Ψ(g) ∈ Hcb(L) whenever g ∈ NLSC(L), and Ψ|NLSCcb(L) is an order-preserving

map from NLSCcb(L) into Hcb(L).
Finally, for each f ∈ Hcb(L), g ∈ NLSCcb(L) and p, q ∈ Q, we have that

Ψ (Φ(f)) (p,—) = Φ(f)(p,—) = f ◦(p,—) =
∨

r>p

f(r,—) =
∨

r>p

f(r,—) = f(p,—),

Ψ(Φ(f)) (—, q) = Φ(f)−(—, q) =
∨

s<q

Φ(f)(—, s) =
∨

s<q

f ◦(—, s) = f ◦−(—, q)

= f−(—, q) =
∨

s<q

f(—, s) =
∨

s<q

f(—, s) = f(—, q) and

Φ (Ψ(g)) (p,—) = Ψ(g)◦(p,—) =
∨

r>p

Ψ(g)(r,—) =
∨

r>p

g(r,—) =
∨

r>p

g(r,—)

= g(p,—),

that is,

Ψ·Φ = 1Hcb(L) and Φ·Ψ = 1NLSCcb(L).

This is the pointfree version of Anguelov’s characterization in [1] of the
Dedekind completion of C(X) in a constructive form, as a set of real functions
on the same space X.
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[13] Gutiérrez Garćıa J., Kubiak T.: General insertion and extension theorems for localic real

functions. J. Pure Appl. Algebra 215, 1198–1204 (2011).
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[15] Gutiérrez Garćıa J., Kubiak T., Picado J.: Pointfree forms of Dowker’s and Michael’s insertion

theorems. J. Pure Appl. Algebra 213, 98–108 (2009).
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[19] Gutiérrez Garćıa J., Picado J.: On the parallel between normality and extremal disconnect-
edness. J. Pure Appl. Algebra 218, 784–803 (2014).

[20] Horn A.: The normal completion of a subset of a complete lattice and lattices of continuous
functions. Pacific J. Math. 3, 137–152 (1953).

[21] Horne J.G.: Countable paracompactness and cb-spaces. Notices Amer. Math. Soc. 6, 629–630
(1959).

[22] Johnson D.G.: The completion of an archimedean f -ring. J. London Math. Soc. 40, 493–496
(1965).

[23] Johnstone P.T.: The Gleason cover of a topos, I. J. Pure Appl. Algebra 22, 171–192 (1980).
[24] Johnstone P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, Vol. 3, Cam-

bridge University Press (1982).
[25] Mack J. E.: On a class of countably paracompact spaces. Proc. Amer. Math. Soc. 16, 467–472

(1965).
[26] Mack J. E., Johnson D.G.: The Dedekind completion of C(X ). Pacific J. Math. 20, 231–243

(1967).
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