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Abstract: A coupled non-Fickian model of a cardiovascular drug delivery system
using a biodegradable drug eluting stent is proposed. Energy estimates are used to
study the qualitative behaviour of the model. The numerical results are obtained
using an IMEX finite element method. The influence of vessel stiffness in the sorp-
tion of drug eluted from the stent is analyzed. The results presented in this paper
open new perspectives to adapt the drug delivery profile to the needs of the patient.
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1. Introduction
A stent is a device with the form of a mesh tube which is inserted into a

natural body passage to expand its walls and to provide mechanical support
for the wounded tissues. Even if stents are widely used in many medical
specialities, its most common use is in vascular surgery to reduce stenosis
that is the narrowing of the arteries.
A Drug Eluting Stent (DES) is a stent that releases anti-proliferative drug
into the arterial wall with a programmed pharmacokinetics. It consists of a
metallic stent strut coated with a polymeric layer that encapsulates a thera-
peutic drug that will act to reduce smooth muscle cell growth and to prevent
an inflammatory response which are the predominant causes of neointima
proliferation and in-stent restenosis. Biodegradable polymers like polylactic
acid (PLA) have become the materials of choice to coat stents while encap-
sulating the drug ([26]).
The vessel walls of the cardiovascular system are known to display complex
mechanical response under physiological conditions. Arterial stiffness is con-
sidered as an excellent indicator of cardiovascular morbidity and mortality
in a large percentage of the population as referenced in [12]. The coronary
artery has different layers. It mainly consist of elastin, which is responsible
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Figure 1. Detail of the stented artery,
http://www.nucleusmedicalmedia.com.

for the vessel elasticity, combined with collagen. Elastin and collagen are re-
sponsible for viscoelastic properties of the vessel. These properties have been
clearly demonstrated by laboratorial experiments like creep and relaxation
tests [9, 17, 28].
Due to the involvement of so many factors, prediction of drug release ap-
pears to be an important issue and mathematical models constitute an im-
portant tool to design appropriate drug delivery systems. During the last
years, a number of studies have proposed mathematical models for coupled
drug delivery in the cardiovascular tissues. We refer without being exhaus-
tive to [3, 5, 10, 14, 15 − 22, 30, 31] and also [23] as a review paper. Most of
these studies address the release of drug and its numerical behavior while
the viscoelasticity of the vessel wall and the behaviour of the biodegradable
materials are disregarded.
In this paper, we propose a non-Fickian coupled model for predicting the
biodegradation of PLA as a drug carrier in the coated stent and the simul-
taneous release of the drug from the coating into the vessel wall. The effect
of viscoelasticity of the vessel wall in the drug release is investigated using
Maxwell-Wiechert model ([4]).
The geometrical and mechanical effects of the stent strut on degradation
and drug release are considered negligible in this paper. As the transport
properties through the glycocalyx (the coverage of endothelium) are not well
known, we have considered such properties in the endothelium layer.
The paper is organized as follows. Section 2 is devoted to the description of
the model and its initial, boundary and interface conditions. In Section 3
we briefly explain the mass behaviour of the materials in a phenomenolog-
ical approach. In Section 4 we present a variational formulation and prove
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Figure 2. Drug eluting stent inside the vessel wall.

a stability result for the continuous model. Using an implicit-explicit finite
element method, we establish in Section 5, a discrete form of the stability
results. Numerical simulations as well as a sensitivity analysis of the vis-
coelastic parameters are discussed in section 6. Finally in Section 7, some
conclusions are presented.

2. Description of the model
Three main phenomena explain the kinetics of the drug and the biodegrad-

able polymer: chemical reactions, convection and non-Fickian diffusion.

2.1. Chemical reactions. When a DES is implanted in a vessel, the coated
stent will be gradually covered by neo-intima. For a sake of simplicity, we
consider that the drug eluting stent is already inside of the vessel wall (see
Figure 2).
Three main reactions are responsible for the degradation of PLA into lactic
acid and oligomers, both in the coated stent and in the vessel wall. In the
first reaction, the hydrolysis of the PLA occurs resulting in molecules with
smaller molecular weights: oligomers (with molecular weight MW such that
20K ≤ MW ≤ 120K), lactic acid (with molecular weight MW ≤ 20K). The
second and the third reactions are the hydrolysis of the oligomers resulting
in lactic acid occurring in the coating and in the vessel wall respectively. In
what follows the subscript S stands for the stent coating while the subscript
V stands for the vessel wall (see Table 1).
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Molecule Stent coating (S) Vessel wall (V)
Plasma C1,S C1,V

PLA C2,S -
Oligomers C3,S C3,V

Lactic acid C4,S C4,V

Drug C5,S C5,V

Table 1. Notation for the concentrations.

The previously mentioned reactions are represented schematically by

Reaction 1: C1,S + C2,S
κ1,S−−−→ C3,S + C4,S,

Reaction 2: C1,S + C3,S
κ2,S−−−→ C4,S,

Reaction 3: C1,V + C3,V
κ1,V−−−→ C4,V ,

(1)

where κ1,S and κ2,S denote the reaction rates of the hydrolysis of PLA and
oligomers in the stent and κ1,V denotes the reaction rate of the hydrolysis of
oligomers in the vessel wall.
The evolution in time and space of each concentration depends on the type
of chemical reaction involved: production or consumption reaction. To sim-
plify the presentation of the reaction terms that affect the behaviour of each
concentration, we introduce the notations:

CS =
(
Cm,S

)
m=1,...,5

, CV =
(
Cm,V

)
m=1,...,5,

m ̸=2
and C = (CS, CV ). (2)

where Cj, j = S, V are defined in (x, y, t) ∈ j̄ × R+.
Let Fm,j(Cj), m = 1, . . . , 5, j = S, V, be the reaction terms to be considered
in the evolution of the concentration. We adopt in what follows the reaction
terms introduced in [22] and used in [8] which are defined by

Fm,S(CS) =



−
∑
i=1,2

Fi,S(CS), m=1,

−F1,S(CS), m=2,∑
i=1,2

(−1)i−1Fi,S(CS), m=3,∑
i=1,2

Fi,S(CS), m=4,

0, m=5,

(3)
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for the stent and

Fm,V (CV ) =


−F1,V (CV ), m=1,
−F1,V (CV ), m=3,
F1,V (CV ), m=4,
0, m=5,

(4)

for the vessel wall. In (3) and (4) the following definitions are used

F1,S(CS) = κ1,SC1,SC2,S

(
1 + αC4,S

)
,

F2,S(CS) = κ2,SC1,SC3,S

(
1 + βC4,S

)
,

F1,V (CV ) = κ1,VC1,VC3,V

(
1 + γC4,V

)
,

(5)

where α, β and γ are some positive dimensional constants (see the Annex
for more details).

2.2. Convection. The transport of oligomers, lactic acid and drug in the
stent and in the vessel wall occurs by diffusion and convection. The same
phenomena occur in the transport of PLA in the stent. The convection is
caused by the porous structure of the polymeric matrix and the vessel wall.
Let pj, j = S, V, represent the pressures in the stent and in the vessel wall
respectively and uj, j = S, V, be the corresponding velocities. We consider
in what follows the geometry described in Figure 2. We also assume that the
plasma is incompressible and that its behaviour is described by Darcy’s law.
The velocities and the pressures then satisfy the following equations

uV = − kV
µV
∇pV in V,

∇.uV = 0 in V,
pV = plumen on Γlumen,
pV = padv on Γadv,
uV .ηV = 0 on Γwall,

(6)

in the vessel wall and
uS = − kS

µS
∇pS in S,

∇.uS = 0 in S,
uS.ηS = 0 on Γstrut,

(7)

in the stent. In (6) and (7), ηj, j = S, V, represents the exterior unit normal.
These equations are completed with the matching condition{

pS = pV on Γcoat,
uS.ηS = −uV .ηV on Γcoat,

(8)
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where the boundaries Γlumen, Γcoat, Γstrut, Γwall and Γadv are defined in Figure
2.
The permeabilities kS and kV depend on the properties of the medium and
also on the concentrations of PLA, oligomers, lactic acid and drug in the
stent and oligomers, lactic acid and drug in the vessel wall. As the functional
relations satisfied by kj, j = S, V, are not described in the literature, and
to simplify the model, we assume that kj, j = S, V, are constant. The
viscosities µj, j = S, V, depend on the chemical compounds present in the
stent and in the vessel wall. To simplify, we also assume in what follows that
the viscosities are constant.

2.3.Viscoelastic effects. Viscoelastic models have been widely used to char-
acterize mechanistic properties of the vascular tissues due to its ability to tai-
lor both the viscoelastic relaxation function and the nonlinear elastic stress-
strain relation. Numerous viscoelastic models, derived under different ex-
perimental conditions, have been proposed in the literature [15− 17, 26, 27].
In what follows, we present a linear model (Maxwell-Wiechert model, [4]).
The multiple relaxation times used in this model are well adapted to predict
viscoelastic behaviour in living tissues ([17]). We postpone for a later section
some considerations on the use of a nonlinear model (Fung’s model, [9]).
In theMaxwell-Wiechertmodel, the relation between the stress and the strain
is given by the following convolution integral

σV (t) = −
(
krεV (t) +

∫ t

0

K(t− s)
dεV
ds

(s)ds

)
in V, (9)

where σV stands for the stress in the arterial wall, εV is the infinitesimal
strain, κr is the Young modulus of the spring arm and the convolution mem-

ory kernel K is defined by K(t−s) =
n∑

i=1

κie
− t−s

τi , where τi =
ηi
κi
, i = 1, . . . , n.

The constants κi, i = 1, . . . , n, represent the Young modulus of the Maxwell
arms while ηi, i = 1, . . . , n, are their viscosities. This means that for t = 0

the Young modulus is κr +
n∑

i=1

κi while for t → ∞ its value is κr.

It should be noted that the negative sign in (9) indicates that σ and ε are of
opposite sign. This represents the fact that the vessel wall acts like a barrier
to the entry of the drug ([7]).
By using integration by parts, εV (0) = 0 and assuming a linear relationship
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between strain and concentrations in the vessel wall, εV (t) = αmCm,V (t), m =
1, . . . , 5, m ̸= 2, we will have

σm,V (t) = −αm

(
(κr +

n∑
i=1

κi)Cm,V (t)−

n∑
i=1

κi
τi

∫
t

0

e
− t−s

τi Cm,V (s)ds

)
in V, (10)

for m = 1, . . . , 5, m ̸= 2.
Particular attention will be devoted to the case n = 1 that is a mechanical
analog compound by an elastic arm and a Maxwell arm. If we consider

K(t − s) =
(
τσ
τ1
− 1

)
κre

− t−s
τ1 for τ1 = η1

κ1
and τσ = η1

κ1+κr

κ1κr
, we obtain the so

called 3−parameter solid model which can also be deduced from the following
differential formulation

σV + τ1
∂σV
∂t

= −κr

(
εV + τσ

∂εV
∂t

)
, (11)

where σV (0) = εV (0) = 0. Equation (11) defines one of the simplest linear
viscoelastic models that simultaneously captures effects of creep and stress
relaxation.
Equation (11) leads to the following formulation

σm,V (t) = −αm

(
κr

τσ
τ1
Cm,V (t)−

κ1

τ1

∫ t

0

e
− t−s

τ1 Cm,V (s)ds

)
in V, m = 1, . . . , 5, m ̸= 2. (12)

2.4. The transport of drug: a reaction-diffusion-convection problem. The
reaction-convection-diffusion processes that take place in the stent are then
described by the following system of equations

∂Cm,S

∂t
= ∇.

(
Dm,S∇Cm,S − uSCm,S

)
+ Fm,S(CS) in S × R+, m = 1, . . . , 5, (13)

where the meaning of parameters and variables is summarized in Tables 1
and 2 (Annex).
The transport process that occurs in the vessel wall is due to convective
transport and non-Fickian diffusion driven by the stress. It is described by
the following set of equations

∂Cm,V

∂t
= ∇.

(
D̄m,V ∇Cm,V − uV Cm,V

)
+∇.

(
D̄σ∇σm,V

)
+ Fm,V (CV ) in V × R+, m=1,...,5,

m̸=2 , (14)

where the stress σm,V , m = 1, . . . , 5, m ̸= 2 is given by (10). In (14), D̄σ

represents the ”weight” of the non-Fickian diffusion and its physical meaning
can be found in [7].
In what follows, particular attention will be paid to system (13) and (14)
when the viscoelastic behaviour of the vessel wall is described by the 3−parameter
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solid model (12). In this case the coupled problem (13) and (14) takes the
form

∂Cm,S

∂t
= ∇.

(
Dm,S∇Cm,S − uSCm,S

)
+ Fm,S(CS) in S × R+, m = 1, . . . , 5,

∂Cm,V

∂t
= ∇.

(
Dm,V∇Cm,V − uVCm,V

)
+ Fm,V (CV )

+

∫ t

0

e
− t−s

τ1 ∇.
(
Dm,σ∇Cm,V (s)

)
ds in V × R+, m = 1, . . . , 5, m ̸= 2,

(15)

whereDm,V = D̄m,V−αm(κr+κ1)D̄σ andDm,σ = αm
κ1

τ1
D̄σ form = 1, . . . , 5, m ̸=

2.
To ensure the positivity of the Fickian diffusion coefficient Dm,V , the dif-
fusion coefficients D̄m,V , the Young modulus κr, the parameters κ1 and
αm and the viscoelastic diffusion coefficients D̄σ should satisfy the relation

D̄σ <
D̄m,V

αm(κr+κ1)
. This assumption guarantees that Fickian diffusion dominates

the viscoelastic opposition, which is a physical condition for the effective pen-
etration of drug in the vessel wall.
The diffusivities of the oligomers, the lactic acid and the drug will vary dur-
ing the degradation process [25]. We assume that the diffusion coefficient of
each specie in the stent increases exponentially with the degradation of the
PLA. In [22, 25] the following expression

Dm,S = D0
m,Se

αm,S

C0
2,S−C2,S

C0
2,S in S × R+, m = 1, . . . , 5, (16)

was proposed where D0
m,S is the diffusion coefficient of the respective species

in the unhydrolyzed PLA and C0
2,S is the concentration of the unhydrolyzed

polymer at t = 0. For a sake of simplicity, we assume that the diffusion
coefficients in the vessel wall Dm,V , m = 1, . . . , 5, m ̸= 2, are constant.
To complete the coupled problem, we define in what follows the initial, the
boundary and the interface conditions. At the initial time, we assume that
the PLA and drug are distributed in the stent uniformly. We also assume
that at the initial time no degradation has occurred and consequently neither
oligomers nor lactic acid are in the coating. The initial conditions in the
coating are then given by{

Cm,S(0) = 0, m = 1, 3, 4,
Cm,S(0) = 1, m = 2, 5.

(17)

The initial concentrations in the vessel wall are{
C1,V (0) = 1,
Cm,V (0) = 0, m = 3, 4, 5.

(18)
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We represent by Jm,S and Jm,V the mass fluxes in the stent and in the vessel
wall defined respectively by

Jm,S = −Dm,S∇Cm,S + uSCm,S in S × R+, m = 1, . . . , 5,

Jm,V = −Dm,V∇Cm,V + uVCm,V −Dm,σ

∫ t

0

e
− t−s

τ1 ∇Cm,V (s)ds in V × R+,m=1,...,5,
m̸=2 .

(19)

As the metallic stent strut is impermeable to the drug and PLA degrada-
tion products that diffuse in coating stent, no mass flux passes through the
boundary surface Γstrut. So

Jm,S.ηS = 0 on Γstrut × R+, m = 1, . . . , 5. (20)

The interface conditions on the interface boundary Γcoat are described by{
Cm,S = Cm,V on Γcoat × R+,
Jm,S.ηS = −Jm,V .ηV on Γcoat × R+ (21)

for m = 1, . . . , 5, m ̸= 2. The first condition in (21) represents the continu-
ity of the concentration while the second condition is the continuity of local
fluxes.
We recall that the subscript m = 2 refers to PLA. In equation (21), the
interface conditions do not apply to PLA. In fact PLA has a large molecular
weight (MW ≥ 120K) compared to the other molecules present in the pro-
cess and consequently it will not cross Γcoat. As a result, Γcoat is impermeable
to PLA and we assume that J2,S.ηS = 0. The symmetric boundaries of the
vessel wall, Γwall are sufficiently far away from the domain of interest and a
symmetry condition implies no-flux, Jm,V .ηV = 0 for m = 1, . . . , 5, m ̸= 2.
We also assume that Γadv is impermeable to all molecules.
Since the drug, the oligomers and the lactic acid go directly from the arterial
wall to the blood and are transported very fast away from the region of inter-
est, we consider Jm,V .ηV = −γm,VCm,V , m = 3, 4, 5, for the lumen boundary
Γlumen, with an high transference rate γm,V . As the plasma penetrates from
the blood artery into the arterial wall, we may consider a natural boundary
condition J1,V .ηV = γ1,V (1− C1,V ) for the plasma.
Summarizing boundary and interface conditions, we have:

Jm,S.ηS = 0 on Γstrut × R+, m = 1, . . . , 5,
J2,S.ηS = 0 on Γcoat × R+,
Cm,S = Cm,V on Γcoat × R+, m = 1, . . . , 5, m ̸= 2,
Jm,S.ηS = −Jm,V .ηV on Γcoat × R+, m = 1, . . . , 5, m ̸= 2,
J1,V .ηV = γ1,V (1− C1,V ) on Γlumen × R+,
Jm,V .ηV = −γm,VCm,V on Γlumen × R+, m = 3, 4, 5,
Jm,V .ηV = 0 on (Γwall ∪ Γadv)× R+,m = 1, . . . , 5, m ̸= 2.

(22)
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3. Qualitative behaviour of the total mass of the system
In what follows we analyse the behaviour of the total mass of species in

the model. We consider

M(t) =

∫
S

CSdS +

∫
V

CV dV, (23)

where

∫
S

CSdS =
5∑

m=1

∫
S

Cm,SdS and

∫
V

CV dV =
5∑

m=1
m ̸=2

∫
V

Cm,V dV .

Using (15), we obtain

M′(t) =
5∑

m=1

∫
S

∇.
(
Dm,S∇Cm,S − uSCm,S

)
dS +

5∑
m=1

∫
S

Fm,S(CS)dS

+
5∑

m=1
m̸=2

∫
V

∇.
(
Dm,V∇Cm,V − uVCm,V

)
dV +

5∑
m=1
m ̸=2

∫
V

Fm,V (CV )dV

+
5∑

m=1
m̸=2

∫
V

∫ t

0

e−
t−s
τ1 ∇.

(
Dm,σ∇Cm,V (s)

)
dsdV.

Integrating over space and applying external boundary conditions, we have

M′(t) =
5∑

m=1
m ̸=2

∫
Γcoat

Jm,S.ηSds+
5∑

m=1
m ̸=2

∫
Γcoat

Jm,V .ηV ds+

∫
S

5∑
m=1

Fm,S(CS)dS

+

∫
V

5∑
m=1
m ̸=2

Fm,V (CV )dV + γ1,V

∫
Γlumen

(1− C1,V )ds−
5∑

m=3

γm,V

∫
Γlumen

Cm,V ds.

Let

∆MΓlumen
(t) =

5∑
m=1
m̸=2

γm,V

∫
Γlumen

Cm,V (t)ds,

∆MH(t) =

∫
S
κ2,SC1,S(t)C3,S(t)(1 + βC4,S(t))dS +

∫
V
κ1,V C1,V (t)C3,V (t)

(
1 + γC4,V (t))dV.

(24)

We note that ∆MΓlumen
(t) represents the mass per unit time of molecules

(except PLA) that enters in Γlumen at the instant t while ∆MH(t) stands for
the total mass of hydrolyzed oligomers that enter per unit time in the stent
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and the vessel wall at the same instant.
Using interface condition on Γcoat we easily establish

M(t) = M(0) + γ1,V

∣∣∣∣Γlumen

∣∣∣∣t− ∫ t

0

∆MH(µ)dµ−
∫ t

0

∆MΓlumen
(µ) dµ.

This last equation means that the total mass in the system at a certain time
t, t ∈ [0, T ], is given by the difference between the initial mass added with
the mass of plasma that enters in the system until time t and the cumulative
masses of molecules in Γlumen, the stent and the vessel wall.

4. Weak formulation
In this section, we introduce a variational form of the initial boundary value

problem (15)− (18) and (22).
Let Ω be a bounded domain in R2 with boundary ∂Ω. We denote by L2(Ω)
and H1(Ω) the usual Sobolev spaces endowed with the usual inner products
(., .) and (., .)1 and norms ∥.∥L2(Ω) and ∥.∥H1(Ω) respectively. We represent by

L∞(Ω) the space of functions v : Ω −→ R such that
∥∥v∥∥

L∞(Ω)
= ess supΩ |v| <

∞. The space of functions v : (0, T ) −→ H1(Ω) such that

∫ T

0

∥∥v(t)∥∥2
H1(Ω)

dt <

∞ will be denoted by L2(0, T ;H1(Ω)) while L∞(0, T ;L∞(Ω)) represents the
space of functions v : (0, T ) −→ L∞(Ω) such that ess sup

(0,T )

∥∥v(t)∥∥
L∞(Ω)

< ∞.

4.1. Porous media problem. In order to find the pressure drop in the stented
vessel wall, as kj and µj, j = S, V, are constants, it is convenient to rewrite
the equations (6) − (8) in terms of pressure drop in the following coupled
form 

−∇.( kVµV
∇pV ) = 0 in V,

−∇.( kSµS
∇pS) = 0 in S,

pV = plumen on Γlumen,
pV = padv on Γadv,
kV
µV
∇pV .ηV = 0 on Γwall,

pV = pS on Γcoat,
kV
µV
∇pV .ηV = − kS

µS
∇pS.ηS on Γcoat,

kS
µS
∇pS.ηS = 0 on Γstrut.

(25)
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For a sake of simplicity, we assume padv = 0 and a nonzero pressure plumen =
p0.
In what follows we use the notations

Aj(pj, qj) =
(κj

µj
∇pj,∇qj

)
j
, j = S, V, (26)

and we use the following spaces

H1
lumen(V ) =

{
ϑ ∈ H1(V ) such that ϑ = 0 on Γlumen

}
(27)

and

V =

{
(pS, pV ) ∈ H1(S)×H1

lumen(V ) such that pS = pV on Γcoat

}
. (28)

Let w ∈ H1(V ) be such that w = plumen on Γlumen and p∗V = pV − w ∈
H1

lumen(V ).
With the previous notations, we consider the weak formulation of problem
(25):
Find (pS, p

∗
V ) ∈ V such that

AS(pS, qS) +AV (p
∗
V , qV ) = −AV (w, qV ), ∀ (qS, qV ) ∈ V . (29)

It is obvious that pV can be recovered by pV = p∗V + w.

4.2. Convection-diffusion-reaction problem. We adopt in what follows the
following notations:

aS
(
vS(t), wS

)
=

(
Dm,S∇vm,S(t)− uSvm,S(t),∇wm,S

)
S

,

aV
(
vV (t), wV

)
=

(
Dm,V ∇vm,V (t)− uV vm,V (t),∇wm,V

)
V

+

∫ t

0
e
− t−s

τ1

(
Dm,σ∇vm,V (s),∇wm,V

)
V

ds,

alumen(vV (t), wV ) = γ1,V

(
1− v1,V (t), w1,V

)
Γlumen

−
5∑

m=3

γm,V

(
vm,V (t), wm,V

)
Γlumen

.

(30)

These bilinear forms are defined in the Sobolev space

W =

{(
vS , vV

)
∈
(
H1(S)

)5

×
(
H1(V )

)4

such that vm,S = vm,V on Γcoat, m = 1, 3, 4, 5

}
, (31)

where
(
vS, vV

)
=

((
vm,S

)
m=1,...,5

,
(
vm,V

)
m=1,...,5
m ̸=2

)
and

L2(0, T,W) =

{(
wS , wV

)
such that wj : (0, T ) −→ W and

∫ T

0

∥∥wj(t)
∥∥2
H1(j)

dt < ∞, j = S, V

}
. (32)

The weak solution of the problem (15)− (18) and (22) is the solution of the
following variational problem:
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Find
(
CS, CV

)
∈ L2(0, T,W) such that

(
∂CS
∂t ,

∂CV
∂t

)
∈

(
L2(0, T, L2(S))

)5

×(
L2(0, T, L2(V ))

)4

and


∑
j=S,V

((∂Cj
∂t
(t), vj

)
j
+ aj

(
Cj(t), vj

))
=

∑
j=S,V

(
Fj(Cj(t)), vj

)
j
+ alumen(CV (t), vV ),

a.e in (0, T ), for all (vS, vV ) ∈ W ,
CS(0) = (0, 1, 0, 0, 1), CV (0) = (1, 0, 0, 0),

(33)

where CS and CV are defined in (2) and(
FS(CS),FV (CV )

)
=

((
Fm,S(CS)

)
m=1,...,5

,
(
Fm,V (CV )

)
m=1,...,5
m ̸=2

)
(34)

is defined by (3)-(5).
We define the energy functional

E(t) =
∑
j=S,V

(∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

+

∫ t

0

∥∥∥∥∇Cj(s)
∥∥∥∥2

L2(j)

ds

)
+

∥∥∥∥∫ t

0

e
− t−s

τ1 ∇CV (s)ds
∥∥∥∥2

L2(V )

, t ∈ [0, T ], (35)

where∥∥∥∥CS(t)∥∥∥∥
L2(S)

=
5∑

m=1

∥∥∥∥Cm,S(t)

∥∥∥∥
L2(S)

and

∥∥∥∥CV (t)∥∥∥∥
L2(V )

=
5∑

m=1
m ̸=2

∥∥∥∥Cm,V (t)

∥∥∥∥
L2(V )

.(36)

An upper bound for the energy functional (35) is established in the following
theorem. n the following, the space L∞(0, T, L∞(Ω)) will be represented by
L∞(L∞).

Theorem 4.1. If (CS, CV ) ∈ L2(0, T,W) and (∂CS∂t ,
∂CV
∂t ) ∈

(
L2(0, T ;L2(S))

)5

×(
L2(0, T ;L2(V ))

)4

is a solution of the variational problem (33), then assum-

ing
(
CS(t), CV (t)

)
∈
(
H2(S)

)5 × (
H2(V )

)4
we have

E(t) ≤ 1

min
{
1,ϕ,Dσ

}e2(K+φ)tE(0) + γ1,V
2

∣∣Γlumen

∣∣2(e2(K+φ)t − 1

)
, (37)

where K, ϕ, φ and Dσ are concentration-independent constants while |Γlumen|
is the length of the transition layer Γlumen.
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Proof : Taking in (33), vj = Cj(t), j = S, V , using (30), (34) and (36), the
equality

d
dt

∥∥∥∥∫ t

0

e−
t−s
τ1 ∇CV (s)ds

∥∥∥∥2
L2(V )

= 2

∫ t

0

e−
t−s
τ1

(
∇CV (s),∇CV (t)

)
V

ds

− 2
τ1

∥∥∥∥∫ t

0

e−
t−s
τ1 ∇CV (s)ds

∥∥∥∥2
L2(V )

,

(38)

and the inequalities(
ujCj(t),∇Cj(t)

)
j

≤
∥∥uj∥∥∞(

ε2j

∥∥∥∥Cj(t)∥∥∥∥2
L2(j)

+ 1
4ε2j

∥∥∥∥∇Cj(t)
∥∥∥∥2
L2(j)

)
, (39)

for j = S, V that hold for arbitrary positive εj, we can establish the following
differential inequality

1
2

d
dt

∑
j=S,V

(∥∥∥∥Cj(t)∥∥∥∥2
L2(j)

+ ϕ

∫ t

0

∥∥∥∥∇Cj(s)
∥∥∥∥2
L2(j)

ds+Dσ

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds
∥∥∥∥2
L2(V )

)
≤

∑
j=S,V

∥∥uj∥∥∞ε2j

∥∥∥∥Cj(t)∥∥∥∥2
L2(j)

− Dσ
τ1

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV (s)ds
∥∥∥∥2
L2(V )

+
∑

j=S,V

(
Fj(Cj(t), Cj(t)

)
j
+ λlumen.

(40)

In (40), λlumen =
γ1,V
4

∣∣Γlumen

∣∣2 − 3γ1,V
4

∥∥∥∥C1,V (t)

∥∥∥∥2
Γlumen

−
5∑

m=3

γm,V

∥∥∥∥Cm,V (t)

∥∥∥∥2
Γlumen

and 

ϕ = min
j=S,V

{
2Dj −

∥∥uj

∥∥
∞

2ε2j

}
,

DS = min
m=1,...,5

{
Dm,S

}
,

DV = min
m=1,...,5

m̸=2

{
Dm,V

}
,

Dσ = min
m=1,...,5

m̸=2

{
Dm,σ

}
.

(41)

It should be noted that εj in (40) should be such that εj ≥
√∥∥uj

∥∥
∞

4Dj
, j = S, V .

As H2(j), j = S, V are embedded in the space of continuous bounded func-
tions, (see [2]), it can be shown that there exist positive constants Kj, j =
S, V, depending on ∥Cj∥L∞(L∞) such that

(
Fj(Cj(t), Cj(t)

)
j
≤ Kj

∥∥∥∥Cj(t)∥∥∥∥2
L2(j)

≤ K
∥∥∥∥Cj(t)∥∥∥∥2

L2(j)

. (42)
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where K = max
j=S,V

{
Kj

}
.

By replacing (42) in (40) and taking

φ = max
j=S,V

{
ε2j
∥∥uj∥∥∞}

, (43)

in differential inequality (40), we consequently deduce

E(t) ≤ 1

min
{
1,ϕ,Dσ

}e2(K+φ)tE(0) + γ1,V
2

∣∣Γlumen

∣∣2(e2(K+φ)t − 1

)
. (44)

Estimate (44) proves the stability of the model for finite intervals of time.

5. Finite dimensional approximation
To define a finite dimensional approximation for the solution of (15)− (18)

and (22), we fix h > 0 and we define in Ω = S ∪ V (Figure 2) an admissible
triangulation Th, depending on h > 0, such that the corresponding admissible
triangulations in S and V , respectively ThS

and ThV
, are compatible in Γcoat

(see the zoomed part of Figure 3). We represent by ∆1 a typical element of
ThS

and by ∆2 a typical element of ThV
.

Figure 3. Triangulations in the stent and in the vessel wall.

Let Sh =
∪

∆1∈ThS

∆1, Vh =
∪

∆2∈ThV

∆2 and let AS,h(., .) and AV,h(., .) be defined

as AS(., .) and AV (., .) but with the L2 inner product defined on Sh and Vh,
respectively. To define the bilinear form corresponding to alumen(., .), we
represent by Γlumen,h the boundary of Vh that replaces Γlumen.
We assume that padv = 0 and plumen = p0,h. We define in what follows the
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space of globally continuous functions on Sh and Vh whose restrictions to
each element ∆1 and ∆2 respectively, are polynomials of degree at most n,
i.e.

Vh =

{
(pS,h, pV,h) ∈ C0(S̄h)× C0(V̄h) such that pS,h = pV,h on Γcoat and pV,h = 0 on Γlumen

and (pS,h, pV,h)
∣∣
∆1×∆2

∈ Pn × Pn, for all ∆1 ∈ ThS
and ∆2 ∈ ThV

}
⊂ H1(Sh)×H1

lumen(Vh).
(45)

In (45), Pn denotes the space of polynomial of degree at most n.
The finite dimensional formulation for system (25) reads:
Find (pS,h, p

∗
V,h) ∈ Vh such that

AS,h(pS,h, qS,h) +AV,h(p
∗
V,h, qV,h) = −AV,h(wh, qV,h), ∀ (qS,h, qV,h) ∈ Vh. (46)

We use in what follows the following notations(
vS,h, vV,h

)
=

((
vm,S,h

)
m=1,...,5

,
(
vm,V,h

)
m=1,...,5
m ̸=2

)
. (47)

To compute the semi-discrete Ritz-Galerkin approximation Ch = (CS,h, CV,h)
for the weak solution of C = (CS, CV ) defined by (15) − (18) and (22), we
consider the space

Wh =
{(

vS,h, vV,h
)
∈
(
C0(S̄h)

)5 × (
C0(V̄h)

)4
such that vm,S,h = vm,V,h on Γcoat, m = 1, 3, 4, 5

and (vS,h, vV,h)
∣∣
∆1×∆2

∈ (Pq)
5 × (Pq)

4 for all ∆1 ∈ ThS
and ∆2 ∈ ThV

}
⊂

(
H1(Sh)

)5 × (
H1(Vh)

)4
,
(48)

where Pq denotes the space of polynomial of degree at most q (not necessarily
equal to n).
By aj,h(., .) we represent the bilinear form defined on aj(., .) but with the L2

inner products defined on Sh for j = S and Vh for j = V . By alumen,h(., .) we
denote the bilinear form defined as alumen(., .) but considering the boundary
integrals on Γlumen,h.
The weak solution of the problem (15)− (18) and (22) in the discrete case is
the solution of the following finite dimensional variational formulation:

Find
(
CS,h, CV,h

)
∈ L2(0, T,Wh) such that (

∂CS,h
∂t ,

∂CV,h
∂t ) ∈

(
L2(0, T ;L2(Sh))

)5

×(
L2(0, T ;L2(Vh))

)4

and


∑

j=S,V

((∂Cj,h
∂t (t), vj,h

)
j,h

+ aj,h
(
Cj,h(t), vj,h

))
=

∑
j=S,V

(
Fj(Cj,h(t)), vj,h

)
j,h

+ alumen,h(CV,h(t), vV,h),

a.e in (0, T ), for all (vS,h, vV,h) ∈ Wh,
CS,h(0) = (0, 1, 0, 0, 1), CV,h(0) = (1, 0, 0, 0).

(49)
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To conclude this section, we introduce the semi-discrete energy functional

Eh(t) =
∑
j=S,V

(∥∥∥∥Cj,h(t)∥∥∥∥2
L2(j)

+

∫ t

0

∥∥∥∥∇Cj,h(s)
∥∥∥∥2
L2(j)

ds

)
+

∥∥∥∥∫ t

0
e
− t−s

τ1 ∇CV,h(s)ds
∥∥∥∥2
L2(V )

, (50)

where t ∈ [0, T ] and Cj,h(t), j = S, V, is the solution of (49).
This functional is the semi-discrete version of the energy functional (35).
Following a procedure analogous to the one in Theorem 4.1, a discrete version
of inequality (37) can be established.

6. Numerical Results
All experiments have been carried out with the open source PDE solver

freeFEM++ considering the triangulation plotted in Figure 3, with 3688 el-
ements (1968 vertices) for the vessel wall and 100 elements (83 vertices) for
each stent. The time integration of (49) has been performed using an implicit-

explicit backward formula in the time grid

{
tn;n = 0, 1, . . . , N

}
, t0 =

0, tN = T and with time step size ∆t = 10−3.
The IMEX method is defined by integrating (49) with an implicit Euler
method where the diffusion and the convective terms are considered im-
plicitly being the diffusion coefficients explicit. In the discretization of the
reaction terms, we adopt an implicit-explicit approach which convert each
nonlinear reaction into a linear one. To compute the finite element solutions
of problem (49) we need to evaluate some convolution integrals. To avoid
the use of quadrature rules we generate and implicitly solve a set of ordinary
differential equations which solutions are those integrals.
Several choices of finite element spaces can be made, but we use here the
piecewise linear finite element space P1 for concentrations and quadratic fi-
nite element space P2 for the pressure drop.
We define the mass in the coated stent and in the vessel wall by

Mm,S,h(t) =

∫
Sh

Cm,S,h(t)dS, m = 1, . . . , 5,

Mm,V,h(t) =

∫
Vh

Cm,V,h(t)dV, m = 1, . . . , 5, m ̸= 2,
(51)

respectively.
The following values for the parameters, extracted from [21, 22], and [31],
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have been considered in the numerical experiments.

κ1,S = κ2,V = 1× 10−6 cm2/g.s, κ2,S = 1× 10−7 cm2/g.s, γm,V = 1× 1010 cm/s,
D0

1,S = 1× 10−8 cm2/s,D0
2,S = 1× 10−15 cm2/s, D0

3,S = 1× 10−10 cm2/s,
D0

4,S = 2× 10−10 cm2/s, D0
5,S = 1× 10−8 cm2/s, kS = 2× 10−14 cm2,

kV = 1× 10−15 cm2, µS = 0.72× 10−2 g/cm.s, µV = 0.5× 10−2 g/cm.s,
D1,V = 1× 10−8 cm2/s,D0

3,V = 1× 10−10 cm2/s, D0
4,V = 2× 10−10 cm2/s,

D0
5,V = 5× 10−9 cm2/s, α = 1 s/cm2, β = γ = 10 s/cm2.

We set plumen = 100 mmHg and padv = 0 mmHg, so we impose a pressure
difference between the inner (Γlumen) and the outer surface (Γadv) of the ar-
terial wall. A velocity field in the coupled stent-wall system is caused by this
pressure jump.
The pressure drop obtained by system (25) is shown in Figure 4 (b). While
pressure on Γcoat is around 76.88 mmHg, it is observed that the average pres-
sure in the vessel wall and in the stent are 35.93 mmHg and 75.34 mmHg
respectively.

Figure 4. Velocity field (left) and pressure distribution (right)
in the coupled system.

The release of the drug from the stent into the vessel wall is shown in
Figure 5. As time evolves the mass of the drug increases in the vessel wall.
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Figure 5. Evolution of drug distribution in the stent and the
vessel wall during 6 months (left to right: 6 hours, 1 day, 1 week,
1 month, 3 and 6 months).

The behavior of the mass of drug, the mass of PLA and the amount of fluid
in the biodegradable stent is shown in Figure 6. The drug presents a steep
initial gradient and gradually vanishes after three months. The penetration
of the fluid in the stent presents a steep initial slope and after around 20
days achieves a steady state. We can also observe in Figure 6 that as PLA
degrades, the release rate of drug decreases.
The release of drug from a biodegradable stent and a non-biodegradable
stent are compared in Figure 7. We observe that due to degradation of the
polymer, the drug release from a biodegradable stent is faster than the drug
release from a non-biodegradable stent. The drug release rate directly de-
pends on the reaction rate κ1,S.
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Figure 6. Mass behaviour of fluid, PLA and drug in the stent
during 90 days.
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The influence of the stiffness of the vessel wall in the diffusion process of
the drug is shown in Figures 8 and 9. A healthy coronary artery with Young
modulus κr = 1.2 MPa (see [11]) is compared with a highly diseased coronary
artery with Young modulus κr = 4.1 MPa (see [18]).
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Figure 8. Short time effect of κr on the drug mass that enters
in the vessel wall, τ1 = 0.5, κ1 = 1, 3-parameter solid model.

As κr increases due to age or atherosclerosis, the vessel wall is less elastic,
that is more stiff, and less drug penetrates to the coronary wall. This is an
interesting finding from the medical viewpoint, because cardiovascular mor-
bidity is related with arterial stiffness [12]. It means that the concentration
of drug in the DES should be tailored to the severity of the arterial disease.
In the framework of our numerical experiments the drug reduction of mass
in the initial days of the process could be compensated by adding 2 percent
drug to the initial concentration.
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Figure 9. Long time effect of κr on the drug mass that enters
in the vessel wall,, τ1 = 0.5, κ1 = 1, 3-parameter solid model.

The long term influence of stiffness of the coronary wall in the diffusion
process of the drug is shown in Figure 9. In the beginning of the treatment, a
diseased coronary wall receives less drug due to its large κr when we compare
with a healthy coronary wall. A crossing occurs after the initial times around
day 15. This finding is justified by the fact that the stiffness of the vessel
wall imposes a resistance to the penetration of the drug in the beginning of
the process and leads to a drug accumulation in the long time.
When an additional thin layer named topcoat is applied to the PLA matrix,
instead of the interface conditions (21), we consider the following interface
conditions {

Jm,S.ηS = Pc(Cm,S − Cm,V ),
Jm,S.ηS = −Jm,V .ηV ,

(52)

for m = 1, . . . , 5, m ̸= 2, where Pc is the permeability of the interface layer
Γcoat. The first condition in (52) is the second Kedem-Katchalsky equation
(see [21] and the references therein). We remark that the topcoat is used to
slow down the release rate of the drug and it gives more controllability of the
drug delivery process.
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Figure 10. The effect of topcoat on the drug release in the
vessel wall, 3-parameter solid model.

Figure 10 presents the effect of permeability of the interface layer Γcoat on
the drug release when a topcoat is applied to the PLA. The accumulation of
drug will decrease when a topcoat with smaller permeability is applied to the
coated stent. This means that the release of drug from the stent into a vessel
wall can be controlled by applying topcoats with different permeabilities.
Fung’s quasilinear viscoelastic model ([9]) is commonly used to describe the
viscoelastic properties of the living tissues. Several authors consider that
Fung’s quasilinear viscoleastic model is a simple method to incorporate non-
linearity and viscoelasticity and is a good model for living tissues with mod-
erate deformation ([1, 9, 17, 29]).
The aim of this subsection is to show that the effect of the rheological prop-
erties of the vessel wall, on drug permeation, are described analogously by
Maxwell-Wiechert model and Fung’s model.
In the framework of Fung’s model, the relation between stress and strain is
given by the following convolution integral

σV (t) = −
∫ t

0

K̃(t− s)
dσe(εV )

ds
(s)ds, (53)



24 J.A. FERREIRA, J.NAGHIPOOR AND PAULA DE OLIVEIRA

where

K̃(t− s) =

1 + c

∫ τ2

τ1

1
τ e

− t−s
τ dτ

1 + c ln(τ2τ1 )
, (54)

and

σe(εV (t)) = λ1

(
eλ2εV (t) − 1

)
≃ λ1λ2εV (t). (55)

In (54), c > 0 represents the degree of viscous effects, τ1 and τ2 represent
the short-term and long-term time constants respectively. In (55), σe(εV )
represents the instantaneous nonlinear elastic strain, λ1 > 0 is the elastic
stress constant (MPa) and λ2 is a non-dimensional parameter representing
the nonlinearity of instantaneous elastic response.
Replacing (54) and (55) into (53), we obtain

σV (t) = −k̃r

(
εV (t) + c

∫ t

0

∫ τ2

τ1

1

τ
e−

t−s
τ dτ

dεV
ds

(s)ds

)
, (56)

where k̃r =
λ1λ2

1+c ln(
τ2
τ1
)
.

The quasilinear viscoelastic model has five material parameters (three for the
reduced relaxation function ( Equation (54)) and two for the elastic response
( Equation (55)) which must be determined experimentally. Although some
estimations are available in the literature for ligaments ([13]), femur-MCL-
tibia complexes ([1]) and spinal tissue ([29]), to the best knowledge of the
authors, physiological values of these five parameters are not available in the
case of coronary walls.
Due to the lack of appropriate information, we fix four parameters λ1 = 0.2
Mpa, λ2 = 25, τ1 = 0.5s and τ2 = 1800s and choose c = 0.37 to have κ̃r = 1.2
Mpa for healthy arterial wall ([11]) and c = 0.02 to have κ̃r = 4.1 Mpa for
highly diseased arterial wall ([18]).
The plots in Figures 11 and 12 show that the profile of drug release exhibits
the same qualitative behavior as before. The barrier to drug permeation
of stiff vessel walls, in the first period of drug delivery, is a clinical finding
suggested by Fung’s and Maxwell-Wiechert mechanistic models.
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Figure 11. Short time effect of parameter κ̃r on the drug release
in the vessel wall (Fung’s model).
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Figure 12. Long time effect of parameter κ̃r on the drug release
in the vessel wall (Fung’s model).
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7. Conclusions
In recent years mathematical modeling has become an effective tool in sim-

ulating drug delivery processes. In the case of drug eluting stents it leads to
a deeper understanding of the drug release mechanisms in the biodegradable
coating and in the vessel wall. Although the cardiovascular drug delivery
depends on very complex biochemical and physiological phenomena, a sim-
plified release model can help to adapt the delivery profile to patient needs.
In this paper we present a coupled model to simulate drug delivery from a
stent to a vessel wall. The coating of the stent is biodegradable and viscoelas-
tic properties of the vessel wall are included in the model. From a theoretical
viewpoint we prove the stability of the continuous model and the stability of
a fully discrete model.
From the numerical viewpoint two particular aspects of clinical importance
are addressed in the paper: the influence of the viscoelasticity of the vessel
wall and the effect of permeability of the stent coating.
Concerning the first aspect we show that during an initial period of time the
permeation of drug in the vessel is affected by its stiffness: the total mass
of drug that enters the vessel is a decreasing function of the Young modu-
lus. Patients who need a cardiovascular stent generally have atherosclerosis
and consequently stiff vessels that have high Young modulus. To prevent an
inflammatory response and the smooth muscle cell growth a correct concen-
tration of drug must penetrate the vessel from the moment when the stent
is implanted. Our findings suggest that the initial concentration of drug in
the stent should be tailored to the rheological properties of the vessel walls.
The second aspect we want to stress is the control of the release profile ac-
cording to the permeability of the coating: release can be speed up or delayed
as different polymers are used.
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Annex

Parameter/Variable Unit Equation
κ1,S, κ2,S, κ1,V cm2/g.s (5)

α, β, γ s/cm2 (5)
uS, uV cm/s (6),(7)
kS, kV cm2 (6),(7)
µS, µV g/cm.s (6),(7)

Cm,S, Cm,V g/cm2 (13),(14)
Dm,S, D̄m,V cm2/s (13),(14)

γm,V cm/s (22)
Pc cm/s (52)

Table 2. Parameters of the model in the drug eluting stent and
vessel wall.

In the column Equation, we indicate the first equation in the paper where
the parameter or variable appear.
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