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and only if it is a compact quotient of the generalized Heisenberg group of odd
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1. Introduction

It is well-known that the existence of a Kähler structure on a compact
manifold M of even dimension implies strong topological consequences on
M . In particular, any compact Kähler manifold satisfies the Hard Lefschetz
property and is formal (see, for instance, [13, 28]).
Using the second of these properties, a nice result which completely char-

acterizes Kähler structures on compact nilmanifolds was found in [18]. The
same result was obtained independently in [4] using the Hard Lefschetz prop-
erty. Namely,

A compact nilmanifold of even dimension admits a Kähler structure if and
only it is diffeomorphic to a torus.

On the other hand, it is well-known that the odd dimensional counterparts
of Kähler manifolds are cosymplectic and Sasakian manifolds (see [5, 7]). We
remark that apart from the mathematical interest, cosymplectic and Sasakian
manifolds are Poisson and contact manifolds, respectively, and that these last
manifolds play an important role in some physical theories, particularly in
time-dependent Mechanics (see [1, 2, 9, 19, 20]). Moreover, Sasakian man-
ifolds have recently attracted the interest of theoretical physicists, due to
their role in the AdS/CFT duality that establishes a remarkable correspon-
dence between gravity theories and gauge theories (see e.g. [15, 22, 23, 24]).
In addition, some interesting results on universal models for embeddings of
compact Sasakian manifolds and on the global structure of these manifolds
have been obtained recently (see [25, 26]; see also [6]).
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Any compact cosymplectic manifold is formal [12]. So, using that a formal
compact nilmanifold is diffeomorphic to a torus [18], we directly deduce that

A compact nilmanifold of odd dimension admits a cosymplectic structure if
and only if it is diffeomorphic to a torus.

This result is just the version for cosymplectic manifolds of the previous
property for Kähler manifolds.
So, a natural question arise: what happens in the Sasakian setting with

these results?
The aim of this paper is to give a complete answer to the previous question.
We remark that, very recently, a Hard Lefschetz theorem for Sasakian

manifolds has been proved in [10]. However, so far, it is not clear if this
result could be used in order to describe the compact Sasakian nilmanifolds.
On the other hand, differently from the Kähler case, compact Sasakian

manifolds are not generally formal. Anyway, some interesting results have
been obtained very recently in this direction [27]. The geometric tool used
in [27] is the basic cohomology with respect to the foliation on the compact
Sasakian manifold M which is generated by its Reeb vector field. In fact, in
[27] the author proved that the real homotopy type of a compact Sasakian
manifold is a formal consequence of its basic cohomology and, in addition,
its basic Kähler class.
Using this fact and some results in [18] on minimal models of compact

nilmanifolds, we give an answer to the previous question. More precisely, we
prove the following result:

Theorem 1.1. A compact nilmanifold of dimension 2m+1 admits a Sasakian
structure if and only if it is a compact quotient of the generalized Heisenberg
group H(1, m) by a co-compact discrete subgroup Γ.

This is the main result of the paper.
We remark that the generalized Heisenberg group H(1, m) may be de-

scribed as the group of real matrices of the form




1 Q t
0 Im P
0 0 1





with Q = (q1, . . . , qn) ∈ R
n, P t = (p1, . . . , pn) ∈ R

n and t ∈ R. Its Lie
algebrah(1, m) is isomorphic to a central extension of the abelian Lie algebra
of dimension 2m by a non-degenerate 2-cocycle on it. Thus, one may choose
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a basis of h(1, m) in such a way that the corresponding structure constants
are rational numbers and, therefore, using a result in [21], we conclude that
H(1, m) admits co-compact discrete subgroups (note that if Γ(1, m) is the
subgroup of matrices of H(1, m) with integer entries then Γ(1, m) is a co-
compact discrete subgroup).
On the other hand, our Theorem 1.1 extends some existing results in the

literature. In particular, as a corollary of Theorem 3.9 in [3], one may deduce
that a compact nilmanifold G/Γ of dimension 2m + 1 admits a Sasakian
structure induced by a left-invariant Sasakian structure on G if and only G
is isomorphic to H(1, m). We remark that Theorem 1.1 takes care of the
non-left-invariant Sasakian structures on nilmanifolds.
As we noted above, we do not know if the Hard Lefschetz theorem for

Sasakian manifolds can be used for the proof of Theorem 1.1. In fact, it is an
open problem if there exist non-Heisenberg (and thus non-Sasakian) contact
nilmanifolds that satisfy the Hard Lefschetz property (see [10]).
The paper is structured as follows. In Sections 2 and 3, we review some def-

initions and results on minimal models, compact nilmanifolds and Sasakian
manifolds. Finally, in Section 4, we prove Theorem 1.1.

2.Minimal models of nilmanifolds

In this section we summarize some definitions and results about Sullivan
models of manifolds.
A (real) commutative differential graded algebra (A, d) (CDGA for short)

is a graded algebra A =
⊕

k≥0Ak over R such that for all x ∈ Ak and y ∈ Al

we have

xy = (−1)kl yx,

together with a differential d of degree one, such that d(xy) = d(x)y +
(−1)kxd(y) and d2 = 0. An example of commutative differential graded
algebra is given by the de Rham complex (Ω∗ (M) , d) of differential forms on
a smooth manifold M , with the multiplication given by the wedge product.
A morphism of CDGAs is a morphism of algebras which preserves the

degree and commutes with the differentials. For every CDGA (A, d) the
cohomology algebra H∗ (A) can be considered as a CDGA with the zero
differential. Let f : (A, d) −→ (B, d) be a morphism of CDGAs. For every
k ≥ 0, the map f induces a morphism between the k-th cohomologies

Hk (f) : Hk (A) → Hk (B) .
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If all the morphisms Hk (f) are isomorphisms then f is called a quasi-
isomorphism of CDGAs.
A CDGA (A, d) is said to be directly quasi-isomorphic to a CDGA (B, d) if

there is a quasi-isomorphism of CDGAs f : (A, d) −→ (B, d). Two CDGAs
(A, d) and (B, d) are quasi-isomorphic if there is a chain of CDGAs A = A0,
A1, . . . , Ar = B, such that either Aj is directly quasi-isomorphic to Aj+1 or
Aj+1 is directly quasi-isomorphic to Aj.
We say that a CDGAs (A, d) is connected if H0(A) = R. The reader

can find the definition of the minimal (Sullivan) algebra in [14]. We will
use the following facts on them. In every quasi-isomorphism class of con-
nected CDGAs there is a unique (up to isomorphism) minimal algebra (A, d).
Moreover, for every CDGA in the class, there exists a quasi-isomorphism of
CDGAs

f : (A, d) −→ (A, d) .

The minimal algebra in the class of CDGAs quasi-isomorphic to the given
connected CDGA (A, d) is called the minimal model of (A, d).
We say that a CDGA (A, d) is a model for a manifold M if (A, d) is quasi-

isomorphic to (Ω∗ (M) , d). The minimal model of (Ω∗ (M) , d) will be also
called the minimal model of M .
A nilmanifold is a compact homogeneous space of a nilpotent Lie group.

Malcev [21] proved that any nilmanifold can be written as G/Γ, where G
is a simply-connected nilpotent Lie group and Γ is a co-compact discrete
subgroup.
We recall the following theorem of Hasegawa.

Theorem 2.1 ([18]). The minimal model for a compact nilmanifold G/Γ is
given by (∧∗g∗, d), where g∗ is the dual space of the Lie algebra g of the Lie
group G and d is the Chevalley-Eilenberg differential.

Suppose dim g = 2m+1, with m ≥ 1, and let k−1 ≤ 2m+1 be the dimen-
sion of the first Chevalley-Eilenberg cohomology H1(∧∗g∗) of g. It is known
that one can choose a basis {α1, . . . , α2m+1} of g∗ such that α1, . . . , αk−1 are
closed, {[α1], . . . , [αk−1]} is a basis of H1(∧∗g∗), and

dαl = −
∑

i<j<l

γij
l αi ∧ αj , for 1 ≤ l ≤ 2m+ 1, with γij

l = 0, for l < k. (2.1)
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3. Sasakian manifolds

Let M be a smooth manifold of dimension 2m + 1. A 1-form η on M is
called a contact form if η ∧ (dη)m nowhere vanishes. Then the pair (M, η) is
called a (strict) contact manifold. We write Φ for 1

2dη and we denote by ξ
the Reeb vector field, that is the unique vector field on M such that iξη = 1
and iξdη = 0.
Let (M, η) be a contact manifold and g a Riemannian metric on M . We

define the endomorphism φ : TM → TM by Φ(X, Y ) = g(X, φY ).
Then (M, η, g) is called a Sasakian manifold if the following conditions

hold.

(i) φ2 = −I + η ⊗ ξ, where I is the identity operator;
(ii) g(φX, φY ) = g(X, Y )− η(X)η(Y ) for any vector fields X and Y on M ;
(iii) the normality condition is satisfied, namely

[φ, φ]FN + 2dη ⊗ ξ = 0,

where [−,−]FN is the Frölicher-Nijenhuis bracket.

For a Sasakian manifold (M, η, g), we will denote by H∗
B(M) the basic

cohomology of M with respect to the foliation of codimension 1 on M which
is generated by the Reeb vector field. It is clear that dη is a basic 2-form on
M . Moreover, we will use the following result.

Lemma 3.1. Let M be a compact Sasakian manifold of dimension 2m + 1
with contact form η. Then (dη)m = dη∧. . .∧dη induces a non-zero element of
the basic cohomology group H2m

B (M). Thus, (dη)l induces a non-zero element
of H2l

B (M), for 1 ≤ l ≤ m.

Proof : Since dη is a basic form the same is true for all powers (dη)l. To prove
the lemma it is enough to show that [(dη)m]B 6= 0. Suppose that there exists
a basic (2m− 1)-form Ω on M such that

(dη)m = dΩ.

Then
−d(η ∧ Ω) = −dη ∧ Ω + η ∧ dΩ = η ∧ (dη)m − dη ∧ Ω.

Now, dη ∧ Ω is a (2m+ 1)-form on M and

iξ(dη ∧ Ω) = 0.

This implies that dη ∧ Ω = 0 and

η ∧ (dη)m = −d(η ∧ Ω).
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Therefore, using Stoke’s theorem
∫

M

η ∧ (dη)m = −

∫

M

d(η ∧ Ω) = 0,

which is a contradiction.

For further details on Sasakian manifolds we refer the reader to [5] or [7].

4. Proof of Theorem 1.1

Let H(1, m) be the generalized Heisenberg group of dimension 2m + 1.
It is well-known that H(1, m) admits a left-invariant Sasakian structure
(φ, ξ, η, g) (see, for instance, [11]). So, if Γ is a co-compact discrete subgroup
then (φ, ξ, η, g) induces a Sasakian structure on the compact nilmanifold
H(1, m)/Γ.
Conversely, let (M, η) be a contact manifold that admits a compatible

Sasakian metric. Tievsky [27] proved that M has the model

(T ∗(M), d), (4.1)

where

T ∗(M) := H∗
B(M)⊗ R[y]/(y2)

and we set deg(y) = 1. The component of degree p of Tievsky CDGA is
given by

(H∗
B(M)⊗ R[y]/(y2))p ∼= Hp

B(M)⊕Hp−1
B (M)y

The differential d is defined by

d([α]B + [β]By) := [β ∧ dη]B ∈ Hp+1
B (M), (4.2)

where α is a basic closed p-form and β is a basic closed (p− 1)-form.
Now, let (N, η) be a compact Sasakian nilmanifold of dimension n = 2m+1,

i.e. N = G/Γ is a compact nilmanifold with a contact structure η which
admits a compatible Sasakian metric.
We will show that the Lie algebra g of G is isomorphic to the Heisenberg

Lie algebra h(1, m).
We have two models for N : the Tievsky model (4.1) and the minimal

model(2.1). Therefore there exists a quasi-isomorphism of CDGAs

f : (∧∗g∗, d) −→ (H∗
B(N)⊗ R[y]/(y2), d). (4.3)

Note that

(H∗
B(N)⊗ R[y]/(y2))1 = H1

B(N)⊕ Ry.
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Define k = dimH1(∧∗g∗) + 1. Let us choose a basis {α1, . . . , α2m+1} of g∗

such that {[α1], . . . , [αk−1]} is a basis of H1(∧∗g∗) and (2.1) holds. We have
for every 1 ≤ i ≤ 2m+ 1

f(αi) = βi + aiy, (4.4)

for some βi ∈ H1
B(N) and ai ∈ R.

From (2.1), for every 1 ≤ i ≤ 2m+ 1 we get

f(dαi) = −
∑

r<s<i

γrs
i f(αr) ∪ f(αs), (4.5)

where we denoted by ∪ the product in the Tievsky CDGA (4.1). On the
other hand, due to the definition (4.2) of the Tievsky differential we obtain
from (4.4)

df(αi) = ai[dη]B. (4.6)

Since f is a morphism of CDGAs, we have f(dαi) = df(αi). Hence from
(4.5) and (4.6), it follows that

−
∑

r<s<i

γrs
i f(αr) ∪ f(αs) = f(dαi) = ai[dη]B for 1 ≤ i ≤ 2m+ 1. (4.7)

Since, for 1 ≤ i ≤ k − 1, we have dαi = 0, we get ai[dη]B = 0. By Lemma
3.1 [dη]B 6= 0, which immediately implies that ai = 0 for every 1 ≤ i ≤ k−1.
Therefore we have

f(αi) = βi for 1 ≤ i ≤ k − 1. (4.8)

Lemma 4.1. The set {β1 = f(α1), . . . , βk−1 = f(αk−1)} is a basis of H1
B(N).

Proof : As first step we prove that

H1(T ∗(N)) = H1
B(N).

Indeed, recall that N = G/Γ and

d0 : T
0(N) = H0(N) −→ T 1(N)

is identically zero by (4.2). Therefore, from Lemma 3.1, we deduce that

H1(T ∗(N)) = ker d1 = {β + ay | β ∈ H1
B(N), a ∈ R, d(β + ay) = 0} = H1

B(N).

Now, note that
H1(f) : H1(∧∗g∗) −→ H1(T ∗(N))

is an isomorphism by assumption. Since {α1 = [α1], . . . , αk−1 = [αk−1]} is a
basis of H1(∧∗g∗), we get that {β1 = f(α1), . . . , βk−1 = f(αk−1)} is a basis
of H1

B(N).
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Thus for i ≥ k we have

βi =

k−1
∑

r=1

sirβr for some sir ∈ R. (4.9)

Define

α̃i = αi for 1 ≤ i ≤ k − 1,

α̃i = αi −
k−1
∑

r=1

sirαr = αi −
k−1
∑

r=1

sirα̃r for i ≥ k.

Then {α̃1, . . . , α̃k−1, . . . , α̃2m+1} is a new basis of g∗ such that {[α̃1], . . . , [α̃k−1]}
is a basis of H1(∧∗g∗), and for l ≥ k we have

dα̃l = dαl −
k−1
∑

r=1

slrdαr = −
∑

r<s<l

γrs
l αr ∧ αs

= −
∑

r<s<l

γrs
l

(

α̃r +

k−1
∑

i=1

sriα̃i

)

∧

(

α̃s +

k−1
∑

i=1

ssiα̃i

)

= −
∑

r<s<l

γ̃rs
l α̃r ∧ α̃s,

for some new real numbers γ̃rs
l . Moreover, we get

f(α̃i) = aiy for every i ≥ k. (4.10)

Indeed, due to (4.4), (4.8) and (4.9), we have

f(α̃i) = f(αi)−
k−1
∑

r=1

sirf(αr) = βi + aiy −
k−1
∑

r=1

sirβr = aiy.

Now, we will prove that ai = 0 for every i ≤ 2m. Suppose this is not true.
Then there is l ≤ 2m such that al 6= 0. It follows from Lemma 3.1 that

(al[dη]B)
m = aml [(dη)

m]B 6= 0.

But from (4.7) we get that

(al[dη]B)
m =

(

−
∑

r<s<l

γrs
l f(αr) ∪ f(αs)

)m

= 0, (4.11)
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since l ≤ 2m and thus in every product

f(αi1) ∪ f(αj1) ∪ . . . ∪ f(αim) ∪ f(αjm) = f(αi1 ∧ αj1 ∧ · · · ∧ αim ∧ αjm)

with i1 < j1 < l, . . . , im < jm < l at least one index appears twice. Thus we
have a contradiction. Therefore

ai = 0 for every i ≤ 2m. (4.12)

Now, we will prove that k = 2m + 1. Since k = dimH1(∧∗g∗) + 1, we
have k ≤ 2m + 2. By Nomizu theorem, H1(∧∗g∗) ∼= H1(N). Therefore
k − 1 = dimH1(N) = b1(N). Since N is Sasakian, b1(N) is even. Hence, we
cannot have k = 2m+ 2, and thus k ≤ 2m+ 1.
Now, suppose that k ≤ 2m. Then, from (4.10) and (4.12) we get

f(α̃i) = 0 for every k ≤ i ≤ 2m. (4.13)

Therefore

f(α̃1 ∧ . . . ∧ α̃2m+1) = 0. (4.14)

On the other hand, from [18, Lemma 1] it follows that α̃1 ∧ . . . ∧ α̃2m+1 is a
generator of H2m+1(∧∗g∗) ∼= R. Thus the cohomology class of f(α̃i ∧ . . . ∧
α̃2m+1) should be a generator of H2m+1(T ∗(N)), which contradicts to (4.14).
Therefore k = 2m+ 1. This implies that

f(α̃2m+1) = a2m+1y and f(α̃j) = βj, for j ≤ 2m.

As the cohomology class of

a2m+1β1 ∪ . . . ∪ β2my = f(α̃1 ∧ . . . ∧ α̃2m+1)

generates H2m+1(T ∗(N)), we conclude that a2m+1 6= 0.
Thus, using Lemma 3.1 and the fact that f(α̃2m+1∧(dα̃2m+1)

m) = am+1
2m+1y∪

[(dη)m]B, we deduce that f(α̃2m+1 ∧ (dα̃2m+1)
m) 6= 0, which implies that

α̃2m+1 ∧ (dα̃2m+1)
m 6= 0.

In other words, α̃2m+1 ∈ g∗ is an algebraic contact structure on g. Since

dα̃i = 0, for 1 ≤ i ≤ 2m (4.15)

and dα̃2m+1 is a linear combination of α̃i ∧ α̃j with i, j ≤ 2m the Lie algebra
g is 2-step nilpotent. By Proposition 19 in [17], we conclude that g is the
Heisenberg algebra h(1, m).
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Spain

E-mail address : jcmarrer@ull.es

Ivan Yudin

CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal

E-mail address : yudin@mat.uc.pt


	1. Introduction
	2. Minimal models of nilmanifolds
	3. Sasakian manifolds
	4. Proof of Theorem 1.1
	Acknowledgments
	References

